Skip to main content
Log in

Time-Consistent Investment Strategies for a DC Pension Member with Stochastic Interest Rate and Stochastic Income

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

This paper studies two multi-period mean-variance investment problems for a DC pension member before and after retirement. At any time, the pension manager can invest in a risk-free asset and multi-risky assets. Before retirement, the manager tries to optimize the mean-variance utility of the wealth in the member’s pension account at retirement. At retirement, the pension account wealth (or part of it) is used to purchase a paid-up annuity. After retirement, the manager has to pay the guaranteed annuity, continues to invest, and aims to optimize the mean-variance utility of the terminal wealth at a fix future time, to satisfy the pension member’s heritage and life needs in the next stage. Interest rate risk and income risk are introduced. Applying the game theory and the extended Bellman equation, the time-consistent investment strategies and the efficient frontiers before and after retirement are obtained explicitly. Obtained results indicate that the stochastic interest rate and the stochastic income have essential effects on the investment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deelstra, G., Grasselli, M., Koehl, P.F.: Optimal investment strategies in the presence of a minimum guarantee. Insur. Math. Econ. 33, 189–207 (2003)

    Article  MathSciNet  Google Scholar 

  2. Gao, J.W.: Stochastic optimal control of DC pension funds. Insur. Math. Econ. 42, 1159–1164 (2008)

    Article  MathSciNet  Google Scholar 

  3. Guan, G.H., Liang, Z.H.: Optimal management of DC pension plan in a stochastic interest rate and stochastic volatility framework. Insur. Math. Econ. 57, 58–66 (2014)

    Article  MathSciNet  Google Scholar 

  4. Guan, G.H., Liang, Z.X.: Optimal management of DC pension plan under loss aversion and value-at-Risk constraints. Insur. Math. Econ. 69, 224–237 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bian, L.H., Li, Z.F., Yao, H.X.: Pre-commitment and equilibrium investment strategies for the DC pension plan with regime switching and a return of premiums clause. Insur. Math. Econ. 81, 78–94 (2018)

    Article  MathSciNet  Google Scholar 

  6. Wu, H.L., Zeng, Y.: Equilibrium investment strategy for defined-contribution pension schemes with generalized mean-variance criterion and mortality risk. Insur. Math. Econ. 64, 396–408 (2015)

    Article  MathSciNet  Google Scholar 

  7. Yao, H.X., Lai, Y.Z., Ma, Q.H., Jian, M.J.: Asset allocation for a DC pension fund with stochastic income and mortality risk: a multi-period mean-variance framework. Insur. Math. Econ. 54, 84–92 (2014)

    Article  MathSciNet  Google Scholar 

  8. Yao, H.X., Chen, P., Li, X.: Multi-period defined contribution pension funds investment management with regime-switching and mortality risk. Insur. Math. Econ. 71, 103–113 (2016)

    Article  MathSciNet  Google Scholar 

  9. Zhang, L., Zhang, H., Yao, H.X.: Optimal investment management for a defined contribution pension fund under imperfect information. Insur. Math. Econ. 79, 210–224 (2018)

    Article  MathSciNet  Google Scholar 

  10. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  11. Li, D., Ng, W.L.: Optimal dynamic portfolio selection: multiperiod mean-variance formulation. Math. Finance 10, 387–406 (2000)

    Article  MathSciNet  Google Scholar 

  12. Zhou, X.Y., Li, D.: Continuous-time mean-variance portfolio selection: a stochastic LQ framework. Appl. Math. Optim. 42(1), 19–33 (2000)

    Article  MathSciNet  Google Scholar 

  13. Menoncin, F., Vigna, E.: Mean-variance target-based optimisation in DC plan with stochastic interest rate. In: Carlo Alberto Notebooks, No. 337. Collegio Carlo Alberto (2013)

  14. Guan, G.H., Liang, Z.X.: Mean-variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns. Insur. Math. Econ. 61, 99–109 (2015)

    Article  MathSciNet  Google Scholar 

  15. Højgaard, B., Vigna, E.: Mean-variance portfolio selection and efficient frontier for defined contribution pension schemes. http://vbn.aau.dk/files/11498557/R-2007-13.pdf (2007)

  16. Vigna, E.: On efficiency of mean-variance based portfolio selection in defined contribution pension schemes. Quant. Financ. 14, 237–258 (2014)

    Article  MathSciNet  Google Scholar 

  17. Basak, S., Chabakauri, G.: Dynamic mean-variance asset allocation. Rev. Financ. Stud. 23, 2970–3016 (2010)

    Article  Google Scholar 

  18. Björk, T., Murgoci, A.: A general theory of Markovian time inconsistent stochastic control problem. Working paper. http://ssrn.com/abstract=1694759 (2010)

  19. Wu, H.L., Zhang, L., Chen, H.: Nash equilibrium strategies for a defined contribution pension management. Insur. Math. Econ. 62, 202–214 (2015)

    Article  MathSciNet  Google Scholar 

  20. Li, D.P., Rong, X.M., Zhao, H.: Time-consistent investment strategy for DC pension plan with stochastic salary under CEV model. J. Syst. Sci. Complex. 29, 428–454 (2016)

    Article  MathSciNet  Google Scholar 

  21. Yao, H.X., Li, Z.F., Li, D.: Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability. Eur. J. Oper. Res. 252(3), 837–851 (2016)

    Article  MathSciNet  Google Scholar 

  22. Devolder, P., Princep, M.B., Fabian, I.D.: Stochastic optimal control of annuity contracts. Insur. Math. Econ. 33, 227–238 (2003)

    Article  MathSciNet  Google Scholar 

  23. Gao, J.W.: Optimal portfolios for DC pension plans under a CEV model. Insur. Math. Econ. 44(3), 479–490 (2009)

    Article  MathSciNet  Google Scholar 

  24. Bian, L.H., Li, Z.F., Yao, H.X.: Time-consistent strategy for a multi-period mean-variance asset-liability management problem with stochastic interest rate. J. Indus. Manag. Optim. 17(3), 1383–1410 (2020)

    Article  MathSciNet  Google Scholar 

  25. Wu, H.L., Chen, H.: Nash equilibrium strategy for a multi-period mean-variance portfolio selection problem with regime switching. Econ. Modell. 46, 79–90 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Fei Li.

Additional information

This paper is dedicated to the late Professor Duan Li in commemoration of his contributions to optimization, financial engineering, and risk management.

This paper is supported by the National Natural Science Foundation of China (Nos. 71991474, 71721001 and 72001219)

Appendix: The Proof of Theorem 1

Appendix: The Proof of Theorem 1

Proof

We prove this theorem by mathematical induction. For \(t=T-1\), by equations (4), (12) and (13), we have

$$\begin{aligned}&V_{T\!{-}\!1}\left( x_{T-1},r_{T{-}1},y_{T-1}\right) {=}\max _{\pi _{T{-}1}}\left\{ \mathbb {E}_{x_{T{-}1},r_{T-1},y_{T{-}1}}\left( V_{T}\left( X_{T},R_{T},Y_{T}\right) \right) -\omega \mathbb {E}_{x_{T-1},r_{T-1},y_{T-1}}\left( g^{2}_{T}\left( X_{T},R_{T},Y_{T}\right) \right) \right. \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \left. +\omega \left[ \mathbb {E}_{x_{T-1},r_{T-1},y_{T-1}}\left( g_{T}\left( X_{T},R_{T},Y_{T}\right) \right) \right] ^{2}\right\} \nonumber \\&\quad =\max _{\pi _{T-1}}\left\{ \mathbb {E}_{x_{T-1},r_{T-1},y_{T-1}}\left( X_{T}\right) -\omega \mathbb {E}_{x_{T-1},r_{T-1},y_{T-1}}\left( X_{T}^{2}\right) + \omega \left[ \mathbb {E}_{x_{T-1},r_{T-1},y_{T-1}}\left( X_{T}\right) \right] ^{2}\right\} \nonumber \\&\quad =\max _{\pi _{T-1}}\left\{ x_{T-1}r_{T-1}+\mathbb {E}(P'_{T-1})\pi _{T-1}+c_{T-1}y_{T-1}-\omega \pi _{T-1}'Var (P_{T-1})\pi _{T-1}\right\} . \end{aligned}$$
(A1)

Because \(\omega >0\) and \(Var (P_{T-1})\) is positive definite by Assumption 2, the first-order (necessary and sufficient) condition about \(\pi _{T-1}\) in (A1) gives the optimal strategy

$$\begin{aligned} \pi ^{*}_{T-1}=\frac{1}{2\omega }Var ^{-1}(P_{T-1})\mathbb {E}(P_{T-1}). \end{aligned}$$
(A2)

Substituting equation (A2) into equations (A1) and (13), respectively, we can obtain

$$\begin{aligned} V_{T-1}\left( x_{T-1},r_{T-1},y_{T-1}\right)= & {} r_{T-1}x_{T-1}+c_{T-1}y_{T-1}+\frac{1}{4\omega }\mathbb {E} (P'_{T-1})Var ^{-1}(P_{T-1})\mathbb {E}(P_{T-1}), \end{aligned}$$
(A3)
$$\begin{aligned} g_{T-1}(x_{T-1},r_{T-1},y_{T-1})= & {} \mathbb {E}_{x_{T-1},r_{T-1},y_{T-1}}\left( g_{T}\left( X_{T},R_{T},Y_{T}\right) \right) \nonumber \\= & {} \mathbb {E}\left( x_{T-1}r_{T-1}+P'_{T-1}\pi _{T-1}+c_{T-1}y_{T-1}\right) \nonumber \\= & {} r_{T-1}x_{T-1}+c_{T-1}y_{T-1}+\frac{1}{2\omega }\mathbb {E}(P'_{T-1})Var ^{-1}(P_{T-1})\mathbb {E}(P_{T-1}).\nonumber \\ \end{aligned}$$
(A4)

On the other hand, by equations (14)-(25), we have

$$\begin{aligned}&\psi _{T-1}=1,\text { }w_{T-1}=A_{T}\mathbb {E}\left( b_{T-1}^{2\psi _{T}}\right) +B_{T}^{2}Var \left( b_{T-1}^{\psi _{T}}\right) =0,\\&\xi _{T-1}=A_{T}\mathbb {E}\left( b_{T-1}^{2\psi _{T}}\right) \mathbb {E}\left( P_{T-1}P'_{T-1}\right) +B_{T}^{2}Var \left( b_{T-1}^{\psi _{T}}P_{T-1}\right) =Var \left( P_{T-1}\right) ,\\&A_{T-1}=w_{T-1}-w_{T-1}^{2}\mathbb {E}(P'_{T-1})\xi ^{-1}_{T-1}\mathbb {E}(P_{T-1})=0,\\&B_{T-1}=B_{T}\left[ \mathbb {E}\left( b_{T-1}^{\psi _{T}}\right) -w_{T-1}\mathbb {E}\left( b_{T-1}^{\psi _{T}}\right) \mathbb {E}(P'_{T-1})\xi ^{-1}_{T-1}\mathbb {E}(P_{T-1})\right] =1,\\&f_{T-1}=B_{T}^{2}\mathbb {E}^{2}\left( b_{T-1}^{\psi _{T}}\right) \mathbb {E}(P'_{T-1})\xi ^{-1}_{T-1}\mathbb {E}(P_{T-1})+f_{T}=\mathbb {E}(P'_{T-1})Var ^{-1}(P_{T-1})\mathbb {E}(P_{T-1}).\\&Q^{T-1}_{T-1}=w_{T-1}\mathbb {E}(P_{T-1})=0,\ \ U^{T-1}_{T-1}=A_{T-1}=0,\ \ \beta ^{T-1}_{T-1}=B_{T-1}=1,\ \ \alpha ^{T-1}_{T-1}=A_{T-1}=0.\nonumber \\ \end{aligned}$$

Hence, we obtain

$$\begin{aligned} \pi ^{*}_{T-1}=\xi _{T-1}^{-1}\left( \frac{B_{T}\mathbb {E}\left( b_{T-1}^{\psi _{T}}\right) \mathbb {E}(P_{T-1})}{2\omega r_{T-1}^{\varphi _{T-1}\psi _{T}}}-w_{T-1}r_{T-1}x_{T-1}\mathbb {E}(P_{T-1})-Q^{T-1}_{T-1}c_{T-1}y_{T-1}\right) , \end{aligned}$$
(A5)
$$\begin{aligned} V_{T-1}(x_{T-1},r_{T-1},y_{T-1})&=-\omega A_{T-1}r_{T-1}^{2\psi _{T-1}}x_{T-1}^{2}+B_{T-1}r_{T-1}^{\psi _{T-1}}x_{T-1}+\frac{1}{4\omega }f_{T-1}+\beta ^{T-1}_{T-1}r_{T-1}^{\varphi _{T-1}\psi _{T}}c_{T-1}y_{T-1}\nonumber \\&\qquad -2\omega U^{T-1}_{T-1}r_{T-1}^{\psi _{T-1} +\varphi _{T-1}\psi _{T}}c_{T-1}y_{T-1}x_{T-1} -\omega \alpha ^{T-1}_{T-1}r_{T-1}^{2\varphi _{T-1}\psi _{T}}c^{2}_{T-1}y^{2}_{T-1}\nonumber \\&\qquad -2\omega \sum _{T-1\leqslant l< h\leqslant T-1}S^{l,h}_{t} r_{t}^{\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l+1} +\left( \prod _{m=t}^{h}\varphi _{m}\right) \psi _{h+1}}c_{l}c_{h}y^{2}_{t} \end{aligned}$$
(A6)

and

$$\begin{aligned} g_{T-1}(x_{T-1},r_{T-1},y_{T-1})&=B_{T-1}r_{T-1}^{\psi _{T-1}}x_{T-1}+\frac{1}{2\omega }f_{T-1}\nonumber \\&\quad +\beta ^{T-1}_{T-1}r_{T-1}^{\varphi _{T-1}\psi _{T}}c_{T-1}y_{T-1}. \end{aligned}$$
(A7)

Equations (A5)-(A7) show that equations (26)-(28) hold for \(t=T-1\).

Now, suppose that equations (26)-(28) hold for \(t=T-1,T-2,\cdots ,t+1\). Then, we consider the case for \(t=t\). Substituting equations (27) and (28), the expressions of \(V_{t+1}\) and \(g_{t+1}\), into the extended Bellman equation (12), we have

$$\begin{aligned}&V_{t}(x_{t},r_{t},y_{t})=\max _{\pi _{t}}\left\{ \mathbb {E}_{x_{t},r_{t},y_{t}}\left( V_{t+1}\left( X_{t+1},R_{t+1},Y_{t+1}\right) \right) -\omega \mathbb {E}_{x_{t},r_{t},y_{t}}\left( g_{t+1}^{2}\left( X_{t+1},R_{t+1},Y_{t+1}\right) \right) \right. \nonumber \\&\left. \qquad \qquad \qquad \qquad +\omega \left[ \mathbb {E}_{x_{t},r_{t},y_{t}}\left( g_{t+1}\left( X_{t+1},R_{t+1},Y_{t+1}\right) \right) \right] ^{2}\right\} \nonumber \\&\quad =\max _{\pi _{t}}\left\{ \mathbb {E}_{x_{t},r_{t},y_{t}}\left( -\omega A_{t+1}R_{t+1}^{2\psi _{t+1}}X_{t+1}^{2}+B_{t+1}R_{t+1}^{\psi _{t+1}}X_{t+1} +\sum _{l=t+1}^{T-1}\beta ^{l}_{t+1}R_{t+1}^{\left( \prod _{m=t+1}^{l}\varphi _{m}\right) \psi _{l+1}}c_{l}Y_{t+1}\right. \right. \nonumber \\&\left. \left. \qquad -2\omega \sum _{l=t+1}^{T-1}U^{l}_{t+1} R_{t+1}^{\psi _{t+1}+\left( \prod _{m=t+1}^{l}\varphi _{m}\right) \psi _{l+1}}c_{l}Y_{t+1}X_{t+1}-\omega \sum _{l=t+1}^{T-1} \alpha ^{l}_{t+1} R_{t+1}^{2\left( \prod _{m=t+1}^{l}\varphi _{m}\right) \psi _{l+1}}c^{2}_{l}Y^{2}_{t+1} \right. \right. \nonumber \\&\qquad \left. \left. +\frac{1}{4\omega }f_{t+1}-2\omega \sum _{t+1\leqslant l< h\leqslant T-1}S^{l,h}_{t+1} R_{t+1}^{\left( \prod _{m=t+1}^{l}\varphi _{m}\right) \psi _{l+1} +\left( \prod _{m=t+1}^{h}\varphi _{m}\right) \psi _{h+1}}c_{l}c_{h}Y^{2}_{t+1}\right) \right. \nonumber \\&\qquad \left. -\omega \mathbb {E}_{x_{t},r_{t},y_{t}}\left( \left( B_{t+1}R_{t+1}^{\psi _{t+1}}X_{t+1}+\frac{1}{2\omega }f_{t+1} +\sum _{l=t+1}^{T-1}\beta ^{l}_{t+1}R_{t+1}^{\left( \prod _{m=t+1}^{l}\varphi _{m}\right) \psi _{l+1}}c_{l}Y_{t+1}\right) ^{2}\right) \right. \nonumber \\&\qquad \left. +\omega \left[ \mathbb {E}_{x_{t},r_{t},y_{t}}\left( B_{t+1}R_{t+1}^{\psi _{t+1}}X_{t+1}+\frac{1}{2\omega }f_{t+1} +\sum _{l=t+1}^{T-1}\beta ^{l}_{t+1}R_{t+1}^{\left( \prod _{m=t+1}^{l}\varphi _{m}\right) \psi _{l+1}}c_{l}Y_{t+1}\right) \right] ^{2}\right\} \nonumber \\&\quad =-\omega w_{t}r_{t}^{2\psi _{t}}x_{t}^{2} +B_{t+1}\mathbb {E}\left( b_{t}^{\psi _{t+1}}\right) r_{t}^{\psi _{t}}x_{t} +\frac{1}{4\omega }f_{t+1}+B_{t+1}\mathbb {E}\left( b_{t}^{\psi _{t+1}}\right) r_{t}^{\varphi _{t}\psi _{t+1}}c_{t}y_{t}\nonumber \\&\qquad -\omega w_{t}r_{t}^{2\varphi _{t}\psi _{t+1}}c_{t}^{2}y_{t}^{2}-2\omega w_{t}r_{t}^{1+2\varphi _{t}\psi _{t+1}}c_{t}y_{t}x_{t}\nonumber \\&\qquad -2\omega \sum _{l=t+1}^{T-1}\left( U^{l}_{t+1}\mathbb {E}\left( b_{t}^{\psi _{t+1}+\left( \prod _{m=t+1}^{l}\varphi _{m}\right) \psi _{l+1}}\theta _{t}\right) +\beta ^{l}_{t+1}B_{t+1} cov \left( b_{t}^{\psi _{t+1}},b_{t}^{\left( \prod _{m=t+1}^{l}\varphi _{m}\right) \psi _{l+1}}\theta _{t}\right) \right) \nonumber \\&\qquad \times r_{t}^{\psi _{t}+\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l+1}}c_{l}y_{t}x_{t} +\sum _{l=t+1}^{T-1}\beta ^{l}_{t+1}\mathbb {E}\left( b_{t}^{\left( \prod _{m=t+1}^{l}\varphi _{m}\right) \psi _{l+1}}\theta _{t}\right) r_{t}^{\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l+1}}c_{l}y_{t}\nonumber \\&\qquad -2\omega \sum _{l=t+1}^{T-1}\left( U^{l}_{t+1}\mathbb {E}\left( b_{t}^{\psi _{t+1}+\left( \prod _{m=t+1}^{l}\varphi _{m}\right) \psi _{l+1}}\theta _{t}\right) +\beta ^{l}_{t+1}B_{t+1} cov \left( b_{t}^{\psi _{t+1}},b_{t}^{\left( \prod _{m=t+1}^{l}\varphi _{m}\right) \psi _{l+1}}\theta _{t}\right) \right) \nonumber \\&\qquad \times r_{t}^{\varphi _{t}\psi _{t+1}+\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l+1}}c_{l}c_{t}y^{2}_{t}\nonumber \\&\qquad -\omega \sum _{l=t+1}^{T-1}M_{t}^{l} r_{t}^{2\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l+1}}c^{2}_{l}y_{t}^{2} -2\omega \sum _{t+1\leqslant l< h\leqslant T-1}N_{t}^{l,h} r_{t}^{\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l+1} +\left( \prod _{m=t}^{h}\varphi _{m}\right) \psi _{h+1}}c_{l}c_{h}y^{2}_{t}\nonumber \\&\qquad +\max _{\pi _{t}}\left\{ -2\omega r_{t}^{1+2\varphi _{t}\psi _{t+1}}w_{t}\mathbb {E}\left( P'_{t}\right) \pi _{t}x_{t}-2\omega r_{t}^{2\varphi _{t}\psi _{t+1}}w_{t}\mathbb {E}\left( P'_{t}\right) \pi _{t}c_{t}y_{t} -\omega r_{t}^{2\varphi _{t}\psi _{t+1}}\pi '_{t}\xi _{t}\pi _{t}\right. \nonumber \\&\qquad \left. +B_{t+1}r_{t}^{\varphi _{t}\psi _{t+1}}\mathbb {E}\left( b_{t}^{\psi _{t+1}}\right) \mathbb {E}\left( P'_{t}\right) \pi _{t}-2\omega \sum _{l=t+1}^{T-1} r_{t}^{\varphi _{t}\psi _{t+1}+\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l+1}}c_{l}y_{t}\left( Q_{t}^{l}\right) '\pi _{t}\right\} . \end{aligned}$$
(A8)

Because \(\omega >0\), \(r_{t}=R_{t}>0\) and \(\xi _{t}\) is positive definite by Remark 3.2, then the first-order condition about \(\pi _{t}\) in (A8) gives the optimal strategy

$$\begin{aligned} \pi ^{*}_{t}=\xi _{t}^{-1}\left( \frac{B_{t+1}\mathbb {E}\left( b_{t}^{\psi _{t+1}}\right) \mathbb {E}(P_{t})}{2\omega r_{t}^{\varphi _{t}\psi _{t+1}}}-w_{t}r_{t}x_{t}\mathbb {E}(P_{t})-\sum _{l=t}^{T-1}Q_{t}^{l}r_{t}^{\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l+1} -\varphi _{t}\psi _{t+1}}c_{l}y_{t}\right) . \end{aligned}$$
(A9)

Substituting equation (A9) into equations (A8) and (13), we can obtain

$$\begin{aligned}&V_{t}(x_{t},r_{t},y_{t}) =-\omega \left( w_{t}-w_{t}^{2}\mathbb {E}(P'_{t})\xi ^{-1}_{t}\mathbb {E}(P_{t})\right) r_{t}^{2\psi _{t}}x_{t}^{2}\nonumber \\&\qquad +B_{t+1}\left( \mathbb {E}\left( b_{t}^{\psi _{t+1}}\right) -w_{t}\mathbb {E}\left( b_{t}^{\psi _{t+1}}\right) \mathbb {E}(P'_{t})\xi ^{-1}_{t}\mathbb {E}(P_{t})\right) r_{t}^{\psi _{t}}x_{t}\nonumber \\&\qquad +\frac{1}{4\omega }\left( B_{t+1}^{2}\mathbb {E}^{2}\left( b_{t}^{\psi _{t+1}}\right) \mathbb {E}(P'_{t})\xi ^{-1}_{t}\mathbb {E}(P_{t})+f_{t+1}\right) -2\omega A_{t}r_{t}^{\psi _{t}+\varphi _{t}\psi _{t+1}}c_{t}y_{t}x_{t}\nonumber \\&\qquad -2\omega \sum _{l=t+1}^{T-1}\left( U^{l}_{t+1}\mathbb {E}\left( b_{t}^{\psi _{t+1}+\left( \prod _{m=t+1}^{l}\varphi _{m}\right) \psi _{l+1}}\theta _{t}\right) \right. \nonumber \\&\qquad \left. +\beta ^{l}_{t+1}B_{t+1} cov \left( b_{t}^{\psi _{t+1}},b_{t}^{\left( \prod _{m=t+1}^{l}\varphi _{m}\right) \psi _{l+1}}\theta _{t}\right) \right. \nonumber \\&\qquad \left. -w_{t}\left( Q^{l}_{t}\right) '\xi ^{-1}_{t}\mathbb {E}(P_{t})\right) r_{t}^{\psi _{t}+\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l+1}}c_{l}y_{t}x_{t}\nonumber \\&\qquad +B_{t+1}\left( \mathbb {E}\left( b_{t}^{\psi _{t+1}}\right) -w_{t}\mathbb {E}\left( b_{t}^{\psi _{t+1}}\right) \mathbb {E}(P'_{t})\xi ^{-1}_{t}\mathbb {E}(P_{t})\right) r_{t}^{\varphi _{t}\psi _{t+1}}c_{t}y_{t}\nonumber \\&\qquad +\sum _{l=t+1}^{T-1}\left( \beta ^{l}_{t+1}\mathbb {E}\left( b_{t}^{\left( \prod _{m=t+1}^{l}\varphi _{m}\right) \psi _{l+1}}\theta _{t}\right) -\mathbb {E}\left( b_{t}^{\psi _{t+1}}\right) B_{t+1}\left( Q^{l}_{t}\right) '\xi ^{-1}_{t}\mathbb {E}(P_{t})\right) \nonumber \\&\qquad \times r_{t}^{\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l+1}}c_{l}y_{t}\nonumber \\&\qquad -\omega A_{t}r_{t}^{2\varphi _{t}\psi _{t+1}}c^{2}_{t}y^{2}_{t}-\omega \sum _{l=t+1}^{T-1} \left( M_{t}^{l}-\left( Q^{l}_{t}\right) '\xi ^{-1}_{t}Q^{l}_{t}\right) r_{t}^{2\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l+1}}c^{2}_{l}y^{2}_{t}\nonumber \\&\qquad -2\omega \sum _{l=t+1}^{T-1}\left( U^{l}_{t+1}\mathbb {E}\left( b_{t}^{\psi _{t+1}+\left( \prod _{m=t+1}^{l}\varphi _{m}\right) \psi _{l+1}}\theta _{t}\right) \right. \nonumber \\&\qquad \left. +\beta ^{l}_{t+1}B_{t+1} cov \left( b_{t}^{\psi _{t+1}},b_{t}^{\left( \prod _{m=t+1}^{l}\varphi _{m}\right) \psi _{l+1}}\theta _{t}\right) \right. \nonumber \\&\qquad \left. -w_{t}\left( Q^{l}_{t}\right) '\xi ^{-1}_{t}\mathbb {E}(P_{t})\right) r_{t}^{\varphi _{t}\psi _{t+1}+\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l+1}}c_{l}c_{t}y^{2}_{t}\nonumber \\&\qquad -2\omega \sum _{t+1\leqslant l< h\leqslant T-1}\left( N_{t}^{l,h} -\left( Q^{l}_{t}\right) '\xi ^{-1}_{t}Q^{h}_{t}\right) r_{t}^{\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l+1} +\left( \prod _{m=t}^{h}\varphi _{m}\right) \psi _{h+1}}c_{l}c_{h}y^{2}_{t}\nonumber \\&\quad =-\omega A_{t}r_{t}^{2\psi _{t}}x_{t}^{2}+B_{t}r_{t}^{\psi _{t}}x_{t}+\frac{1}{4\omega }f_{t}-2\omega \sum _{l=t}^{T-1}U^{l}_{t} r_{t}^{\psi _{t}+\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l+1}}c_{l}y_{t}x_{t}\nonumber \\&\qquad +\sum _{l=t}^{T-1}\beta ^{l}_{t}r_{t}^{\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l+1}}c_{l}y_{t}-\omega \sum _{l=t}^{T-1} \alpha ^{l}_{t} r_{t}^{2\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l+1}}c^{2}_{l}y^{2}_{t}\nonumber \\&\qquad -2\omega \!\!\sum _{t\leqslant l< h{\leqslant } T-1}S^{l,h}_{t} r_{t}^{\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l{+}1} +\left( \prod _{m=t}^{h}\varphi _{m}\right) \psi _{h{+}1}}c_{l}c_{h}y^{2}_{t}, \end{aligned}$$
(A10)

and

$$\begin{aligned}&\qquad g_{t}(x_{t},r_{t},y_{t})\nonumber \\&\quad =\mathbb {E}_{x_{t},r_{t},y_{t}}\left[ g_{t+1}\left( X_{t+1},R_{t+1},Y_{t+1}\right) \right] \nonumber \\&\quad =\mathbb {E}_{x_{t},r_{t},y_{t}}\left[ B_{t+1}R_{t+1}^{\psi _{t+1}}X_{t+1}+\frac{1}{2\omega }f_{t+1} +\sum _{l=t+1}^{T-1}\beta ^{l}_{t+1}R_{t+1}^{\left( \prod _{m=t+1}^{l}\varphi _{m}\right) \psi _{l+1}}c_{l}Y_{t+1}\right] \nonumber \\&\quad =B_{t+1}\left( \mathbb {E}\left( b_{t}^{\psi _{t+1}}\right) -w_{t}\mathbb {E}\left( b_{t}^{\psi _{t+1}}\right) \mathbb {E}(P'_{t}) \xi ^{-1}_{t}\mathbb {E}(P_{t})\right) r_{t}^{\psi _{t}}x_{t}\nonumber \\&\qquad +\frac{1}{2\omega }\left( B_{t+1}^{2}\mathbb {E}^{2}\left( b_{t}^{\psi _{t+1}}\right) \mathbb {E}(P'_{t})\xi ^{-1}_{t}\mathbb {E}(P_{t})+f_{t+1}\right) \nonumber \\&\qquad +B_{t+1}\left[ \mathbb {E}\left( b_{t}^{\psi _{t+1}}\right) -w_{t}\mathbb {E}\left( b_{t}^{\psi _{t+1}}\right) \mathbb {E}(P'_{t})\xi ^{-1}_{t}\mathbb {E}(P_{t})\right] r_{t}^{\varphi _{t}\psi _{t+1}}c_{t}y_{t}\nonumber \\&\qquad +\sum _{l=t+1}^{T-1}\left( \beta ^{l}_{t+1}\mathbb {E}\left( b_{t}^{\left( \prod _{m=t+1}^{l}\varphi _{m}\right) \psi _{l+1}}\theta _{t}\right) -B_{t+1}\mathbb {E}\left( b_{t}^{\psi _{t+1}}\right) \left( Q^{l}_{t}\right) '\xi ^{-1}_{t}\mathbb {E}(P_{t})\right) \nonumber \\&\qquad \times r_{t}^{\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l+1}}c_{l}y_{t}\nonumber \\&\quad =B_{t}r_{t}^{\psi _{t}}x_{t}+\frac{1}{2\omega }f_{t} +\sum _{l=t}^{T-1}\beta ^{l}_{t}r_{t}^{\left( \prod _{m=t}^{l}\varphi _{m}\right) \psi _{l+1}}c_{l}y_{t}. \end{aligned}$$
(A11)

Equations (A9)-(A11) show that equations (26)-(28) hold for t. By the principle of mathematical induction, equations (26)-(28) hold for all \(t=0,1,\cdots ,T-1\) and the theorem is thus proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, LH., Li, XY. & Li, ZF. Time-Consistent Investment Strategies for a DC Pension Member with Stochastic Interest Rate and Stochastic Income. J. Oper. Res. Soc. China 10, 559–577 (2022). https://doi.org/10.1007/s40305-021-00386-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-021-00386-1

Keywords

Mathematics Subject Classification

Navigation