Skip to main content
Log in

Automatic Identification Fingerprint Based on Machine Learning Method

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

The fingerprint identification technology has been developed and applied effectively to security systems in financial transactions, personal information security, national security, and other fields. In this paper, we proposed the development of a fingerprint identification system based on image processing methods that clarify fingerprint contours, using machine learning methods to increase processing speed and increase the accuracy of the fingerprint identification process. The identification system consists of the following main steps: improving image quality and image segmentation to identify the fingerprint area, extracting features, and matching the database. The accuracy of the system reached 97.75% on the mixed high- and low-quality fingerprint database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bartumek J. S.: Fingerprint Image Enhancement, Segmentation and Minutiae Detection, Doctoral Dissertation, Blekinge Institute of Technology (2016)

  2. Kulkarni, S.: Fingerprint feature extraction and classification by learning the characteristics of fingerprint patterns. Neural Netw. World 3, 219–226 (2011)

    Article  Google Scholar 

  3. Oloyede, M.O., Adedoyin, A.O., Adewole, K.S.: Fingerprint biometric authentication for enhancing staff attendance system. Int. J. Appl. Inf. Syst. 5, 19–24 (2013)

    Google Scholar 

  4. Patil, P., Khachane, A., Purohit, V.: A wireless fingerprint attendance system. Int. J. Secur. Privacy Trust Manag. 5(4), 11–17 (2016)

    Article  Google Scholar 

  5. Barbadekar, A., Jadhav, S.D., Patil, S.P.: Performance analysis of fingerprint sensors. Vishwakarma Institute of Technology, Pune (2010). https://doi.org/10.1109/ICMEE.2010.5558571

    Book  Google Scholar 

  6. Miguel A.F, Aythami M., Carlos M.T, Jesus B. A.: Combining hand biometric traits for personal identification, In 43rd Annual 2009 International Carnahan Conference on Security Technology, IEEE (2009). https://doi.org/10.1109/CCST.2009.5335547

  7. Chandramohan, J., Nagarajan, R., Kumar, M., Dineshkumar, T., Kannan, G.: Attendance monitoring systems of students based on biometric and GPS tracking syste. Int. J. Adv. Eng. Manage. Sci. 3, 3 (2017)

    Google Scholar 

  8. Pavol, M., Hambahl, A.: Fingerprint recognition system using artificial neural network as feature extractor: design and performance evaluation. Math. Publ. 67, 117–134 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Uhrig R.E.: Introduction to artificial neural networks. In: Proceedings of IECON Annual Conference on IEEE Industrial Electronics (2002). https://doi.org/10.1109/iecon.1995.483329

  10. Bartunek J. S., Nilsson M., Nordberg J., Claesson I.: Neural network based minutiae extraction from skeletonized fingerprints (2006). https://doi.org/10.1109/TENCON.2006.344104

  11. Capplli R.: SFinGe: an approach to synthetic fingerprint generation, in: International Workshop on Biometric Technologies, Calgary, Canada, 147–154 (2004)

  12. Kumar, N., Kalyan Singh, K.: Wiener filter using digital image restoration. Int. J. Electron. Eng. 3(2), 345–348 (2011)

    Google Scholar 

  13. Boykov, Y., Vekslers, O., Zabih, R.: Fast approximate energy minimization via Graph Cuts. IEEE PAMI 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  14. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions via graph cuts. In: International Conference on Computer Vision, vol. 2, pp. 508–515 (2001)

  15. Nguyen, T.H., Nguyen, T.L., Dreglea, A.I.: Machine learning algorithms application to road defects classification. Intell. Decis. Technol. 59–66, 12 (2018)

    Google Scholar 

  16. Nguyen, T.H., Nguyen, T.L., Dreglea, A.I.: Robust approach to detection of bubbles based on images analysis. Int. J. Artif. Intell. 16, 167–177 (2018)

    Google Scholar 

  17. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Singularity and Core Detection” Extract from “Handbook of Fingerprint Recognition. Springer, New York (2003)

    MATH  Google Scholar 

  18. Jain, A.K., Flynn, P., Ross, A.A.: Handbook of Biometrics. Springer, Berlin (2008)

    Book  Google Scholar 

  19. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of icml, vol. 30, no. 1 (2013)

  20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhut dinov, R.: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Vasseur, J.-P., Dunkels, A.: in Interconnecting Smart Objects with IP (2010). https://doi.org/10.1016/C2009-0-20667-2

  22. Zweig, M.H., Campbell, G.: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39, 561–577 (1993)

    Article  Google Scholar 

  23. Nguyen, T.H., Nguyen, T.L.: ROC curve analysis for classification of road defects. BRAIN Broad Res. Artif. Intell. Neurosci. 10(2), 65–73 (2019)

    MathSciNet  Google Scholar 

  24. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  25. Awad, M., Khanna, R.: Support vector machines for classification, efficient learning machines, pp 39–66 (2015)

  26. Liu, Y.: Mean square error of survey estimates, encyclopedia of quality of life and well-being research, 2014, ISBN: 978-94-007-0752-8

  27. Thomas, J., PinarKaragoz, J., BazeerAhamed, B., Vasant, P.: Deep learning techniques and optimization strategies in big data analytics. IGI Global 13, 1–355 (2020). https://doi.org/10.4018/978-1-7998-1192-3

    Article  Google Scholar 

  28. Vasant, P., Zelinka, I.: Gerhard-Wilhelm Weber, Intelligent Computing & Optimization, 2019, Volume 866, ISBN : 978-3-030-00978-6, https://www.springer.com/gp/book/9783030009786

  29. Vasant, P., Zelinka, I.: Gerhard-Wilhelm Weber, Intelligent Computing & Optimization, Proceedings of the 2nd International Conference on Intelligent Computing and Optimization 2019, https://www.springer.com/gp/book/9783030335847

Download references

Acknowledgements

The authors are grateful to ICO’2018 Pattaya, Thailand, and ICO’2019 Koh Samui, Thailand, for giving them opportunity to present the research results in this special issue. This research was performed at Irkutsk National Research Technical University Irkutsk, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long The Nguyen.

Additional information

This research was supported by the National Natural Science Foundation of China (Nos. 00001 and 00010) and Chongqing Municipal Education Commission (No. KJ120616).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, L.T., Nguyen, H.T., Afanasiev, A.D. et al. Automatic Identification Fingerprint Based on Machine Learning Method. J. Oper. Res. Soc. China 10, 849–860 (2022). https://doi.org/10.1007/s40305-020-00332-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-020-00332-7

Keywords

Mathematics Subject Classification

Navigation