Skip to main content
Log in

Optimal Reinsurance and Investment Strategy with Delay in Heston’s SV Model

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

In this paper, we consider an optimal investment and proportional reinsurance problem with delay, in which the insurer’s surplus process is described by a jump-diffusion model. The insurer can buy proportional reinsurance to transfer part of the insurance claims risk. In addition to reinsurance, she also can invests her surplus in a financial market, which is consisted of a risk-free asset and a risky asset described by Heston’s stochastic volatility (SV) model. Considering the performance-related capital flow, the insurer’s wealth process is modeled by a stochastic differential delay equation. The insurer’s target is to find the optimal investment and proportional reinsurance strategy to maximize the expected exponential utility of combined terminal wealth. We explicitly derive the optimal strategy and the value function. Finally, we provide some numerical examples to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Browne, S.: Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin. Math. Oper. Res. 20, 937–957 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Højgaard, B., Taksar, M.: Optimal proportional reinsurance policies for diffusion models. Scand. Actuar. J. 2, 166–180 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yang, H.L., Zhang, L.H.: Optimal investment for insurer with jump-diffusion risk process. Insur. Math. Econ 37, 615–634 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, N.: Optimal investment for an insurer with exponential utility preferences. Insur. Math. Econ 40, 77–84 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, L.H., Guo, J.Y.: Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint. Insur. Math. Econ. 42, 968–975 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xu, L., Wang, R.M., Yao, D.J.: On maximizing the expected terminal utility by investment and reinsurance. J. Ind. Manag. Optim. 4, 801–815 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bäuerle, N., Blatter, A.: Optimal control and dependence modeling of insurance portfolios with Lévy dynamics. Insur. Math. Econ. 48, 398–405 (2011)

    Article  MATH  Google Scholar 

  8. Zeng, Y., Li, Z.F.: Optimal time-consistent investment and reinsurance policies for mean-variance insurers. Insur. Math. Econ. 49, 145–154 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zeng, Y., Li, Z.F., Lai, Y.Z.: Time-consistent investment and reinsurance strategies for mean-variance insurers with jumps. Insur. Math. Econ. 52, 498–507 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, Z.F., Zeng, Y., Lai, Y.Z.: Optimal time-consistent investment and reinsurance strategies for insurers under Heston’ s SV model. Insur. Math. Econ. 51, 191–203 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shen, Y., Zeng, Y.: Optimal investment-reinsurance strategy for mean-variance insurers with square-root factor process. Insur. Math. Econ. 62, 118–137 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zeng, Y., Li, Z.F.: Optimal reinsurance-investment strategies for insurers under mean-CaR criteria. J. Ind. Manag. Optim. 8(3), 673–690 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, S.M., Li, Z.F.: Optimal investment-reinsurance strategy for an insurance company with VaR contraint. Insur. Math. Econ. 47, 144–153 (2010)

    Article  MATH  Google Scholar 

  14. Schmidli, H.: On minimizing the ruin probability by investment and reinsurance. Ann. Appl. Probab. 12, 890–907 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Promislow, D.S., Young, V.R.: Minimizing the probability of ruin when claims follow Brownian motion with drift. N. Am. Actuar. J. 9, 109–128 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Zhang, X., Siu, T.K.: On optimal proportional reinsurance and investment in a Markovian regime-switching economy. Acta Math. Sin. (English Ser.) 28, 67–82 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, J., Yiu, K.F.C., Siu, T.K.: Optimal investment of an insurer with regime-switching and risk constraint. Scand. Actuar. J. 2014, 583–601 (2013)

  18. Elliott, R.J., Siu, T.K.: A stochastic differential game for optimal investment of an insurer with regime switching. Quant. Finance 11, 365–380 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, X., Siu, T.K.: Optimal investment and reinsurance of an insurer with model uncertainty. Insur. Math. Econ. 45, 81–88 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, X., Zhang, C., Siu, T.K.: Stochastic differential portfolio games for an insurer in jump diffusion risk process. Math. Oper. Res. 75, 83–100 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yi, B., Li, Z., Viens, F., Zeng, Y.: Robust optimal control for an insurer with reinsurance and investment under Hestons stochastic volatility model. Insur. Math. Econ. 53, 601–614 (2013)

  22. Beckers, S.: The constant elasticity of variance model and its implications for option pricing. J. Finance 35, 661–673 (1980)

    Article  Google Scholar 

  23. Hobson, D.G., Rogers, L.C.G.: Complete models with stochastic volatility. Math. Finance 8, 27–48 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Engle, R.: Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica 50, 987–1008 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Taylor, S.J.: Financial returns modeled by the product of two stochastic processes, a study of daily sugar prices. 1961–75. In: Anderson, O.D. (ed.) Time Series Analysis: Theory and Practice, vol. 1, pp. 203–226. North-Holland, Amsterdam (1982)

    Google Scholar 

  26. Cox, J.C., Ross, S.A.: The valuation of options for alternative stochastic processes. J. Financ. Econ. 4, 145–166 (1976)

    Article  Google Scholar 

  27. Hull, J., White, A.: The pricing of options on assets with stochastic volatilities. J. Finance 42, 281–300 (1987)

    Article  MATH  Google Scholar 

  28. Stein, E.M., Stein, J.C.: Stock price distribution with stochastic volatility: an analytic approach. Rev. Financ. Stud. 4, 727–752 (1991)

    Article  MATH  Google Scholar 

  29. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6, 327–343 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gu, M.D., Yang, Y.P., Li, S.D., Zhang, J.Y.: Constant elasticity of variance model for proportional reinsurance and investment strategies. Insur. Math. Econ. 46, 580–587 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gu, A.L., Guo, X.P., Li, Z.F., Zeng, Y.: Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model. Insur. Math. Econ. 51, 674–684 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhao, H., Rong, X.M., Zhao, Y.G.: Optimal excess-of-loss reinsurance and investment problem for an insurer with jump-diffusion risk process under the Heston model. Insur. Math. Econ. 53, 504–514 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Øksendal, B., Sulem, A.: A maximum principle for optimal control of stochastic systems with delay, with applications to finance. In: Menaldi, J.M., Rofman, E., Sulem, A. (eds.) Optimal Control and Partial Differential Equations-Innovations and Applications. IOS Press, Amsterdam (2000)

    Google Scholar 

  34. Elsanousi, I., Øksendal, B., Sulem, A.: Some solvable stochastic control problems with delay. Stoch. Stoch. Rep. 71(1), 69–89 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Larssen, B.: Dynamic programming in stochastic control of systems with delay. Int. J. Probab. Stoch. Process. 74(3–4), 651–673 (2002)

    MathSciNet  MATH  Google Scholar 

  36. Elsanousi, L., Larssen, B.: Optimal Consumption Under Partial Observations for a Stochastic System with Delay. University of Oslo, Oslo, Norway (2001). http://urn.nb.no/URN:NBN:no-24279

  37. Chang, M.-H., Pang, T., Yang, Y.P.: A stochastic portfolio optimization model with bounded memory. Math. Oper. Res. 36(4), 604–619 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Federico, S.: A stochastic control problem with delay arising in a pension fund model. Finance Stoch. 15, 421–459 (2011)

  39. Shen, Y., Zeng, Y.: Optimal investment-reinsurance with delay for mean-variance insurers: a maximum principle approach. Insur. Math. Econ. 57, 1–12 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. A, C., Li, Z.: Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston’s SV model. Insur. Math. Econ. 61, 181–196 (2015)

  41. A, C., Lai, Y., Shao, Y.: Optimal excess-of-loss reinsurance and investment problem with delay and jump-diffusion risk process under the CEV model. J. Comput. Appl. Math. 342, 317–336 (2018)

  42. Pang, T., Hussain, A.: An infinite time horizon portfolio optimization model with delays. Math. Control Relat. Fields 6(4), 629–651 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pang, T., Hussain, A.: A stochastic portfolio optimization model with complete memory. Stoch. Anal. Appl. 35(4), 742–766 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang, X.X., Liang, Z.B., Zhang, C.B.: Optimal mean-variance reinsurance with delay and multiple classes of dependent risks. Sci. China Math. 47(6), 723–756 (2017). (in Chinese)

    Google Scholar 

  45. Li, K., Liu, J.: Portfolio selection under time delays: a piecewise dynamic programming approach (2018). https://doi.org/10.2139/ssrn.2916481

  46. Deng, C., Bian, W.L., Wu, B.Y.: Optimal reinsurance and investment problem with default risk and bounded memory. Int. J. Control (2019). https://doi.org/10.1080/00207179.2019.1573320

  47. Lin, X., Li, Y.F.: Optimal reinsurance and investment for a jump diffusion risk process under the CEV model. N. Am. Actuar. J. 15(3), 417–431 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Cox, J.C., Ingersoll, J.E., Ross, S.A.: A theorey of term structure of interest rates. Econometrica 53, 385–407 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kraft, H.: Optimal portfolios and Heston stochastic volatility model: an explicit solution for power utility. Quant. Finance 5, 303–313 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. Fleming, W.H., Hernández-Hernández, D.: An optimal consumption model with stochastic volatility. Finance Stoch. 7, 245–262 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Shao.

Additional information

This research was supported by the National Natural Science Foundation of China (No. 71801186), the Science Foundation of Ministry of Education of China (No. 18YJC630001), and the Natural Science Foundation of Guangdong Province of China (No. 2017A030310660).

Appendix

Appendix

Lemma 1

Equation

$$\begin{aligned} c_{0}-\lambda \int _{0}^{\infty }c\mathrm{e}^{cu\gamma \mathrm{e}^{(\mu _{1}+\beta )(T-t)}}F(\mathrm{d}c)=0 \end{aligned}$$
(A1)

has a unique positive solution \({\hat{u}}\). If \(c_{0}\leqslant \lambda \int _{0}^{\infty }c\mathrm{e}^{cu\gamma \mathrm{e}^{(\mu _{1}+\beta )(T-t)}}F(\mathrm{d}c)=0\), then the solution of Eq. (A1) satisfies \(0<{\hat{u}}\leqslant 1\); if \(c_{0}>\lambda \int _{0}^{\infty }ce^{cu\gamma \mathrm{e}^{(\mu _{1}+\beta )(T-t)}}F(dc)=0\), then the solution of Eq. (A1) satisfies \({\hat{u}}> 1\).

The proof of Lemma 1 is similar to Lemma 3.1 in Lin and Li [47], so we omit it.

The proof of Theorem 1

Assume that the HJB equation (16) has a classical solution J, which satisfies \(J_{x}>0\) and \(J_{xx}<0\). For maximizing the quantity in the HJB equation, by the first-order condition, we can derive the optimal investment strategy \(\alpha ^{*}(t)\) as follows:

$$\begin{aligned} \alpha ^{*}(t)=-\frac{\eta J_{x}+\sigma \rho J_{xv}}{J_{xx}}. \end{aligned}$$
(A2)

Plugging (A2) into (16) yields

$$\begin{aligned}&\sup _{\pi \in \Pi }\{J_{t}+(\mu +c_{0}u+\mu _{1}x+\mu _{2}y+\mu _{3}z)J_{x} +\kappa (\zeta -v)J_{v}+(x-\delta y-\mathrm{e}^{-\delta h}z)J_{y}\nonumber \\&\qquad +\frac{1}{2}\sigma _{0}^{2}J_{xx} +\frac{1}{2}v\frac{(\eta J_{x}+\sigma \rho J_{xv})^{2}}{J_{xx}} +\frac{1}{2}\sigma ^{2}vJ_{vv}+\lambda \int _{0}^{\infty }[J(t,x-uc,y,v)\nonumber \\&\qquad -J(t,x,y,v)]F(\mathrm{d}c)\}=0, \end{aligned}$$
(A3)

with terminal condition

$$\begin{aligned} J(T,x,y,v)=U(x,y). \end{aligned}$$

Based on the form of the exponential utility function, we try the following form of value function J(txyv) as follows:

$$\begin{aligned} J(t,x,y,v)=-\frac{q}{\gamma }\exp \{-\gamma [a(t)(x+\beta y)-b(t)+g(t,v)]\} \end{aligned}$$
(A4)

with \(a(T)=1\), \(b(T)=0\), \(g(T,v)=0\). Then

$$\begin{aligned} J_{t}= & {} -\gamma [a^{\prime }(t)(x+\beta y)-b^{\prime }(t)+g_{t}(t,v)]J, \qquad J_{x}=-\gamma a(t)J, \\ J_{y}= & {} -\gamma \beta a(t)J, \qquad J_{v}=-\gamma J g_{v}(t,v), \qquad J_{xx}=\gamma ^{2}a^{2}(t)J, \qquad J_{xv}=\gamma ^{2}a(t)J g_{v}(t,v), \\ J_{vv}= & {} (\gamma ^{2}g^{2}_{v}(t,v)-\gamma g_{vv}(t,v))J,\qquad J(t,x-cu,y,v)-J(t,x,y,v)=[\mathrm{e}^{cu\gamma a(t)}-1]J, \end{aligned}$$

here \(a'(t),b'(t),g_{t}(t,v),g_{v}(t,v)\) denote the derivatives of a(t), b(t), g(tv), and \(g_{vv}(t,v)\) denotes the second-order derivatives of g(tv) w.r.t. v. Introducing the above derivatives into (A3), we derive

$$\begin{aligned}&\sup _{\pi \in \Pi }\{a^{\prime }(t)(x+\beta y)-b^{\prime }(t)+g_{t}(t,v)+(\mu +c_{0}u+\mu _{1}x+\mu _{2}y+\mu _{3}z)a(t)\nonumber \\&\qquad +\kappa (\zeta -v)g_{v}(t,v) +(x-\delta y-\mathrm{e}^{-\delta h}z)\beta a(t)-\frac{1}{2}\sigma _{0}^{2}\gamma a^{2}(t)+\frac{ v}{2\gamma }(\eta -\sigma \rho \gamma g_{v}(t,v) )^{2} \nonumber \\&\qquad +\frac{1}{2}\sigma ^{2}v(\gamma g^{2}_{v}(t,v)-g_{vv}(t,v))+\frac{\lambda }{\gamma }\int _{0}^{\infty }[\mathrm{e}^{cu\gamma a(t)}-1]F(\mathrm{d}c)\}=0. \end{aligned}$$
(A5)

By the first-order condition, we have

$$\begin{aligned} c_{0}-\lambda \int _{0}^{\infty }c\mathrm{e}^{cu\gamma a(t)}F(\mathrm{d}c)=0. \end{aligned}$$
(A6)

According to Lemma 1, Eq. (A6) has a unique positive solution, we denote it by \({\hat{u}}\). Then plugging \({\hat{u}}\) into (A5) and simplifying, we have

$$\begin{aligned}&a^{\prime }(t)(x+\beta y)+a(t)((\mu _{1}+\beta )x+(\mu _{2}+\beta \delta )y) +a(t)(\mu _{3}-\beta \mathrm{e}^{\delta h})z \\&\qquad -b^{\prime }(t)+(\mu +c_{0}{\hat{u}})-\frac{1}{2}\sigma _{0}^{2}\gamma a^{2}(t) +\frac{\lambda }{\gamma }\int _{0}^{\infty }[\mathrm{e}^{c{\hat{u}}\gamma a(t)}-1]G(\mathrm{d}c) \\&\qquad +g_{t}(t,v)+\frac{1}{2}\frac{\eta ^{2}v}{\gamma }+[\kappa (\zeta -v)-\sigma \rho \eta v]g_{v}(t,v) -\frac{ 1}{2}\sigma ^{2}\gamma (1-\rho ^{2}) g_{v}^{2}(t,v)\\&\qquad +\frac{1}{2}\sigma ^{2}v g_{vv}(t,v)) =0. \end{aligned}$$

With the assumption of (18) and (19), we can get

$$\begin{aligned}&[a^{\prime }(t)+(\mu _{1}+\beta )a(t)](x+\beta y) \\&\qquad -b^{\prime }(t)+(\mu +c_{0}{\hat{u}})-\frac{1}{2}\sigma _{0}^{2}\gamma a^{2}(t) +\frac{\lambda }{\gamma }\int _{0}^{\infty }[\mathrm{e}^{c{\hat{u}}\gamma a(t)}-1]G(\mathrm{d}c) \\&\qquad +g_{t}(t,v)+\frac{1}{2}\frac{\eta ^{2}v}{\gamma }+[\kappa (\zeta -v)-\sigma \rho \eta v]g_{v}(t,v) -\frac{ 1}{2}\sigma ^{2}\gamma (1-\rho ^{2}) g_{v}^{2}(t,v)\\&\qquad +\frac{1}{2}\sigma ^{2}v g_{vv}(t,v)) =0. \end{aligned}$$

By the equation above, a(t), b(t) and g(tv) meet the following differential equations:

figure a

Using the boundary condition \(a(T)=0\), it follows from (5.7) that

$$\begin{aligned} a(t)=\mathrm{e}^{(\mu _{1}+\beta )(T-t)}. \end{aligned}$$
(A10)

Plugging (A10) into (5.8), we have

$$\begin{aligned} b^{\prime }(t)+(\mu +c_{0}{\hat{u}})+\frac{1}{2}\sigma _{0}^{2}\gamma \mathrm{e}^{2(\mu _{1}+\beta )(T-t)} -\frac{\lambda }{\gamma }\int _{0}^{\infty }[\mathrm{e}^{c{\hat{u}}\gamma \mathrm{e}^{(\mu _{1}+\beta )(T-t)}}-1]F(\mathrm{d}c)=0 \quad \quad \end{aligned}$$
(A11)

with \(b(T)=0.\) If the distribution of C is known, then the expression form of b(t) can be derive explicitly.

To solve (5.9), we guess

$$\begin{aligned} g(t,v)=A(t)+B(t)v \end{aligned}$$
(A12)

with the boundary condition \(A(T)=B(T)=0\). Thus,

$$\begin{aligned} g_{t}(t,v)=A^{\prime }(t)+B^{\prime }(t)v, \qquad g_{v}(t,v)=B(t),\qquad g_{vv}(t,v)=0. \end{aligned}$$
(A13)

Inserting (A13) into (5.9), we obtain

$$\begin{aligned} {}[A^{\prime }(t)+\kappa \zeta B(t)]+ {}[B^{\prime }(t)-\frac{\eta ^{2}}{2\gamma }+(\kappa +\sigma \rho \eta )B(t)-\frac{1}{2}\sigma ^{2}\gamma (1-\rho ^{2})B^{2}(t)]v=0. \end{aligned}$$

Matching coefficients yields

figure b

Firstly, we solve equation (5.14).

  1. (i)

    If \(\rho =1\), (5.14) reduces to

    $$\begin{aligned} B^{\prime }(t)-(\kappa +\eta \sigma )B(t) +\frac{1}{2} \frac{\eta ^{2}}{\gamma }=0. \end{aligned}$$

    Considering \(B(T)=0\), we can obtain

    $$\begin{aligned} B(t)=\frac{\eta ^{2}}{2\gamma (\kappa +\eta \sigma )} \bigg (1-\mathrm{e}^{-(\kappa +\eta \sigma )(T-t)}\bigg ). \end{aligned}$$
    (A16)
  2. (ii)

    If \(\rho =-1\) and \(\kappa \ne \eta \sigma \) (or \(\kappa +\eta \sigma \rho \ne 0\)), Eq. (5.14) reduces to (5.15) and has the same solution with (i); If \(\rho =-1\) and \(\kappa =\eta \sigma \) (or \(\kappa +\eta \sigma \rho =0\)), (5.14) reduces to

    $$\begin{aligned} B^{\prime }(t)+\frac{1}{2} \frac{\eta ^{2}}{\gamma }=0. \end{aligned}$$
    (A17)

    Using \(B(T)=0\), we get the solution for (A17)

    $$\begin{aligned} B(t)=\frac{\eta ^{2}}{2\gamma }(T-t). \end{aligned}$$
    (A18)
  3. (iii)

    If \(\rho \ne \pm 1\), let \({\bar{B}}(t)=-\frac{1}{2}\sigma ^{2}\gamma (1-\rho ^{2})B(t)\). Then, it follows from (5.14) that

    $$\begin{aligned} {\bar{B}}^{\prime }(t)+{\bar{B}}^{2}(t)-(\kappa +\eta \sigma \rho ) {\bar{B}}(t)-\frac{1}{2}\eta ^{2}\sigma ^{2}(1-\rho ^{2})=0. \end{aligned}$$
    (A19)

    Letting \({\bar{B}}(t)=\frac{\phi ^{\prime }(t)}{\phi (t)}\) (where \(\phi (t)\ne 0\)) and inserting it into (A19) yields

    $$\begin{aligned} \phi ^{\prime \prime }(t)-(\kappa +\eta \sigma \rho )\phi ^{\prime }(t) -\frac{1}{4}\eta ^{2}\sigma ^{2}(1-\rho ^{2})\phi (t)=0 \end{aligned}$$
    (A20)

    with \(\phi (T)=1\) and \(\phi ^{\prime }(T)=0\). We easily derive the solution of (A20)

    $$\begin{aligned} \phi (t)=\frac{\phi _{2}}{\phi _{2}-\phi _{1}}\mathrm{e}^{\phi _{1}t} +\frac{\phi _{1}}{\phi _{1}-\phi _{2}}\mathrm{e}^{\phi _{2}t}, \end{aligned}$$
    (A21)

    where

    $$\begin{aligned} \phi _{1,2}=\frac{\kappa +\eta \sigma \rho \pm \sqrt{(\kappa +\eta \sigma \rho )^{2} +\eta ^{2}\sigma ^{2}(1-\rho ^{2})}}{2}. \end{aligned}$$
    (A22)

    Furthermore,

    $$\begin{aligned} {\bar{B}}(t)=\frac{\phi ^{\prime }(t)}{\phi (t)} =\frac{\phi _{1}\phi _{2}-\phi _{1}\phi _{2}e^{-(\phi _{1}-\phi _{2})(T-t)}}{\phi _{2}-\phi _{1}\mathrm{e}^{-(\phi _{1}-\phi _{2})(T-t)}} \end{aligned}$$

    and

    $$\begin{aligned} B(t)=-\frac{2}{\sigma ^{2}\gamma (1-\rho ^{2})}{\bar{B}}(t) =-\frac{2}{\sigma ^{2}\gamma (1-\rho ^{2})} \frac{\phi _{1}\phi _{2}-\phi _{1}\phi _{2}\mathrm{e}^{-(\phi _{1}-\phi _{2})(T-t)}}{\phi _{2}-\phi _{1}\mathrm{e}^{-(\phi _{1}-\phi _{2})(T-t)}}. \end{aligned}$$

    In summary, the solution of (5.14) is

    $$\begin{aligned} {B(t)=}\left\{ \begin{array}{ll} -\frac{2}{\eta ^{2}\gamma (1-\rho ^{2})} \frac{\phi _{1}\phi _{2}-\phi _{1}\phi _{2}\mathrm{e}^{-(\phi _{1}-\phi _{2})(T-t)}}{\phi _{2}-\phi _{1}\mathrm{e}^{-(\phi _{1}-\phi _{2})(T-t)}}, \,\,\,\,\, \rho \ne \pm 1, \\ \frac{\delta ^{2}}{2\gamma (\kappa +\eta \sigma )} \bigg [1-\mathrm{e}^{-(\kappa +\eta \sigma )(T-t)}\bigg ], \,\,\,\, \qquad \rho =1, \\ \frac{\eta ^{2}}{2\gamma (\kappa -\eta \sigma )} \bigg [1-\mathrm{e}^{-(\kappa -\eta \sigma )(T-t)}\bigg ], \,\,\,\, \qquad \rho =-1 \,\, \text{ and } \,\, \kappa \ne \eta \sigma , \\ \frac{\eta ^{2}}{2\gamma }(T-t), \qquad \qquad \qquad \qquad \qquad \qquad \quad \rho =-1 \,\,\mathrm{and} \,\,\kappa =\eta \sigma . \\ \end{array}\right. \end{aligned}$$
    (A23)

    Further, we can get the solution of (5.14)

    $$\begin{aligned} \!\!\! {A(t)=}\left\{ \begin{array}{ll} \frac{2}{\sigma ^{2}\kappa \zeta \gamma (1-\rho ^{2})} \bigg (\phi _{1}(T-t)-\frac{\phi _{1}+\phi _{2}}{\phi _{1}-\phi _{2}} \ln \bigg |\frac{\phi _{2}-\phi _{1}}{\phi _{2}-\phi _{1}\mathrm{e}^{-(\kappa +\eta \sigma )(T-t)}}\bigg |\bigg ) , \,\,\,\, \rho \ne \pm 1, \\ -\frac{\eta ^{2}}{2\gamma \kappa \zeta (\kappa +\eta \sigma )} \bigg [(T-t)-\frac{1}{\kappa +\eta \sigma } \mathrm{e}^{-(\kappa +\eta \sigma )(T-t)} +\frac{1}{\kappa +\eta \sigma }\bigg ], \quad \rho =1, \\ -\frac{\delta ^{2}}{2\gamma \kappa \zeta (\kappa -\eta \sigma )} \bigg [(T-t)-\frac{1}{\kappa -\eta \sigma } \mathrm{e}^{-(\kappa -\eta \sigma )(T-t)} +\frac{1}{\kappa -\eta \sigma }\bigg ], \, \rho =-1 \,\, \mathrm{and} \,\, \kappa \ne \eta \sigma , \\ \frac{\delta ^{2}}{4\gamma \kappa \zeta }(T-t)^{2}, \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \qquad \qquad \, \rho =-1 \,\,\,\mathrm{and} \,\,\kappa =\eta \sigma . \\ \end{array}\right. \end{aligned}$$
    (A24)

Therefore, we have derived the expressions of g(tv) in (5.9) and value function J(txyv) in (A4). Combining (A2), (A4), (A10) and (A12), we obtain the optimal investment strategy

$$\begin{aligned} \alpha ^{*}(t)=\frac{\eta -\sigma \rho \gamma B(t)}{\gamma }\mathrm{e}^{-(\mu _{1}+\beta )(T-t)}, \end{aligned}$$
(A25)

where B(t) is given by (A23). Combining with Lemma 1, the theorem is proved.

The following is the proof of Theorem 2.

Proof

Let \(Q=[0,\infty )\times [0,\infty )\times [0,\infty )\). Take a sequence of bounded open sets \(Q_{1},Q_{2},Q_{3},\cdots \), with \(Q_{i}\subset Q_{i+1}\subset Q, i=1,2, \cdots \), and \(Q=\bigcup Q_{i}\). Denote the exit time of (X(t), Y(t), V(t)) from \(Q_{i}\) by \(\tau _{i}\). Thus, \(\tau _{i}\wedge T \rightarrow T\) when \(i\rightarrow \infty \).

For the wealth process \(X^{\pi }(t)\), we can obtain

$$\begin{aligned}&\qquad \mathrm{d}\varPhi (t,X(t),Y(t),V(t))\\&={\mathscr {L}}^{\pi }\varPhi (t,X(t),Y(t),V(t))+\varPhi _{x}\sigma _{0}\mathrm{d}W_{0}(t)\\&\qquad \quad +\varPhi _{x}\alpha (t)\sqrt{V(t)}\mathrm{d}W_{1}(t)-\varPhi _{x}\mathrm{d}\bigg (\sum ^{N(t)}_{i=0}u(t)M_{i}\bigg ) +\varPhi _{v}\sigma \sqrt{V(t)}\mathrm{d}W_{2}(t). \end{aligned}$$

Using Itô’s formula on \(\varPhi (t,X(t),Y(t),V(t))\) yields

$$\begin{aligned}&\quad \quad \varPhi (\tau _{i}\wedge T,X(\tau _{i}\wedge T),Y(\tau _{i}\wedge T),V(\tau _{i}\wedge T))\\&= \varPhi (t,x,y,v)\qquad +\int _{t}^{\tau _{i}\wedge T}\varPhi _{v}\sigma \sqrt{V(s)}\mathrm{d}W_{2}(s) \\&\quad + \int _{t}^{\tau _{i}\wedge T}{\mathscr {L}}^{\pi }\varPhi (s,X(s),Y(s),V(s))\mathrm{d}s+\int _{t}^{\tau _{i}\wedge T}\varPhi _{x}\sigma _{0}\mathrm{d}W_{0}(s) \\&\quad + \int _{t}^{\tau _{i}\wedge T}\varPhi _{x}\alpha (t)\sqrt{V(t)}\mathrm{d}W_{1}(s)-\int _{t}^{\tau _{i}\wedge T}\varPhi _{x}\mathrm{d}\bigg (\sum ^{N(s)}_{i=0}u(s)M_{i}\bigg ). \end{aligned}$$

Because \(\pi \in \Pi \), the terms \(\int _{t}^{\tau _{i}\wedge T}\varPhi _{x} \sigma _{0}\mathrm{d}W_{0}(s),\, \int _{t}^{\tau _{i}\wedge T}\varPhi _{x}\alpha (t)\sqrt{V(t)}\mathrm{d}W_{1}(s), \int _{t}^{\tau _{i}\wedge T} \varPhi _{v}\sigma \sqrt{V(s)}\mathrm{d}W_{2}(s)\) on the right hand are square-integrable martingales with zero expectation. And with (4), we have

$$\begin{aligned}&E[\varPhi (\tau _{i}\wedge T,X(\tau _{i}\wedge T),Y(\tau _{i}\wedge T),V(\tau _{i}\wedge T))|X(t)=x,Y(t)=y,V(t)=v] \\ =&\,\varPhi (t,x,y,v)+E\bigg [\int _{t}^{\tau _{i}\wedge T}{\mathscr {L}}^{\pi }\varPhi (s,X(s),Y(s),V(s))\mathrm{d}s|X(t)\\ =&\,x,Y(t)=y,V(t)=v\bigg ]\\ \leqslant&\,\varPhi (t,x,y,v). \end{aligned}$$

In terms of Lemma in Larssen [35], the uniform integrability of \(\varPhi (\tau _{i}\wedge T,X(\tau _{i}\wedge T),Y(\tau _{i}\wedge T),V(\tau _{i}\wedge T)), i=1,2,\cdots \) yields

$$\begin{aligned} J(t,x,y,v)&=\sup _{\pi \in \Pi }E[U(X(T),Y(T))|X(t)=x,Y(t)=y,V(t)=v]\\&=\lim _{i\rightarrow \infty } E[\varPhi (\tau _{i}\wedge T,X(\tau _{i}\wedge T),Y(\tau _{i}\wedge T),V(\tau _{i}\wedge T))|X(t)\\&\quad =x,Y(t)=y,V(t)=v] \\&\leqslant \varPhi (t,x,y,v). \end{aligned}$$

Similarly, we have

$$\begin{aligned}&\varPhi (\tau _{i}\wedge T,X(\tau _{i}\wedge T),Y(\tau _{i}\wedge T),V(\tau _{i}\wedge T))\\= & {} \varPhi (0,x_{0},y_{0},v_{0}) +\int _{0}^{\tau _{i}\wedge T}\varPhi _{v}\sigma \sqrt{V(s)}\mathrm{d}W_{2}(s) \\&\quad +\int _{0}^{\tau _{i}\wedge T}{\mathscr {L}}^{\pi }\varPhi (s,X(s),Y(s),V(s))\mathrm{d}s +\int _{0}^{\tau _{i}\wedge T}\varPhi _{x}\sigma _{0}\mathrm{d}W_{0}(s)\\&\quad +\int _{0}^{\tau _{i}\wedge T}\varPhi _{x}\alpha (t)\sqrt{V(t)}\mathrm{d}W_{1}(s) -\int _{0}^{\tau _{i}\wedge T}\varPhi _{x}d\bigg (\sum ^{N(s)}_{i=0}u(s)M_{i}\bigg ). \end{aligned}$$

and then

$$\begin{aligned}&E[\varPhi (\tau _{i}\wedge T,X(\tau _{i}\wedge T),Y(\tau _{i}\wedge T),V(\tau _{i}\wedge T))] \\= & {} \varPhi (0,x_{0},y_{0},v_{0})+E\bigg [\int _{0}^{\tau _{i}\wedge T}{\mathscr {L}}^{\pi }\varPhi (s,X(s),Y(s),V(s))\mathrm{d}s\bigg ] \\\leqslant & {} \varPhi (0,x_{0},y_{0},v_{0}). \end{aligned}$$

Thus, for X(t), we have

$$\begin{aligned} \sup _{\pi \in \Pi }E[U(X(T),Y(T))]=&\lim _{i\rightarrow \infty } E[\varPhi (\tau _{i}\wedge T,X(\tau _{i}\wedge T),Y(\tau _{i}\wedge T),V(\tau _{i}\wedge T))] \\ \leqslant&\,\, \varPhi (0,x_{0},y_{0},v_{0}). \end{aligned}$$

For \(\pi ^{*}=(u^{*}(t),\alpha ^{*}(t))\) and \(X^{*}(t)\), all inequalities become equalities, i.e., \(J(t,x,y,v)=\varPhi (t,x,y,v)\) and \(\sup _{\pi \in \Pi }E[U(X^{*}(T),Y(T))]=\varPhi (0,x_{0},y_{0},v_{0})\). The proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A, CX., Gu, AL. & Shao, Y. Optimal Reinsurance and Investment Strategy with Delay in Heston’s SV Model. J. Oper. Res. Soc. China 9, 245–271 (2021). https://doi.org/10.1007/s40305-020-00331-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-020-00331-8

Keywords

Mathematics Subject Classification

Navigation