Skip to main content
Log in

Computing the Number of k-Component Spanning Forests of a Graph with Bounded Treewidth

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

Let G be a graph on n vertices with bounded treewidth. We use \(f_k(G)\) to denote the number of spanning forests of G with k components. Given a tree decomposition of width at most p of G, we present an algorithm to compute \(f_k(G)\) for \(k = 1,2, \cdots , n\). The running time of our algorithm is \(O((B(p+1))^3pn^3)\), where \(B(p+1)\) is the \((p+1)\)-th Bell number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Benjamini, I., Lyons, R., Peres, Y., Schramm, O.: Uniform spanning forests. Ann. Probab. 29, 1–65 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Brown, T.J., Mallion, R.B., Pollak, P., Roth, A.: Some methods for counting the spanning trees in labelled molecular graphs, examined in relation to certain fullerenes. Discrete Appl. Math. 67, 51–66 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caracciolo, S., Jacobsen, J.L., Saleur, H., Sokal, A.D., Sportiello, A.: Fermionic field theory for trees and forests. Phys. Rev. Lett. 93, 080601 (2004)

    Article  MathSciNet  Google Scholar 

  4. Deng, Y., Garoni, T.M., Sokal, A.D.: Ferromagnetic phase transition for the spanning-forest model (\(q\rightarrow 0\) limit of the Potts model) in three or more dimensions. Phys. Rev. Lett. 98, 030602 (2007)

    Article  Google Scholar 

  5. Liu, C.J., Chow, Y.: Enumeration of forests in a graph. Proc. Am. Math. Soc. 83, 659–662 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Stark, D.: The asymptotic number of spanning forests of complete bipartite labelled graphs. Discrete Math. 313, 1256–1261 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Myrvold, W.: Counting \(k\)-component forests of a graph. Networks 22, 647–652 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte polynomial in vertex-exponential time. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 677-686. IEEE. New York (2008)

  9. Teranishi, Y.: The number of spanning forests of a graph. Discrete Math. 290, 259–267 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jaeger, F., Vertigan, D., Welsh, D.: On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Camb. Philos. Soc. 108, 35–53 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Vertigan, D.L., Welsh, D.J.A.: The computational complexity of the Tutte plane: the bipartite case. Combin. Probab. Comput. 1, 181–187 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gebauer, H., Okamoto, Y.: Fast exponential-time algorithms for the forest counting and the Tutte polynomial computation in graph classes. Int. J. Found. Comput. Sci. 20, 25–44 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kirchhoff, G.: Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)

    Article  Google Scholar 

  14. Palmer, E.M.: On the spanning tree packing number of a graph: a survey. Discrete Math. 230, 13–21 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Comellas, F., Miralles, A., Liu, H., Zhang, Z.: The number of spanning trees of an infinite family of outerplanar, small-world and self-similar graphs. Phys. A 392, 2803–2806 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bogdanowicz, Z.R.: Formulas for the number of spanning trees in a fan. Appl. Math. Sci. 2, 781–786 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Xiao, Y., Zhao, H.: New method for counting the number of spanning trees in a two-tree network. Phys. A 392, 4576–4583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, Z., Wu, B., Comellas, F.: The number of spanning trees in Apollonian networks. Discrete Appl. Math. 169, 206–213 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stones, R.J.: Computing the number of \(h\)-edge spanning forests in complete bipartite graphs. Discrete Math. Theor. Comput. Sci. 16, 313–326 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7, 309–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85, 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12, 308–340 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7, 555–581 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Berend, D., Tassa, T.: Improved bounds on Bell numbers and on moments of sums of random variables. Probab. Math. Stat. 30, 185–205 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bodlaender, H.L., Koster, A.M.: Treewidth computations I. Upper bounds. Inf. Comput. 208, 259–275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bodlaender, H.L.: A partial \(k\)-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209, 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, London (2008)

    Book  MATH  Google Scholar 

  30. Kloks, T.: Treewidth: Computations and Approximations. Lecture Notes in Computer Science, vol. 842. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  31. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: Proceedings of Foundations of Computer Science, pp. 150–159. IEEE (2011)

Download references

Acknowledgements

We greatly appreciate the anonymous referees for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Fei Wan.

Additional information

This research was supported by the National Natural Science Foundation of China (Nos. 11571135, 11671320 and 11601430).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, PF., Chen, XZ. Computing the Number of k-Component Spanning Forests of a Graph with Bounded Treewidth. J. Oper. Res. Soc. China 7, 385–394 (2019). https://doi.org/10.1007/s40305-019-00241-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-019-00241-4

Keywords

Mathematics Subject Classification

Navigation