Skip to main content
Log in

Optimal Stopping Time of a Portfolio Selection Problem with Multi-assets

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

In this work, we study a right time for an investor to stop the investment among multi-assets over a given investment horizon so as to obtain maximum profit. We formulate it to a two-stage problem. The main problem is not a standard optimal stopping problem due to the non-adapted term in the objective function, and we turn it to a standard one by stochastic analysis. The subproblem with control variable in the drift and volatility terms is solved first via stochastic control method. A numerical example is presented to illustrate the efficiency of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shiryaev, A., Xu, Z.Q., Zhou, X.Y.: Thou shalt buy and hold. Quant. Financ. 8, 765–776 (2008)

    Article  MathSciNet  Google Scholar 

  2. Du Toit, J., Peskir, G.: Selling a stock at the ultimate maximum. Ann. Appl. Probab. 19(3), 983–1014 (2009)

    Article  MathSciNet  Google Scholar 

  3. Dai, M., Zhong, Y.F.: Optimal stock selling/buying strategy with reference to the ultimate average. Math. Financ. 22(1), 165–184 (2012)

    Article  MathSciNet  Google Scholar 

  4. Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77–91 (1952)

    Google Scholar 

  5. Markowitz, H.: Portfolio Selection: Efticient Diversification of Investments. Wiley, New York (1959)

    Google Scholar 

  6. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 51(3), 247–257 (1969)

    Article  Google Scholar 

  7. Merton, R.C.: Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3(4), 373–413 (1971)

    Article  MathSciNet  Google Scholar 

  8. Merton, R.C.: Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4(1), 141–183 (1973)

    Article  MathSciNet  Google Scholar 

  9. Xu, G.L., Shreve, S.E.: A duality method for optimal consumption and investment under short-selling prohibition. I. General market coefficients. Ann. Appl. Probab. 2, 87–112 (1992)

    Article  MathSciNet  Google Scholar 

  10. Xu, G.L., Shreve, S.E.: A duality method for optimal consumption and investment under short-selling prohibition. II. Constant market coefficients. Ann. Appl. Probab. 2, 314–328 (1992)

    Article  MathSciNet  Google Scholar 

  11. Choi, K., Koo, H., Kwak, D.: Optimal stopping of active portfolio management. Ann. Econ. Financ. 5, 93–126 (2004)

    Google Scholar 

  12. Steele, J.M.: Stochastic Calculus and Financial Applications. Springer, Berlin (2012)

    MATH  Google Scholar 

  13. Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer, New York (1998)

    Book  Google Scholar 

  14. Peskir, G., Shiryaev, A.: Optimal Stopping and Free-Boundary Problems, 2nd edn. Birkhäuser Verlag, Berlin (2006)

    MATH  Google Scholar 

  15. Xu, G.L., Shreve, S.E.: A duality method for optimal consumption and investment under short-selling prohibition. II. Constant market coefficients. Ann. Appl. Probab. 2(2), 314–328 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge the contribution of Professor Xun Li in the Hong Kong Polytechnic University for his valuable comments and suggestions to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Ping Wu.

Additional information

This work is supported by the National Natural Science Foundation of China (Nos. 11571124 and 11671158), the doctoral start-up Grant of Natural Science Foundation of Guangdong Province, China (No. 2017A030310167), the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University (No. 201808) and Unversity of Macau (No. MYGR2018-00047-FST).

Appendices

Appendix

Expression of Function \(G_1\)

We now derive the explicit expression of the function \(G_1\), defined by

$$\begin{aligned} \begin{aligned} G_1(t,y)&= \mathbb {E}\Big [\exp \Big (\displaystyle \max \Big \{y,\max _{0\leqslant u\leqslant T-t}(\nu u + B(u))\Big \}\Big )\Big ] \\&= \displaystyle \int _y^\infty \mathrm{e}^z {\mathrm{d}}{P}\Big (\max _{0\leqslant u\leqslant T-t}(\nu u + B(u)) \leqslant z\Big ) + \mathrm{e}^y {P}\Big (\max _{0\leqslant u\leqslant T-t}(\nu u + B(u)) \leqslant y\Big ). \end{aligned} \end{aligned}$$

Note that

$$\begin{aligned} {P}\Big (\displaystyle \max _{0\leqslant u\leqslant T-t}(\nu u + B(u)) \leqslant z\Big ) = \Phi \Big (\frac{z - \nu (T-t)}{\sqrt{T-t}}\Big ) - \mathrm{e}^{2\nu z}\Phi \Big (\frac{-z - \nu (T-t)}{\sqrt{T-t}}\Big ). \end{aligned}$$

According to the standard normal distribution, we have

$$\begin{aligned} \begin{aligned} \displaystyle \int _y^\infty \mathrm{e}^z {\mathrm{d}}\Phi \Big (\frac{z - \nu (T-t)}{\sqrt{T-t}}\Big )&= \displaystyle \int _y^\infty \mathrm{e}^z \frac{1}{\sqrt{2\pi (T-t)}}\mathrm{e}^{-\frac{(z - \nu (T-t))^2}{2(T-t)}}{\mathrm{d}}z \\&= \displaystyle \mathrm{e}^{(\nu + \frac{1}{2})(T-t)}\Big [1 - \Phi \Big (\frac{y - (\nu +1)(T-t)}{\sqrt{T-t}}\Big )\Big ]. \end{aligned} \end{aligned}$$

Assume that \(\nu \ne -\frac{1}{2}\). Then

$$\begin{aligned} \begin{aligned}&\ \ \qquad \displaystyle \int _y^\infty \mathrm{e}^z {\mathrm{d}}\Big [\mathrm{e}^{2\nu z}\Phi \Big (\frac{-z - \nu (T-t)}{\sqrt{T-t}}\Big )\Big ] \\&\quad = \displaystyle \int _y^\infty 2\nu \mathrm{e}^{(1+2\nu )z} \Phi \Big (\frac{-z - \nu (T-t)}{\sqrt{T-t}}\Big ){\mathrm{d}}z + \int _y^\infty \mathrm{e}^{(1+2\nu )z} {\mathrm{d}}\Phi \Big (\frac{-z - \nu (T-t)}{\sqrt{T-t}}\Big ) \\&\quad = - \displaystyle \frac{2\nu }{1 + 2\nu }\mathrm{e}^{(1+2\nu )y} \Phi \Big (\frac{-y - \nu (T-t)}{\sqrt{T-t}}\Big ) \\&\qquad - \frac{1}{1 + 2\nu }\mathrm{e}^{(\nu + \frac{1}{2})(T-t)}\Big [1 - \Phi \Big (\frac{y - (\nu +1)(T-t)}{\sqrt{T-t}}\Big )\Big ]. \end{aligned} \end{aligned}$$

Thus

$$\begin{aligned} \begin{aligned} G_1(t,y)&= \displaystyle e^y\Phi \Big (\frac{y - \nu (T-t)}{\sqrt{T-t}}\Big ) - \frac{1}{1 + 2\nu }\mathrm{e}^{(1+2\nu )y}\Phi \Big (\frac{-y - \nu (T-t)}{\sqrt{T-t}}\Big ) \\&\quad + \displaystyle \frac{2(1+\nu )}{1 + 2\nu }\mathrm{e}^{(\nu + \frac{1}{2})(T-t)}\Big [1 - \Phi \Big (\frac{y - (\nu +1)(T-t)}{\sqrt{T-t}}\Big )\Big ]. \end{aligned} \end{aligned}$$

In addition, note that when \(\nu = -\frac{1}{2}\),

$$\begin{aligned} \begin{aligned}&\ \ \qquad \displaystyle \int _y^\infty \mathrm{e}^z {\mathrm{d}}\Big [\mathrm{e}^{2\nu z}\Phi \Big (\frac{-z - \nu (T-t)}{\sqrt{T-t}}\Big )\Big ] \\&\quad = \displaystyle \int _y^\infty \mathrm{e}^z {\mathrm{d}}\Big [\mathrm{e}^{-z}\Phi \Big (\frac{-z - \nu (T-t)}{\sqrt{T-t}}\Big )\Big ] \\&\quad = - \displaystyle \int _y^\infty \Phi \Big (\frac{-z - \nu (T-t)}{\sqrt{T-t}}\Big ){\mathrm{d}}z + \int _y^\infty {\mathrm{d}}\Phi \Big (\frac{-z - \nu (T-t)}{\sqrt{T-t}}\Big ) \\&\quad = \displaystyle y\Phi \Big (\frac{-y - \nu (T-t)}{\sqrt{T-t}}\Big ) -\frac{\sqrt{T-t}}{\sqrt{2\pi }}\mathrm{e}^{-\frac{(x + \nu (T-t))^2}{2(T-t)}} \\&\qquad + \nu (T-t)\Big [1 - \Phi \Big (\frac{y + \nu (T-t)}{\sqrt{T-t}}\Big )\Big ] \\&\qquad -\Phi \Big (\frac{-y - \nu (T-t)}{\sqrt{T-t}}\Big ). \end{aligned} \end{aligned}$$

Thus

$$\begin{aligned} \begin{aligned} G_1(t,y)&= 1 - \displaystyle \Phi \Big (\frac{y - (\nu +1)(T-t)}{\sqrt{T-t}}\Big ) - y\Phi \Big (\frac{-y - \nu (T-t)}{\sqrt{T-t}}\Big ) \\&\quad +\frac{\sqrt{T-t}}{\sqrt{2\pi }}\mathrm{e}^{-\frac{(y + \nu (T-t))^2}{2(T-t)}} \\&\quad - \displaystyle \nu (T-t)\Big [1 - \Phi \Big (\frac{y + \nu (T-t)}{\sqrt{T-t}}\Big )\Big ] + \mathrm{e}^y\Phi \Big (\frac{y - \nu (T-t)}{\sqrt{T-t}}\Big ). \end{aligned} \end{aligned}$$

Expression of Function \(G_2\)

We now derive the explicit expression of the function \(G_2\), defined by

$$\begin{aligned} \begin{aligned} G_2(t,y)&= \mathbb {E}\Big [\exp \Big (\displaystyle \max \Big \{y,\max _{0\leqslant u\leqslant T-t}(\nu u + B(u))\Big \}\Big )^2\Big ] \\&= \displaystyle \int _y^\infty \mathrm{e}^{2z} {\mathrm{d}}{P}\Big (\max _{0\leqslant u\leqslant T-t}(\nu u + B(u)) \leqslant z\Big ) + \mathrm{e}^{2y}{P}\Big (\max _{0\leqslant u\leqslant T-t}(\nu u + B(u)) \leqslant y\Big ). \end{aligned} \end{aligned}$$

Note that

$$\begin{aligned} {P}\Big (\displaystyle \max _{0\leqslant u\leqslant T-t}(\nu u + B(u)) \leqslant z\Big ) = \Phi \Big (\frac{z - \nu (T-t)}{\sqrt{T-t}}\Big ) - \mathrm{e}^{2\nu z}\Phi \Big (\frac{-z - \nu (T-t)}{\sqrt{T-t}}\Big ). \end{aligned}$$

According to the standard normal distribution, we have

$$\begin{aligned} \begin{aligned} \displaystyle \int _y^\infty \mathrm{e}^{2z} {\mathrm{d}}\Phi \Big (\frac{z - \nu (T-t)}{\sqrt{T-t}}\Big )&= \displaystyle \int _y^\infty \mathrm{e}^{2z} \frac{1}{\sqrt{2\pi (T-t)}}\mathrm{e}^{-\frac{(z - \nu (T-t))^2}{2(T-t)}}{\mathrm{d}}z \\&= \displaystyle \mathrm{e}^{2(\nu + 1)(T-t)}\Big [1 - \Phi \Big (\frac{y - (\nu +2)(T-t)}{\sqrt{T-t}}\Big )\Big ]. \end{aligned} \end{aligned}$$

Assume that \(\nu \ne -1\). Then

$$\begin{aligned} \begin{aligned}&\displaystyle \int _y^\infty \mathrm{e}^{2z} {\mathrm{d}}\Big [\mathrm{e}^{2\nu z}\Phi \Big (\frac{-z - \nu (T-t)}{\sqrt{T-t}}\Big )\Big ] \\&\quad = \displaystyle \int _y^\infty 2\nu \mathrm{e}^{2(1+\nu )z} \Phi \Big (\frac{-z - \nu (T-t)}{\sqrt{T-t}}\Big ){\mathrm{d}}z \\&\qquad + \int _x^\infty \mathrm{e}^{2(1+\nu )z} {\mathrm{d}}\Phi \Big (\frac{-z - \nu (T-t)}{\sqrt{T-t}}\Big ) \\&\quad = - \displaystyle \frac{\nu }{1 + \nu }\mathrm{e}^{2(1+\nu )y} \Phi \Big (\frac{-y - \nu (T-t)}{\sqrt{T-t}}\Big ) \\&\qquad - \frac{1}{1 + \nu }\mathrm{e}^{2(\nu + 1)(T-t)}\Big [1 - \Phi \Big (\frac{y - (\nu +2)(T-t)}{\sqrt{T-t}}\Big )\Big ]. \end{aligned} \end{aligned}$$

Thus

$$\begin{aligned} \begin{aligned} G_2(t,y)&= \displaystyle \mathrm{e}^{2y}\Phi \Big (\frac{y - \nu (T-t)}{\sqrt{T-t}}\Big ) - \frac{1}{1 + 2\nu }\mathrm{e}^{2(1+\nu )y}\Phi \Big (\frac{-y - \nu (T-t)}{\sqrt{T-t}}\Big ) \\&\quad + \displaystyle \frac{2+\nu }{1 + \nu }\mathrm{e}^{2(\nu + 1)(T-t)}\Big [1 - \Phi \Big (\frac{y - (\nu +2)(T-t)}{\sqrt{T-t}}\Big )\Big ]. \end{aligned} \end{aligned}$$

Also, note that when \(\nu = -1\),

$$\begin{aligned} \begin{aligned}&\displaystyle \int _y^\infty \mathrm{e}^{2z} {\mathrm{d}}\Big [\mathrm{e}^{2\nu z}\Phi \Big (\frac{-z - \nu (T-t)}{\sqrt{T-t}}\Big )\Big ] \\&\quad = \displaystyle \int _y^\infty \mathrm{e}^{2z} {\mathrm{d}}\Big [\mathrm{e}^{-2z}\Phi \Big (\frac{-z - \nu (T-t)}{\sqrt{T-t}}\Big )\Big ] \\&\quad = - 2\displaystyle \int _y^\infty \Phi \Big (\frac{-z - \nu (T-t)}{\sqrt{T-t}}\Big ){\mathrm{d}}z + {\displaystyle \int _y^\infty } {\mathrm{d}}\Phi \Big (\frac{-z - \nu (T-t)}{\sqrt{T-t}}\Big ) \\&\quad = \displaystyle 2y\Phi \Big (\frac{-y - \nu (T-t)}{\sqrt{T-t}}\Big ) - \frac{2\sqrt{T-t}}{\sqrt{2\pi }}\mathrm{e}^{-\frac{(y + \nu (T-t))^2}{2(T-t)}} \\&\qquad + 2\nu (T-t)\Big [1 - \Phi \Big (\frac{y + \nu (T-t)}{\sqrt{T-t}}\Big )\Big ] \\&\qquad - \displaystyle \Phi \Big (\frac{-y - \nu (T-t)}{\sqrt{T-t}}\Big ). \end{aligned} \end{aligned}$$

Thus

$$\begin{aligned} \begin{aligned} G_2(t,y)&= 1 - \displaystyle \Phi \Big (\frac{y - (\nu +2)(T-t)}{\sqrt{T-t}}\Big ) - 2y\Phi \Big (\frac{-y - \nu (T-t)}{\sqrt{T-t}}\Big ) \\&\quad +\frac{2\sqrt{T-t}}{\sqrt{2\pi }}\mathrm{e}^{-\frac{(y + \nu (T-t))^2}{2(T-t)}} \\&\quad - \displaystyle 2\nu (T-t)\Big [1 - \Phi \Big (\frac{y + \nu (T-t)}{\sqrt{T-t}}\Big )\Big ] + \mathrm{e}^{2y}\Phi \Big (\frac{y - \nu (T-t)}{\sqrt{T-t}}\Big ). \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XP., Vong, S. & Zhou, WX. Optimal Stopping Time of a Portfolio Selection Problem with Multi-assets. J. Oper. Res. Soc. China 9, 163–179 (2021). https://doi.org/10.1007/s40305-018-0223-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-018-0223-5

Keywords

Mathematics Subject Classification

Navigation