Skip to main content

Advertisement

Log in

Multi-objective Optimization of the Distributed Permutation Flow Shop Scheduling Problem with Transportation and Eligibility Constraints

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

In this paper, we consider the distributed permutation flow shop scheduling problem (DPFSSP) with transportation and eligibility constrains. Three objectives are taken into account, i.e., makespan, maximum lateness and total costs (transportation costs and setup costs). To the best of our knowledge, there is no published work on multi-objective optimization of the DPFSSP with transportation and eligibility constraints. First, we present the mathematics model and constructive heuristics for single objective; then, we propose an improved The Nondominated Sorting Genetic Algorithm II (NSGA-II) for the multi-objective DPFSSP to find Pareto optimal solutions, in which a novel solution representation, a new population re-/initialization, effective crossover and mutation operators, as well as local search methods are developed. Based on extensive computational and statistical experiments, the proposed algorithm performs better than the well-known NSGA-II and the Strength Pareto Evolutionary Algorithm 2 (SPEA2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Springer, Berlin (2015)

    MATH  Google Scholar 

  2. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1(2), 117–129 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Johnson, S.M.: Optimal two-and three-stage production schedules with setup times included. Nav. Res. Logist. (NRL) 1(1), 61–68 (1954)

    Article  MATH  Google Scholar 

  4. Palmer, D.S.: Sequencing jobs through a multi-stage process in the minimum total time—a quick method of obtaining a near optimum. J. Oper. Res. Soc. 16(1), 101–107 (1965)

    Article  Google Scholar 

  5. Campbell, H.G., Dudek, R.A., Smith, M.L.: A heuristic algorithm for the \(n\) job, \(m\) machine sequencing problem. Manag. Sci. 16(10), B-630 (1970)

    Article  MATH  Google Scholar 

  6. Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the \(m\)-machine, \(n\)-job flow-shop sequencing problem. Omega 11(1), 91–95 (1983)

    Article  Google Scholar 

  7. Jia, H.Z., Fuh, J.Y., Nee, A.Y., Zhang, Y.F.: Web-based multi-functional scheduling system for a distributed manufacturing environment. Concurr. Eng. 10(1), 27–39 (2002)

    Article  Google Scholar 

  8. Jia, H.Z., Fuh, J.Y., Nee, A.Y., Zhang, Y.F.: Integration of genetic algorithm and Gantt chart for job shop scheduling in distributed manufacturing systems. Comput. Ind. Eng. 53(2), 313–320 (2007)

    Article  Google Scholar 

  9. Jia, H.Z., Nee, A.Y., Fuh, J.Y., Zhang, Y.F.: A modified genetic algorithm for distributed scheduling problems. J. Intell. Manuf. 14(3–4), 351–362 (2003)

    Article  Google Scholar 

  10. Chan, F.T., Chung, S.H., Chan, L.Y., Finke, G., Tiwari, M.K.: Solving distributed FMS scheduling problems subject to maintenance: genetic algorithms approach. Robot. Comput. Integr. Manuf. 22(5), 493–504 (2006)

    Article  Google Scholar 

  11. Chan, F.T., Chung, S.H., Chan, P.L.Y.: An adaptive genetic algorithm with dominated genes for distributed scheduling problems. Expert Syst. Appl. 29(2), 364–371 (2005)

    Article  Google Scholar 

  12. De Giovanni, L., Pezzella, F.: An improved genetic algorithm for the distributed and flexible job-shop scheduling problem. Eur. J. Oper. Res. 200(2), 395–408 (2010)

    Article  MATH  Google Scholar 

  13. Deng, J., Wang, L., Wang, S.Y., Zheng, X.L.: A competitive memetic algorithm for the distributed two-stage assembly flow-shop scheduling problem. Int. J. Prod. Res. 54(12), 3561–3577 (2016)

    Article  Google Scholar 

  14. Wang, S.Y., Wang, L.: An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem. IEEE Trans. Syst. Man Cybern. Syst. 46(1), 139–149 (2016)

    Article  Google Scholar 

  15. Naderi, B., Ruiz, R.: The distributed permutation flowshop scheduling problem. Comput. Oper. Res. 37(4), 754–768 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, H., Gao, L.: A discrete electromagnetism-like mechanism algorithm for solving distributed permutation flowshop scheduling problem. In: 2010 International Conference on Manufacturing Automation (ICMA), pp. 156–163. IEEE (2010)

  17. Gao, J., Chen, R.: A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem. Int. J. Comput. Intell. Syst. 4(4), 497–508 (2011)

    Article  Google Scholar 

  18. Gao, J., Chen, R.: An NEH-based heuristic algorithm for distributed permutation flowshop scheduling problems. Sci. Res. Essays 6(14), 3094–3100 (2011)

    Google Scholar 

  19. Gao, J., Chen, R., Liu, Y.: A knowledge-based genetic algorithm for permutation flowshop scheduling problems with multiple factories. Int. J. Adv. Comput. Technol. 4(7), 121–129 (2012)

    Google Scholar 

  20. Gao, J., Chen, R., Deng, W.: An efficient tabu search algorithm for the distributed permutation flowshop scheduling problem. Int. J. Prod. Res. 51(3), 641–651 (2013)

    Article  Google Scholar 

  21. Lin, S.W., Ying, K.C., Huang, C.Y.: Minimising makespan in distributed permutation flowshops using a modified iterated greedy algorithm. Int. J. Prod. Res. 51(16), 5029–5038 (2013)

    Article  Google Scholar 

  22. Wang, S.Y., Wang, L., Liu, M., Xu, Y.: An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem. Int. J. Prod. Econ. 145(1), 387–396 (2013)

    Article  Google Scholar 

  23. Xu, Y., Wang, L., Wang, S., Liu, M.: An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem. Eng. Optim. 46(9), 1269–1283 (2014)

    Article  MathSciNet  Google Scholar 

  24. Naderi, B., Ruiz, R.: A scatter search algorithm for the distributed permutation flowshop scheduling problem. Eur. J. Oper. Res. 239(2), 323–334 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, J., Wang, L., Shen, J.: A hybrid discrete cuckoo search for distributed permutation flowshop scheduling problem. In: 2016 IEEE Congress on Evolutionary Computation, pp. 2240–2246. IEEE (2016)

  26. Wang, K., Huang, Y., Qin, H.: A fuzzy logic-based hybrid estimation of distribution algorithm for distributed permutation flowshop scheduling problems under machine breakdown. J. Oper. Res. Soc. 67(1), 68–82 (2016)

    Article  Google Scholar 

  27. Pareto, V.: Oeuvres Complètes: Tome 7, Manuel d’économie Politique. Librairie Droz, Geneva (1981)

    Google Scholar 

  28. Ciavotta, M., Minella, G., Ruiz, R.: Multi-objective sequence dependent setup times permutation flowshop: a new algorithm and a comprehensive study. Eur. J. Oper. Res. 227(2), 301–313 (2013)

    Article  MathSciNet  Google Scholar 

  29. Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 28(3), 392–403 (1998)

    Article  Google Scholar 

  30. Varadharajan, T.K., Rajendran, C.: A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs. Eur. J. Oper. Res. 167(3), 772–795 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Murata, T., Ishibuchi, H., Tanaka, H.: Multi-objective genetic algorithm and its applications to flowshop scheduling. Comput. Ind. Eng. 30(4), 957–968 (1996)

    Article  Google Scholar 

  32. Yagmahan, B., Yenisey, M.M.: Ant colony optimization for multi-objective flow shop scheduling problem. Comput. Ind. Eng. 54(3), 411–420 (2008)

    Article  Google Scholar 

  33. Gelders, L.F., Sambandam, N.: Four simple heuristics for scheduling a flow-shop. Int. J. Prod. Res. 16(3), 221–231 (1978)

    Article  Google Scholar 

  34. Ponnambalam, S.G., Jagannathan, H., Kataria, M., Gadicherla, A.: A TSP-GA multi-objective algorithm for flow-shop scheduling. Int. J. Adv. Manuf. Technol. 23(11–12), 909–915 (2004)

    Google Scholar 

  35. Yenisey, M.M., Yagmahan, B.: Multi-objective permutation flow shop scheduling problem: literature review, classification and current trends. Omega 45, 119–135 (2014)

    Article  Google Scholar 

  36. Deng, J., Wang, L.: A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem. Swarm Evol. Comput. 32, 121–131 (2017)

    Article  Google Scholar 

  37. Zitzler, E., Laumanns, M., Thiele, L.: SPEA 2: improving the strength Pareto evolutionary algorithm. Tik-report (2001)

  38. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: International Conference on Parallel Problem Solving From Nature, pp. 849–858. Springer, Berlin, Heidelberg (2000)

  39. Bandyopadhyay, S., Bhattacharya, R.: Solving multi-objective parallel machine scheduling problem by a modified NSGA-II. Appl. Math. Model. 37(10), 6718–6729 (2013)

    Article  MathSciNet  Google Scholar 

  40. Bolaños, R., Echeverry, M., Escobar, J.: A multiobjective non-dominated sorting genetic algorithm (NSGA-II) for the Multiple Traveling Salesman Problem. Decis. Sci. Lett. 4(4), 559–568 (2015)

    Article  Google Scholar 

  41. Sahu, D.P., Singh, K., Prakash, S.: Maximizing availability and minimizing makespan for task scheduling in grid computing using NSGA II. In: Proceedings of the Second International Conference on Computer and Communication Technologies, pp. 219–224. Springer, India (2016)

  42. Long, J., Zheng, Z., Gao, X., Pardalos, P.M.: A hybrid multi-objective evolutionary algorithm based on NSGA-II for practical scheduling with release times in steel plants. J. Oper. Res. Soc. 67(9), 1184–1199 (2016)

  43. Autuori, J., Hnaien, F., Yalaoui, F., Hamzaoui, A., Essounbouli, N.: Comparison of solution space exploration by NSGA 2 and SPEA 2 for Flexible Job Shop Problem. In: 2013 International Conference on Control, Decision and Information Technologies, pp. 750–755. IEEE (2013)

  44. Blumenfeld, D.E., Burns, L.D., Daganzo, C.F., Frick, M.C., Hall, R.W.: Reducing logistics costs at General Motors. Interfaces 17(1), 26–47 (1987)

    Article  Google Scholar 

  45. Wang, W.F., Yun, W.Y.: Scheduling for inland container truck and train transportation. Int J. Prod. Econ. 143(2), 349–356 (2013)

    Article  Google Scholar 

  46. Siddiqui, A.W., Verma, M.: A bi-objective approach to routing and scheduling maritime transportation of crude oil. Transp. Res. Part D Transp. Environ. 37, 65–78 (2015)

    Article  Google Scholar 

  47. Chen, Z.L., Lee, C.Y.: Machine scheduling with transportation considerations. J. Sched. 4, 3–24 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Naderi, B., Zandieh, M., Balagh, A.K.G., Roshanaei, V.: An improved simulated annealing for hybrid flowshops with sequence-dependent setup and transportation times to minimize total completion time and total tardiness. Expert Syst. Appl. 36(6), 9625–9633 (2009)

    Article  Google Scholar 

  49. Tang, L., Liu, P.: Flowshop scheduling problems with transportation or deterioration between the batching and single machines. Comput. Ind. Eng. 56(4), 1289–1295 (2009)

    Article  Google Scholar 

  50. Zhu, H., Leus, R., Zhou, H.: New results on the coordination of transportation and batching scheduling. Appl. Math. Model. 40(5), 4016–4022 (2016)

    Article  MathSciNet  Google Scholar 

  51. Zabihzadeh, S.S., Rezaeian, J.: Two meta-heuristic algorithms for flexible flow shop scheduling problem with robotic transportation and release time. Appl. Soft Comput. 40, 319–330 (2016)

    Article  Google Scholar 

  52. Low, C., Li, R.K., Wu, G.H.: Ant colony optimization algorithms for unrelated parallel machine scheduling with controllable processing times and eligibility constraints. In: Proceedings of the Institute of Industrial Engineers Asian Conference 2013, pp. 79–87. Springer, Singapore (2013)

  53. Soltani, S.A., Karimi, B.: Cyclic hybrid flow shop scheduling problem with limited buffers and machine eligibility constraints. Int. J. Adv. Manuf. Technol. 76(9–12), 1739–1755 (2015)

    Article  Google Scholar 

  54. Taillard, E.: Some efficient heuristic methods for the flow shop sequencing problem. Eur. J. Oper. Res. 47(1), 65–74 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  55. Baesler, F., Palma, C.: Multiobjective parallel machine scheduling in the sawmill industry using memetic algorithms. Int. J. Adv. Manuf. Technol. 74(5–8), 757–768 (2014)

    Article  Google Scholar 

  56. Hyun, C.J., Kim, Y., Kim, Y.K.: A genetic algorithm for multiple objective sequencing problems in mixed model assembly lines. Comput. Oper. Res. 25(7), 675–690 (1998)

    Article  MATH  Google Scholar 

  57. Zhang, H., Li, B., Zhang, J., Qin, Y., Feng, X., Liu, B.: Parameter estimation of nonlinear chaotic system by improved TLBO strategy. Soft Comput. 20(12), 4965–4980 (2016)

    Article  Google Scholar 

  58. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referees for their constructive comments. The authors would like to thank Professor Bo Liu for his discussions and constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Cai.

Additional information

This research was partially supported by the National Natural Science Foundation of China (Nos. 71390334 and 11271356).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Yang, K. & Liu, K. Multi-objective Optimization of the Distributed Permutation Flow Shop Scheduling Problem with Transportation and Eligibility Constraints. J. Oper. Res. Soc. China 6, 391–416 (2018). https://doi.org/10.1007/s40305-017-0165-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-017-0165-3

Keywords

Mathematics Subject Classification

Navigation