Skip to main content
Log in

A Primal-Dual Interior-Point Method for Optimal Grasping Manipulation of Multi-fingered Hand-Arm Robots

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

In this paper, we consider an optimization problem of the grasping manipulation of multi-fingered hand-arm robots. We first formulate an optimization model for the problem, based on the dynamic equations of the object and the friction constraints. Then, we reformulate the model as a convex quadratic programming over circular cones. Moreover, we propose a primal-dual interior-point algorithm based on the kernel function to solve this convex quadratic programming over circular cones. We derive both the convergence of the algorithm and the iteration bounds for large- and small-update methods, respectively. Finally, we carry out the numerical tests of \(180^{\circ }\) and \(90^{\circ }\) manipulations of the hand-arm robot to demonstrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Salisbury, J.K., Craig, J.: Articulated hands: force control and kinematic issues. Int. J. Rob. Res. 1(1), 4–17 (1982)

    Article  Google Scholar 

  2. Kerr, J., Roth, B.: Analysis of multifingered hands. Int. J. Rob. Res. 4(4), 3–17 (1986)

    Article  Google Scholar 

  3. Cutkosky, M.: Robotic Grasping and Fine Manipulation. Kluwer, Norwell (1985)

    Book  Google Scholar 

  4. Cai, C., Roth, B.: On the spatial motion of rigid bodies with point contact. In: Proceedings of the IEEE International Conference on Robotics Automation, pp. 686–695 (1987)

  5. Montana, D.: The kinematics of contact and grasp. Int. J. Rob. Res. 7(3), 17–32 (1988)

    Article  Google Scholar 

  6. Buss, M., Hashimoto, H., Moore, J.: Dextrous hand grasping force optimization. IEEE Trans. Robot. Autom. 12, 406–418 (1996)

    Article  Google Scholar 

  7. Han, L., Trinkle, J., Li, Z.X.: Grasp analysis as linear matrix inequalities. In: Proceedings of the IEEE International Conference on Robotics Automation (1999)

  8. Han, L., Trinkle, J.C., Li, Z.X.: Grasp analysis as linear matrix inequality problems. IEEE Trans. Robot. Autom. 16, 663–674 (2000)

    Article  Google Scholar 

  9. Boyd, S.P., Wegbreit, B.: Fast computation of optimal contact forces. IEEE Trans. Robot. 23(6), 1117–1132 (2007)

    Article  Google Scholar 

  10. Jameson, J., Leifer, L.: Automatic grasping: an optimization approach. IEEE Trans. Syst. Man Cybern. 17, 806–814 (1987)

    Article  Google Scholar 

  11. Cheng, F., Orin, D.: Efficient algorithm for optimal force distribution-the compact-dual LP method. IEEE Trans. Robotic. Autom. 6(2), 178–187 (1990)

    Article  Google Scholar 

  12. Kvrgic, V.M.: Computing of the sub-optimal grasping forces for manipulation of a rough object by multifingered robot hand. In: Proceedings of the IEEE International Conference on Robotics Automation, pp. 1801–1806 (1996)

  13. Buss, M., Faybusovich, L., Moore, J.: Recursive algorithms for real-time grasping force optimization. In: Proceedings of the IEEE International Conference on Robotics Automation, pp. 682–687 (1997)

  14. Li, Z.X., Qin, Z., Jiang, S., Han, L.: Coordinated motion generation and real-time grasping force control for multifingered manipulation. In: IEEE International Conference on Robotics Automation (1998)

  15. Helmke, U., Hüper, K., Moore, J.B.: Quadratically convergent algorithms for optimal dextrous hand grasping. IEEE Trans. Robotic. Autom. 18(2), 138–146 (2002)

    Article  Google Scholar 

  16. Ko, C.H., Chen, J.S.: Optimal grasping manipulation for multifingered robots using semismooth Newton method. Math. Probl. Eng. 2013, 9 (2013)

    Article  MathSciNet  Google Scholar 

  17. Ko, C.H., Chen, J.K.: Grasping force based manipulation for multifingered hand-arm robot using neural networks. Numer. Algebra Control Optim. 4(1), 59–74 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bai, Y.Q., Gao, X.R., Wang, G.Q.: Primal-dual interior-point algorithms for convex quadratic circular cone optimization. Numer. Algebra Control Optim. 5(2), 211–231 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zangiabadi, M., Gu, G., Roos, C.: A full Nesterov-Todd step infeasible interior-point method for second-order cone optimization. J. Optim. Theory Appl. 158(3), 816–858 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schmieta, S.H., Alizadeh, F.: Extension of primal-dual interior-point algorithms to symmetric cones. Math. Program. 96, 409–438 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bai, Y.Q.: Kernel Function-Based Interior-Point Algorithms for Conic Optimization. Science Press, Beijing (2010)

    MATH  Google Scholar 

  22. Bai, Y.Q., Ma, P.F., Zhang, J.: A polynomial-time interior-point method for circular cone programming based on kernel functions. J. Ind. Manag. Optim. 12(2), 739–756 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Qin Bai.

Additional information

This paper is dedicated to Professor Lian-Sheng Zhang in celebration of his 80th birthday.

This research was supported by the National Natural Science Foundation of China (No. 11371242).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, YQ., Gao, XR. & Yu, CJ. A Primal-Dual Interior-Point Method for Optimal Grasping Manipulation of Multi-fingered Hand-Arm Robots. J. Oper. Res. Soc. China 5, 177–192 (2017). https://doi.org/10.1007/s40305-017-0161-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-017-0161-7

Keywords

Mathematics Subject Classification

Navigation