Skip to main content
Log in

Abstract

In the present paper, a scheme of path sampling is explored for stochastic diffusion processes. The core issue is the evaluation of the diffusion propagators (spatial–temporal Green functions) by solving the corresponding Kolmogorov forward equations with Dirac delta functions as initials. The technique can be further used in evaluating general functional of path integrals. The numerical experiments demonstrated that the simulation scheme based on this approach overwhelms the popular Euler scheme and Exact Algorithm in terms of accuracy and efficiency in fairly general settings. An example of likelihood inference for the diffusion driven Cox process is provided to show the scheme’s potential power in applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. An R language package providing an interface between R and the C++ matrix calculation package Armadillo.

References

  1. Albanese, C., Lawi, S.: Laplace transforms for integrals of Markov processes. arXiv preprint arXiv:0710.1599 (2007)

  2. Beskos, A., Roberts, G.O.: Exact simulation of diffusions. Ann. Appl. Probab. 15(4), 2422–2444 (2005)

    Article  MathSciNet  Google Scholar 

  3. Beskos, A., Papaspiliopoulos, O., Roberts, G.O.: Retrospective exact simulation of diffusion sample paths with applications. Bernoulli 12(6), 1077–1098 (2006)

    Article  MathSciNet  Google Scholar 

  4. Beskos, A., Papaspiliopoulos, O., Roberts, G.O.: A factorisation of diffusion measure and finite sample path constructions. Methodol. Comput. Appl. Probab. 10(1), 85–104 (2008)

    Article  MathSciNet  Google Scholar 

  5. Cox, D.R.: Some statistical methods connected with series of events. J. R. Stat. Soc. Ser. B (Methodol.) 17(2), 129–157 (1955)

    Article  MathSciNet  Google Scholar 

  6. Clifford, P., Wei, G.: The equivalence of the cox process with squared radial Ornstein-Uhlenbeck intensity and the death process in a simple population model. Ann. Appl. Probab. 3(3), 863–873 (1993)

    Article  MathSciNet  Google Scholar 

  7. Friedman, A.: Stochastic Differential Equations and Applications. Probability and Mathematical Statistics Series 28, vol. Volume 1. Academic Press, New York (1975)

  8. Hirsa, A.: Computational Methods in Finance. CRC Press, Boca Raton (2012)

    Google Scholar 

  9. Hurn, A., Jeisman, J., Lindsay, K., et al.: Teaching an old dog new tricks improved estimation of the parameters of stochastic differential equations by numerical solution of the Fokker–Planck equation. Queensland University of Technology, Brisbane, Manuscript (2006)

  10. Hurn, A.S., Jeisman, J.I., Lindsay, K.A.: Seeing the wood for the trees: a critical evaluation of methods to estimate the parameters of stochastic differential equations. J. Financ. Economet. 5(3), 390–455 (2007)

    Article  Google Scholar 

  11. Hurd, T.R., Kuznetsov, A.: Explicit formulas for Laplace transforms of stochastic integrals. Markov Process. Related Fields 14(2), 277–290 (2008)

    MathSciNet  Google Scholar 

  12. Iacus, S.M.: Simulation and Inference for Stochastic Differential Equations. Springer Series in Statistics, vol. 1. Springer, New York (2008)

    Google Scholar 

  13. Jensen, B., Poulsen, R.: Transition densities of diffusion processes: numerical comparison of approximation techniques. J. Deriv. 9(4), 18–32 (2002)

    Article  Google Scholar 

  14. Kallenberg, O.: Foundations of Modern Probability. Springer, New York (2006)

    Google Scholar 

  15. Kloeden, P.E., Platen, E., Schurz, H.: Numerical Solution of SDE Through Computer Experiments, Corr. 2nd print edn. Universitext. Springer, Berlin (1997)

  16. Lewis, P.A.W., Shedler, G.S.: Simulation of nonhomogeneous Poisson processes by thinning. Naval Res. Log. Q. 26(3), 403–413

  17. Lo, A.W.: Maximum likelihood estimation of generalized Itô processes with discretely sampled data. Economet. Theory 4(2), 231–247 (1988)

    Article  Google Scholar 

  18. Lux, T.: Inference for systems of stochastic differential equations from discretely sampled data: a numerical maximum likelihood approach. Ann. Finance 9(2), 217–248 (2013)

    Article  MathSciNet  Google Scholar 

  19. Maruyama, G.: On the transition probability functions of the Markov process. Nat. Rep. Ochanomizu Univ. 5, 10–20 (1954)

    MathSciNet  Google Scholar 

  20. Pavliotis, G.A.: Stochastic Processes and Applications: Diffusion Processes, the Fokker–Planck and Langevin Equations. Texts in Applied Mathematics, vol. 60. Springer, New York (2014)

  21. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. SIAM, Philadelphia (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wei.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Chen, S. & Wei, G. Diffusion Simulation via Green Function Evaluation. Commun. Math. Stat. (2024). https://doi.org/10.1007/s40304-023-00384-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40304-023-00384-0

Keywords

Mathematics Subject Classification

Navigation