Skip to main content
Log in

Isogeometric Analysis on Implicit Domains: Approximation, Stability and Error Estimates

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

The gap between finite element analysis and computer-aided design derives the development of isogeometric analysis (IGA), which uses the same representation in the geometry and the analysis. However, the parameterization in IGA is non-trivial. Weighted extended B-splines (WEB) method replaces grid generation and parameterization with weight function construction (R-function or distance function). By using implicit spline representation, isogeometric analysis on implicit domains (IGAID) adopts the merits of the “isoparametric” in IGA and “weight function generation” in WEB. But the theoretical properties have not been fully studied yet. In this paper, we study the theoretical aspects of IGAID using tensor-product B-splines. Both the approximation and stability properties of IGAID are considered. By setting appropriate constraints on the weight function, we can derive the optimal approximation order and stability. Numerical examples show the effectiveness of the approach and validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Auricchio, F., Beirao da Veiga, L., Buffa, A., Lovadina, C., Reali, A., Sangalli, G.: A fully locking-free isogeometric approach for plane linear elasticity problems: a stream function formulation. Comput. Methods Appl. Mech. Eng. 197, 160–172 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bézier, P.: Numerical Control-Mathematics and Applications. Wiley (1972)

  3. Brenner, A.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2000)

    Google Scholar 

  4. Buffa, A., Sangalli, G., Vázquez, R.: Isogeometric analysis in electromagnetics: B-splines approximation. Comput. Methods Appl. Mech. Eng. 199, 1143–1152 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195, 5257–5296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley (2009)

  7. Deng, F., Zeng, C., Deng, J.S.: Boundary-mapping parametrization in isogeometric analysis. Commun. Math. Stat. 4, 203–216 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Höllig, K.: Finite Element Methods with B-Splines. Society for Industrial and Applied Mathematics (2003)

  9. Höllig, K., Reif, U., Wipper, J.: Weighted extended B-spline approximation of Dirichlet problems. SIAM J. Numer. Anal. 39, 442–462 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, X., Sederberg, T.W.: S-splines: a simple surface solution for IGA and CAD. Comput. Methods Appl. Mech. Eng. 350, 664–678 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, Y., Song, Y., Yang, Z., Deng, J.S.: Implicit surface reconstruction with total variation regularization. Comput. Aided Geom. Des. 52, 135–153 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, H., Yang, Y., Liu, Y., Fu, X.: Simultaneous interior and boundary optimization of volumetric domain parameterizations for IGA. In: Computer Aided Geometric Design, p. 79 (2020)

  14. Martin, T., Cohen, E., Kirby, M.: Volumetric parametrization and trivariate b-spline fitting using harmonic functions. Comput. Aided Geom. Des. 26, 648–664 (2009)

    Article  MATH  Google Scholar 

  15. Martin, T., Cohen, E.: Volumetric parametrization of complex objects by respecting multiple materials. Comput. Graph. 34, 187–197 (2010)

    Article  Google Scholar 

  16. Qarariyah, A., Deng, F., Yang, T., Liu, Y., Deng, J.S.: Isogeometric analysis on implicit domains using weighted extended PHT-splines. J. Comput. Appl. Math. 350, 353–371 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rvachev, V.L., Sheiko, T.I.: R-functions in boundary value problems in mechanics. Appl. Mech. Rev. 48, 151–188 (1995)

    Article  Google Scholar 

  18. Shapiro, V.: Theory of R-Functions and Applications: A Primer, Technicalreport CPA88-3. Cornell Programmable Automation, Sibley School of Mechanical Engineering, Ithaca, New York (1988)

  19. Takacs, T., Jüttler, B.: Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200, 3568–3582 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wei, X., Li, X., Qian, K., Hughes, T.J.R., Yongjie, J.Z., Hugo, C.: Analysis-suitable unstructured T-splines: Multiple extraordinary points per face. Comput. Methods Appl. Mech. Eng. 391, 114494 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, J., Chen, F., Deng, J.S.: Two-dimensional domain decomposition based on skeleton computation for parametrization and isogeometric analysis. Comput. Methods Appl. Mech. Eng. 284, 541–555 (2015)

    Article  MATH  Google Scholar 

  22. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Variational harmonic method for parametrization of computational domain in 2D isogeometric analysis. In: 12th International Conference on Computer-Aided Design and Computer Graphics, pp. 223–228 (2011)

  23. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Parametrization of computational domain in isogeometric analysis: methods and comparison. Comput. Methods Appl. Mech. Eng. 200, 2021–2031 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 12171453 and 12001197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansong Deng.

8 Appendix

8 Appendix

1.1 A. The Proof of Theorem 4.1

Proof

We prove Eq. 4.2 first.

By Eq. 3.2, \(B_i=\frac{w(x)}{w(x_i)}{\tilde{b}}_i=\frac{w(x)}{w(x_i)}(b_i+\sum \limits _{j\in J(i)}e_{ij}b_j),\) we have

$$\begin{aligned}\begin{aligned} ||B_i||_{0,\tilde{Q_i}}&\le \left( \max \limits _{\tilde{Q_i}}\frac{w(x)}{w(x_i)}\right) \left\| b_i+\sum \limits _{j\in J}e_{ij}b_j\right\| _{0,\tilde{Q_i}}\\&\preceq \max \limits _{\tilde{Q_i}}\left| \frac{w(x)}{w(x_i)}\right| . \end{aligned}\end{aligned}$$

Then, we prove Eq. 4.3,

$$\begin{aligned} DB_i=\frac{Dw}{w(x_i)}\left( b_i+\sum \limits _{j\in J}e_{ij}b_j\right) +\frac{w}{w(x_i)}\left( Db_i+\sum \limits _{j\in J}e_{ij}Db_j\right) , \\ |B_i|_{1,\tilde{Q_i}}=||DB_i||_{0,\tilde{Q_i}}\preceq \max \limits _{\tilde{Q_i}}\frac{|Dw|}{w(x_i)}+h^{-1}\max \limits _{\tilde{Q_i}}\frac{w(x)}{w(x_i)}. \end{aligned}$$

We have

$$\begin{aligned} \begin{aligned} \left\| DB_i\right\| _{1,\tilde{Q_i}}&=\left( \left\| B_i\right\| ^2_{0,\tilde{Q_i}}+|DB_i|^2_{1,\tilde{Q_i}}\right) ^{1/2}\\&\le \left\| B_i\right\| _{0,\tilde{Q_i}}+|DB_i|_{1,\tilde{Q_i}}\\&\preceq \frac{1}{w(x_i)}\max \limits _{\tilde{Q_i}}\left[ (1+h^{-1})w(x)+|Dw|\right] . \end{aligned} \end{aligned}$$

Last, we prove Eq. 4.4

$$\begin{aligned}\begin{aligned} \left\| \wedge _i\right| _0&=\left\| \frac{w(x_i)}{w(x)}\lambda _i\right\| _0\le \max \limits _{x\in Q^{\prime }_i}\frac{w(x_i)}{w(x)}||\lambda _i||_0\\&\preceq \max \limits _{x\in Q^{\prime }_i}\frac{w(x_i)}{w(x)}. \end{aligned}\end{aligned}$$

\(\square \)

1.2 B. The Proof of Theorem 4.2

Proof

We only give the proof of Eq. 4.5, Eq. 4.6 can be proved similarly.

$$\begin{aligned} \left\| \sum \limits _{i \in I}\alpha _iB_i\right\| ^2_0\le \sum _{i\in I}\left( |a_i|^2||B_i||_0^2\right) \le \left( \max _{i\in I}||B_i||^2_0\right) \sum _{i\in I}|a_i|^2\le \left( \max _{i\in I}||B_i||^2_0\right) ||A||^2. \end{aligned}$$

Therefore, \(\left\| \sum \limits _{i \in I}\alpha _iB_i\right\| _0\le \left( \max \limits _{i\in I}||B_i||_0\right) ||A||.\) \(\square \)

1.3 C. The Proof of Theorem 4.3

Proof

Let \(wp = \sum \limits _{i\in I} \alpha _i B_i\), times \(\wedge _j\) and integral lead to

$$\begin{aligned} \int _{\Omega } wp\wedge _j = \sum \limits _{i\in I} \alpha _i \int _{\Omega } \wedge _j B_i, \end{aligned}$$

then

$$\begin{aligned} \alpha _j=\int _{\Omega } wp\wedge _j. \end{aligned}$$

\(\square \)

1.4 D. The Proof of Lemma 5.1

Proof

We prove the first inequation.

\(\frac{w(x)}{w(x_i)}=1+\frac{w(x)-w(x_i)}{w(x_i)}\), by the smoothness of w and the boundness of \(|\nabla w|\), we have

$$\begin{aligned} |w(x)-w(x_i)|\le c |x-x_i|\preceq h,\qquad by \ |x-x_i|\preceq h. \end{aligned}$$

If \(\textrm{dist}(x_i,\partial \Omega )>\delta ,\) using Fact 2, we have \(w(x_i)\ge c_3, \) therefore,

$$\begin{aligned} \left| \frac{w(x)}{w(x_i)}\right| \le 1+\left| \frac{w(x)-w(x_i)}{w(x_i)}\right| \preceq 1+\frac{h}{c_3}\preceq 1. \end{aligned}$$

If \(\textrm{dist}(x_i,\partial \Omega )\le \delta ,\) using Fact 1, we have

$$\begin{aligned} w(x_i)\asymp \textrm{dist}(x_i,\partial \Omega )\succeq h, \qquad \mathrm {by\ dist}(x_i,\partial \Omega )\succeq h. \end{aligned}$$

Therefore,

$$\begin{aligned} \left| \frac{w(x)}{w(x_i)}\right| \le 1+\left| \frac{w(x)-w(x_i)}{w(x_i)}\right| \preceq 1+\frac{h}{ h}\preceq 1. \end{aligned}$$

Then, we prove the second inequation.

As \(x\in \sup (\wedge _i),\) we have \(\hbox {dist}(x,\partial \Omega )\succeq h\). Similar discussion as Lemma 5.1, we have

\(\frac{w(x_i)}{w(x)}=1+\frac{w(x_i)-w(x)}{w(x)}\), by the smoothness of w and the boundedness of \(|\nabla w|\), we have

$$\begin{aligned} |w(x)-w(x_i)|\le c |x-x_i|\preceq h,\qquad by \ |x-x_i|\preceq h. \end{aligned}$$

If \(\hbox {dist}(x,\partial \Omega )>\delta ,\) using Fact 2, we have \(w(x)\ge c_3. \) Therefore,

$$\begin{aligned} \left| \frac{w(x_i)}{w(x)}\right| \le 1+\left| \frac{w(x)-w(x_i)}{w(x)}\right| \preceq 1+\frac{h}{c_3}\preceq 1. \end{aligned}$$

If \(\hbox {dist}(x,\partial \Omega )\le \delta ,\) using Fact 1, we have

$$\begin{aligned} w(x)\asymp \hbox {dist}(x,\partial \Omega )\succeq h. \qquad \hbox {by} \ \hbox {dist}(x,\partial \Omega )\succeq h \end{aligned}$$

Therefore,

$$\begin{aligned} \left| \frac{w(x_i)}{w(x)}\right| \le 1+\left| \frac{w(x)-w(x_i)}{w(x)}\right| \preceq 1+\frac{h}{ h}\preceq 1. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, F., Yang, T., Liu, J. et al. Isogeometric Analysis on Implicit Domains: Approximation, Stability and Error Estimates. Commun. Math. Stat. (2023). https://doi.org/10.1007/s40304-022-00307-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40304-022-00307-5

Keywords

Mathematics Subject Classification

Navigation