Skip to main content
Log in

Spacecraft Coupled Roto-translational Time-Optimal Control for Rendezvous Missions

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

This paper addresses the time-optimal roto-translational orbital rendezvous maneuver for an inertially asymmetric rigid spacecraft in an all-thrusters configuration. To begin with, the target and chaser relative rotational and translational dynamics are driven. Then, in the presence of torque and force constraints, the simultaneously time-optimal attitude and position control problem is numerically solved using the pseudo-spectral method. The costates are then computed to establish the first-order optimality of the obtained solutions, which is confirmed by satisfying Pontryagin's minimum principle. It is demonstrated via simulation that the obtained control forces and moments are basically “bang-bang,” which is the most natural and convenient form for on–off thrusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Some or all data, models, or code generated or used during the study are available in a repository or online in accordance with funder data retention policies.

Abbreviations

\({\left[{{\varvec{v}}}_{B}^{L}\right]}^{L}\) :

Velocity vector of the chaser's body center of mass (\(B\)) with respect to the target's LVLH frame (\(L\)), expressed in the target's LVLH coordinates (\(L\))

\({\left[{{\varvec{s}}}_{BL}\right]}^{L}\) :

Position vector of the chaser's body center of mass (\(B\)) with respect to the target's LVLH frame origin (\(L\)), expressed in the target's LVLH coordinates (\(L\))

\({D}^{Y}{\varvec{x}}\) :

Time derivative of vector \({\varvec{x}}\) with respect to frame \(Y\)

\({\left[{\varvec{f}}\right]}^{L}\) :

Control force vector, expressed in the target's LVLH coordinate system (\(L\))

\({\left[{\varvec{f}}\right]}^{B}\) :

Control force vector, expressed in the chaser's body coordinate system (\(B\))

\({m}_{B}\) :

Chaser’s mass

\({\omega }_{n}\) :

Orbital mean angular rate of the target

\({{\varvec{I}}}_{B}\) :

Inertial matrix of the chaser's body

\({\left[{{\varvec{\omega}}}^{\alpha \beta }\right]}^{\gamma }\) :

Angular velocity vector of frame \(\alpha\) with respect to frame \(\beta\), expressed in coordinate system \(\gamma\)

\({\left[{\varvec{m}}\right]}^{B}\) :

Control torque vector, expressed in the chaser's body coordinate system (\(B\))

\({[{\varvec{\sigma}}]}^{BL}\) :

MRP vector representing the orientation of the target's LVLH frame w.r.t. the chaser's body frame

\({e}_{x}\) , \({e}_{y}\) , \({e}_{z}\) :

Components of Euler axis

\(\Phi\) :

Principal rotation angle

\({[{\varvec{T}}]}^{LB}\) :

Transformation matrix from the chaser's body coordinates to the target's LVLH coordinates

\([{{\varvec{\Sigma}}]}^{BL}\) :

Skew-symmetric form of \({[{\varvec{\sigma}}]}^{BL}\)

\(J\) :

Cost function

\(\phi\) :

Scalar boundary constraint in cost function

\(g\) :

Integrand function in cost function

\({\varvec{x}}\) :

State vector

\({\varvec{u}}\) :

Control input vector

\({\varvec{f}}\) :

Dynamic constraints

\(\boldsymbol{\varphi }\) :

Boundary conditions

\({\varvec{C}}\) :

Inequality path constraints

\(t\) :

Time

\(\tau\) :

Transformed time

\({P}_{N}\) :

\({N}^{th}\)-Degree Legendre polynomial

\({\varvec{X}}\) :

Approximated state trajectory

\({\varvec{U}}\) :

Approximated control trajectory

\({L}_{i}\) :

Lagrange polynomials \((i=0,\dots ,N)\)

\({L}_{i}^{*}\) :

Lagrange polynomials \((i=1,\dots ,N)\)

\(w\) :

Gauss weights

\({\varvec{D}}\) :

Differential approximation matrix

\({\mathcal{L}}^{\left(1\right)}\) , \({\mathcal{L}}^{\left({\varvec{P}}\right)}\) , \({\mathcal{L}}_{({\varvec{r}})}^{({\varvec{r}}+1)}\) :

Initial constraints for the first phase, terminal constraints for the last phase (\(P\)), and continuity constraints for the interior phases

\(H\) :

Hamiltonian

\({\varvec{\lambda}}\) :

Costate vector

\({\varvec{\mu}}\) :

Lagrange multiplier associated with the path constraint

\({\varvec{\nu}}\) :

Lagrange multiplier associated with the the boundary condition

\({\varvec{\Lambda}}\) :

Estimated costates in LG points

\(\widetilde{{\varvec{\Lambda}}}\) :

KKT multipliers

\({n}_{I}\) :

Number of phases

\({n}_{LG}\) :

Number of LG points in each phase

\({{\varvec{B}}}_{u}\), \({{\varvec{B}}}_{{\varvec{l}}}\) :

Upper and lower bound of states and controls values

\({{\varvec{S}}}_{0}\) :

Initial guess for states and controls values in LG points

\(x,y,z\) :

Components of a vector in arbitrary coordinate system

\(0\) :

Initial time

\(f\) :

Terminal time

References

  1. Karpenko, M., Bhatt, S., Bedrossian, N., Fleming, A., Ross, I.: First flight results on time-optimal spacecraft slews. J. Guid. Control Dyn. 35, 367–376 (2012). https://doi.org/10.2514/1.54937

    Article  Google Scholar 

  2. Ma, Z., Ma, O., Shashikanth, B.N.: Optimal approach to and alignment with a rotating rigid body for capture. J. Astronaut. Sci. 55, 407–419 (2007)

    Article  Google Scholar 

  3. Tournes, C., Shtessel, Y.: Automatic docking using optimal control and second order sliding mode control. In: AIAA Guidance, Navigation and Control Conference and Exhibit (2007)

  4. Chen, X.-Q., Yu, J.: Optimal mission planning of GEO on-orbit refueling in mixed strategy. Acta Astronaut. 133, 63–72 (2017)

    Article  Google Scholar 

  5. Abdollahzadeh, P., Esmailifar, S.M.: Automatic orbital docking with tumbling target using sliding mode control. Adv. Space Res. 67, 1506–1525 (2021). https://doi.org/10.1016/j.asr.2020.12.016

    Article  Google Scholar 

  6. Ma, J., Wen, C., Zhang, C.: Practical optimization of low-thrust minimum-time orbital rendezvous in sun-synchronous orbits. Comput. Model. Eng. Sci. 126, 617–644 (2021)

    Google Scholar 

  7. Bilimoria, K.D., Wie, B.: Time-optimal three-axis reorientation of a rigid spacecraft. J. Guid. Control Dyn. 16, 446–452 (1993). https://doi.org/10.2514/3.21030

    Article  Google Scholar 

  8. Bai, X., Junkins, J.L.: New results for time-optimal three-axis reorientation of a rigid spacecraft. J. Guid. Control Dyn. 32, 1071–1076 (2009). https://doi.org/10.2514/1.43097

    Article  Google Scholar 

  9. Shen, H., Tsiotras, P.: Time-optimal control of axisymmetric rigid spacecraft using two controls. J. Guid. Control Dyn. 22, 682–694 (1999). https://doi.org/10.2514/2.4436

    Article  Google Scholar 

  10. Pager, E.R., Rao, A.V.: Minimum-time reorientation of axisymmetric rigid spacecraft using three controls. J. Spacecr. Rockets 59, 2195–2201 (2022)

    Article  Google Scholar 

  11. Hu, Y., Wu, B., Geng, Y., Wu, Y.: Smooth time-optimal attitude control of spacecraft. Proc. Inst. Mech. Eng. G 233, 2331–2343 (2019). https://doi.org/10.1177/0954410018776531

    Article  Google Scholar 

  12. Jinsong, L., Fullmer, R., Yang Quan, C.: Time-optimal magnetic attitude control for small spacecraft. In: 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), pp. 255–260 (2004)

  13. Olivares, A., Staffetti, E.: Hybrid switched time-optimal control of underactuated spacecraft. Acta Astronaut. 145, 456–470 (2018). https://doi.org/10.1016/j.actaastro.2018.01.051

    Article  MATH  Google Scholar 

  14. Olivares, A., Staffetti, E.: Time-optimal attitude scheduling of a spacecraft equipped with reaction wheels. Int. J. Aerosp. Eng. 2018, 1–14 (2018). https://doi.org/10.1155/2018/5947521

    Article  MATH  Google Scholar 

  15. Melton, R.: Numerical analysis of constrained, time-optimal satellite reorientation. Math. Probl. Eng. 2012, 1–19 (2012). https://doi.org/10.1155/2012/769376

    Article  MATH  Google Scholar 

  16. Melton, R.G.: Maximum-likelihood estimation optimizer for constrained, time-optimal satellite reorientation. Acta Astronaut. 103, 185–192 (2014). https://doi.org/10.1016/j.actaastro.2014.06.032

    Article  Google Scholar 

  17. Spiller, D., Ansalone, L., Curti, F.: Particle swarm optimization for time-optimal spacecraft reorientation with keep-out cones. J. Guid. Control Dyn. 39, 312–325 (2016). https://doi.org/10.2514/1.G001228

    Article  Google Scholar 

  18. Spiller, D., Melton, R.G., Curti, F.: Inverse dynamics particle swarm optimization applied to constrained minimum-time maneuvers using reaction wheels. Aerosp. Sci. Technol. 75, 1–12 (2018). https://doi.org/10.1016/j.ast.2017.12.038

    Article  Google Scholar 

  19. Yang, J., Stoll, E.: Time-optimal Spacecraft Reorientation with Attitude Constraints Based on A Two-stage Strategy. In: AAS/AIAA Astrodynamics Specialist Conference (2018)

  20. Celani, F., Bruni, R.: Minimum-time spacecraft attitude motion planning using objective alternation in derivative-free optimization. J. Optim. Theory Appl. 191, 776–793 (2021). https://doi.org/10.1007/s10957-021-01834-x

    Article  MathSciNet  MATH  Google Scholar 

  21. Miele, A., Weeks, M., Ciarcia, M.: Optimal trajectories for spacecraft rendezvous. J. Optim. Theory Appl. 132, 353–376 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, J., Parks, G.: Multi-objective optimization for multiphase orbital rendezvous missions. J. Guid. Control Dyn. 36, 622–629 (2013)

    Article  Google Scholar 

  23. Harris, M.W., Açıkmeşe, B.: Minimum time rendezvous of multiple spacecraft using differential drag. J. Guid. Control Dyn. 37, 365–373 (2014)

    Article  Google Scholar 

  24. Kollin, E.M.: Autonomous time-optimal spacecraft rendezvous and proximity operations using stabilized continuation (2016)

  25. Zhang, G., Ye, D.: Optimal short-range rendezvous using on–off constant thrust. Aerosp. Sci. Technol. 69, 209–217 (2017)

    Article  Google Scholar 

  26. Jorgensen, M.K., Sharf, I.: Optimal planning for a multiple space debris removal mission using high-accuracy low-thrust transfers. Acta Astronaut. 172, 56–69 (2020)

    Article  Google Scholar 

  27. Von Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 37, 357–373 (1992). https://doi.org/10.1007/BF02071065

    Article  MathSciNet  MATH  Google Scholar 

  28. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21, 193–207 (1998). https://doi.org/10.2514/2.4231

    Article  MATH  Google Scholar 

  29. Rao, A.V.: A survey of numerical methods for optimal control. Adv. Astronaut. Sci. 135, 497–528 (2009)

    Google Scholar 

  30. Conway, B.A.: A survey of methods available for the numerical optimization of continuous dynamic systems. J. Optim. Theory Appl. 152, 271–306 (2012). https://doi.org/10.1007/s10957-011-9918-z

    Article  MathSciNet  MATH  Google Scholar 

  31. Ross, I.M., Karpenko, M.: A review of pseudospectral optimal control: from theory to flight. Ann. Rev. Control 36, 182–197 (2012). https://doi.org/10.1016/j.arcontrol.2012.09.002

    Article  Google Scholar 

  32. Dra̧g, P., Styczeń, K., Kwiatkowska, M., Szczurek, A.: A review on the direct and indirect methods for solving optimal control problems with differential-algebraic constraints. In: Recent Advances in Computational Optimization, pp. 91–105. Springer, New York (2016)

  33. Pontryagin, L.S.: Mathematical Theory of Optimal Processes. CRC Press, Boca Raton (1987)

    Google Scholar 

  34. Guibout, V.M., Scheeres, D.J.: Solving relative two-point boundary value problems: spacecraft formulation flight transfers application. J. Guid. Control Dyn. 27, 693–704 (2004)

    Article  Google Scholar 

  35. Park, C., Guibout, V., Scheeres, D.J.: Solving optimal continuous thrust rendezvous problems with generating functions. J. Guid. Control Dyn. 29, 321–331 (2006)

    Article  Google Scholar 

  36. Bertrand, R., Epenoy, R.: New smoothing techniques for solving bang–bang optimal control problems—numerical results and statistical interpretation. Opt. Control Appl. Methods 23, 171–197 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Thevenet, J.-B., Epenoy, R.: Minimum-fuel deployment for spacecraft formations via optimal control. J. Guid. Control Dyn. 31, 101–113 (2008)

    Article  Google Scholar 

  38. Li, J., Xi, X.-N.: Fuel-optimal low-thrust reconfiguration of formation-flying satellites via homotopic approach. J. Guid. Control Dyn. 35, 1709–1717 (2012)

    Article  Google Scholar 

  39. Li, J., Xi, X.N.: Time-optimal reorientation of the rigid spacecraft using a pseudospectral method integrated homotopic approach. Optim. Control Appl. Methods 36, 889–918 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, J.: Time-optimal three-axis reorientation of asymmetric rigid spacecraft via homotopic approach. Adv. Space Res. 57, 2204–2217 (2016). https://doi.org/10.1016/j.asr.2016.02.016

    Article  Google Scholar 

  41. Lee, D., Song, Y.-J.: Spin-to-spin slew maneuvers under spherically constrained angular acceleration. Adv. Space Res. 64, 1274–1285 (2019). https://doi.org/10.1016/j.asr.2019.06.026

    Article  Google Scholar 

  42. Lan, J., Li, J.: Newton-Kantorovich/Radau pseudospectral solution to rigid spacecraft time-optimal three-axis reorientation. Adv. Space Res. 65, 2662–2673 (2020)

    Article  Google Scholar 

  43. Huntington, G.T., Rao, A.V.: Comparison of global and local collocation methods for optimal control. J. Guid. Control Dyn. 31, 432–436 (2008). https://doi.org/10.2514/1.30915

    Article  Google Scholar 

  44. Benson, D.: A Gauss pseudospectral transcription for optimal control. Ph.D. Thesis, Massachusettes Institute of Technology (2004)

  45. Benson, D.A., Huntington, G.T., Thorvaldsen, T.P., Rao, A.V.: Direct trajectory optimization and costate estimation via an orthogonal collocation method. J. Guid. Control Dyn. 29, 1435–1440 (2006). https://doi.org/10.2514/1.20478

    Article  Google Scholar 

  46. Huntington, G.: Advancement and analysis of a Gauss pseudospectral transcription for optimal control problems. Ph.D. Thesis, Massachusetts Institute of Technology (2007)

  47. Huntington, G.T., Benson, D., Rao, A.V.: Optimal configuration of tetrahedral spacecraft formations. J. Astronaut. Sci. 55, 141–169 (2007). https://doi.org/10.1007/BF03256518

    Article  Google Scholar 

  48. Huntington, G.T., Rao, A.V.: Optimal reconfiguration of spacecraft formations using the Gauss pseudospectral method. J. Guid. Control Dyn. 31, 689–698 (2008). https://doi.org/10.2514/1.31083

    Article  Google Scholar 

  49. Elnagar, G., Kazemi, M.A., Razzaghi, M.: The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Autom. Control 40, 1793–1796 (1995). https://doi.org/10.1109/9.467672

    Article  MathSciNet  MATH  Google Scholar 

  50. Fahroo, F., Ross, I.M.: Costate estimation by a Legendre pseudospectral method. J. Guid. Control Dyn. 24, 270–277 (2001). https://doi.org/10.2514/2.4709

    Article  Google Scholar 

  51. Darby, C., Garg, D., Rao, A.V.: Costate estimation using multiple-interval pseudospectral methods. J. Spacecr. Rockets 48, 856–866 (2011). https://doi.org/10.2514/1.A32040

    Article  Google Scholar 

  52. Darby, C.L., Hager, W.W., Rao, A.V.: Direct trajectory optimization using a variable low-order adaptive pseudospectral method. J. Spacecr. Rockets 48, 433–445 (2011). https://doi.org/10.2514/1.52136

    Article  Google Scholar 

  53. Garg, D.: Advances in global pseudospectral methods for optimal control. Ph.D. Thesis, University of Florida (2011)

  54. Fleming, A.: Real-time optimal slew maneuver design and control. M.Sc. Thesis, Naval Postgraduate School (2004)

  55. Melton, R.G.: Hybrid methods for determining time-optimal, constrained spacecraft reorientation maneuvers. Acta Astronaut. 94, 294–301 (2014). https://doi.org/10.1016/j.actaastro.2013.05.007

    Article  Google Scholar 

  56. Kirk, D.E.: Optimal Control Theory: An Introduction. Courier Corporation, North Chelmsford (2004)

    Google Scholar 

  57. Bohlouri, V., Jalali-Naini, S.H.: Application of reliability-based robust optimization in spacecraft attitude control with PWPF modulator under uncertainties. J. Braz. Soc. Mech. Sci. Eng. 41, 449 (2019). https://doi.org/10.1007/s40430-019-1955-9

    Article  Google Scholar 

  58. Zipfel, P.H.: Attitude Dynamics. In: Modeling and simulation of aerospace vehicle dynamics, pp. 165–216. American Institute of Aeronautics and Astronautics (AIAA), Reston, Virginia (2007)

  59. Clohessy, W., Wiltshire, R.: Terminal guidance system for satellite rendezvous. J. Aerosp. Sci. 27, 653–658 (1960). https://doi.org/10.2514/8.8704

    Article  MATH  Google Scholar 

  60. Schaub, H., Junkins, J.: Rigid Body Kinematics. In: Analytical mechanics of space systems, pp. 79–141. American Institute of Aeronautics and Astronautics (AIAA), Reston, Virginia (2018)

  61. Davis, P.: Interpolation & Approximation. Dover Publications, Mineola (2014)

    Google Scholar 

  62. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Courier Corporation, North Chelmsford (2007)

    MATH  Google Scholar 

  63. Betts, J.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. Society for Industrial and Applied Mathematics, Philadelphia (2010)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayyed Majid Esmailifar.

Ethics declarations

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.M., Esmailifar, S.M. & Chiniforoushan, M. Spacecraft Coupled Roto-translational Time-Optimal Control for Rendezvous Missions. J Astronaut Sci 70, 23 (2023). https://doi.org/10.1007/s40295-023-00390-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40295-023-00390-y

Keywords

Navigation