Skip to main content
Log in

Comparison of Four Space Propulsion Methods for Reducing Transfer Times of Crewed Mars Missions

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

We assess the possibility of reducing the travel time of a crewed mission to Mars by examining four different propulsion methods and keeping the mass at departure under 2500 t, for a fixed architecture. We evaluated representative systems of three different state of the art technologies (chemical, nuclear thermal and electric) and one advance technology, the “Pure Electro-Magnetic Thrust” (PEMT) concept (proposed by Rubbia). A mission architecture mostly based on the Design Reference Architecture 5.0 is assumed in order to estimate the mass budget, that influences the performance of the propulsion system. Pareto curves of the duration of the mission and time of flight versus mass of mission are drawn. We conclude that the ion engine technology, combined with the classical chemical engine, yields the shortest mission times for this architecture with the lowest mass and that chemical propulsion alone is the best to minimise travel time. The results obtained using the PEMT suggest that it could be a more suitable solution for farther destinations than Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ageyev, V.P., Ostrovsky, V.G., Petrosov, V.A.: High-current stationary plasma accelerator of high power. In: 23rd International Electric Propulsion Conference, Seattle, pp 1071–1075 (1993)

  2. Amade, N.S., Wertz, J.: Design of a Mars rapid round trip mission. In: AIAA SPACE 2010 Conference & Exposition https://doi.org/10.2514/6.2010-8642, AIAA 2010-8642 (2010)

  3. Astrium: Vinci rocket engine - thrust chamber. http://cs.astrium.eads.net/sp/launcher-propulsion/rocket-engines/vinci-rocket-engine.html, accessed 12 March 2012 (2012)

  4. Bérend, N, Epenoy, R., Cliquet, E., Laurent-Varin, J., Avril, S.: Technological requirements of nuclear electric propulsion systems for fast Earth-Mars transfers. EUCASS Proceedings Series 4, 313–336 (2013). https://doi.org/10.1051/eucass/201304313

    Google Scholar 

  5. Bertolami, O., Pedro, F.G.: Gravity control propulsion: Towards a general relativistic approach. J. Brit. Interplanet. Soc. 60, 14 (2006). arXiv:https://arxiv.org/abs/physics/0610116

    Google Scholar 

  6. Bertolami, O., Tajmar, M.: Gravity control and possible influence on space propulsion: A scientific study. European Space Agency, ESA Publication Division, ESTEC. ESA CR(P) 4365 (2002)

  7. Black, D.L., Cooper, L.H., Dickson, P.W., Stefanko, J.S., Kim, C.: Preliminary Study of the NERVA II Reactor Design. Tech. rep. National Aeronautics and Space Administration (1964)

  8. Brophy, J., Gershman, R., Strange, N., Landau, D., Merrill, R., Kerslake, T.: 300-kW Solar Electric Propulsion System Configuration for Human Exploration of Near-Earth Asteroids. In: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Joint Propulsion Conferences, American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2011-5514 (2011)

  9. Brophy, J.R., Marcucci, M.G., Ganapathi, G.B., Garner, C.E., Henry, M.D., Nakazono, B., Noon, D.: The Ion Propulsion System for Dawn. In: 39Th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics, Joint Propulsion Conferences. https://doi.org/10.2514/6.2003-4542, pp 1–8 (2003)

  10. Brown, C.D.: Spacecraft Mission Design, 2nd edn. American Institute of Aeronautics and Astronautics, Reston (1998)

    Book  Google Scholar 

  11. Buden, D.: Nuclear rocket safety. Acta Astronaut. 18(C), 217–224 (1988). https://doi.org/10.1016/0094-5765(88)90102-6

    Article  Google Scholar 

  12. Cassenti, B.N., Bass, R.W.: High risk low cost Mars missions scenarios. AIP Conference Proceedings 420(1), 1125–1130 (1998). https://doi.org/10.1063/1.54728

    Article  Google Scholar 

  13. Conway, B.A.: Spacecraft Trajectory Optimization. Cambridge University Press, New York (2010)

    Book  Google Scholar 

  14. Emcore: ZTJ photovoltaic cell datasheet. http://www.emcore.com/assets/photovoltaics/ZTJ_datasheet.pdf, accessed 12 March 2012 (2011)

  15. Cucinotta, F.A., Schimmerling, W., Wilson, J.W., Peterson, L.E., Badhwar, G.D., Saganti, P.B., Dicello, J.F.: Space radiation cancer risks and uncertainties for Mars missions. Radiat. Res. 156(5), 682–688 (2001). https://doi.org/10.1667/0033-7587(2001)156[0682:SRCRAU]2.0.CO;2

    Article  Google Scholar 

  16. Díaz, F., Carter, M.D., Glover, T., Ilin, A., Olsen, C., Squire, J.P., Litchford, R., Harada, N., Koontz, S.: Fast and robust human missions to Mars with advanced nuclear electric power and VASIMR® propulsion. In: Proceedings of Nuclear and Emerging Technologies for Space 2013, Albuquerque, NM, February 25-28, 2013, Paper 6777 (2013)

  17. Drake, B.G., Hoffman, S.J., Beaty, D.W.: Human Exploration of Mars, Design Reference Architecture 5.0. In: 2010 IEEE Aerospace Conference, NASA Headquarters, IEEE. https://doi.org/10.1109/AERO.2010.5446736, vol. 10, pp 1–24 (2010)

  18. Emhoff, J.W., Boyd, I.D.: Modeling of total thruster performance for NASA’s evolutionary xenon thruster ion optics. J. Propuls. Power 22(4), 741–748 (2006). https://doi.org/10.2514/1.18975

    Article  Google Scholar 

  19. Erichsen, P.: Performance Evaluation of Spacecraft Propulsion Systems in Relation to Mission Impulse Requirements. In: Perry, M (ed.) European Spacecraft Propulsion Conference, ESA Special Publication, vol. 398, p 189 (1997)

  20. Fletcher, K.: Mars Express: The Scientific Investigations. Tech Rep. ESA, Noordwijk (2009)

  21. Fortescue, P., Stark, J., Swinerd, G.: Spacecraft Systems Engineering, 4th edn. Wiley, Hoboken (2011)

    Book  Google Scholar 

  22. Gil, P.J.S., Teixeira, F.A.C.G.: Rapid Crewed Missions to Mars with Impulsive Thrust. In: 72Nd International Astronautical Congress 2021, IAC 2021, International Astronautical Federation, IAF, paper No. IAC-21.A5.2.12 (2021)

  23. Graf, J.E., Zurek, R.W., Eisen, H.J., Jai, B., Johnston, M., DePaula, R.: The Mars Reconnaissance Orbiter mission. Acta Astronaut. 57(2-8), 566–578 (2005). https://doi.org/10.1016/j.actaastro.2005.03.043

    Article  Google Scholar 

  24. Hughes, K.M., Edelman, P.J., Longuski, J., Loucks, M., Carrico, J.P., Tito, D.A.: Fast Mars free-returns via Venus gravity assist. In: AIAA/AAS Astrodynamics Specialist Conference, AIAA 2014–4109 (2014)

  25. Kemble, S.: Interplanetary Mission Analysis and Design. Praxis Publishing, Berlin (2006)

    Google Scholar 

  26. Klein, M., Schroeder, R.W.: NERVA program requirements document (1970)

  27. Lamarsh, J.R., Baratta, A.J.: Introduction to Nuclear Engineering, 3rd edn. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  28. Landau, D., Longuski, J.: A reassessment of trajectory options for human missions to Mars. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA 2004–5095 (2004)

  29. Landau, D., Longuski, J., Aldrin, B.: Continuous Mars Habitation with a Limited Number of Cycler Vehicles. https://doi.org/10.2514/6.2006-6020, AIAA 2006-6020 (2006)

  30. Landau, D.F., Longuski, J.M.: Trajectories for human missions to Mars, Part I: Impulsive transfers. J. Spacecr. Rocket. 43(5), 1035–1042 (2006). https://doi.org/10.2514/1.18995

    Article  Google Scholar 

  31. Leiter, H.J., Killinger, R., Bassner, H., Müller, J, Kukies, R.: Development of the Radio Frequency Ion Thruster RIT XT - a Status Report. Tech Rep. Astrium GmbH, Munich (2001)

  32. Miele, A.: Computation of optimal Mars trajectories via combined chemical/electrical propulsion, part 1: Baseline solutions for deep interplanetary space. Acta Astronaut. 55(2), 95–107 (2004). https://doi.org/10.1016/j.actaastro.2004.01.053

    Article  MathSciNet  Google Scholar 

  33. Nance, J.C.: Nuclear pulse propulsion. IEEE Trans. Nucl. Sci. 12(1). https://doi.org/10.1109/TNS.1965.4323511 (1965)

  34. National Aeronautics and Space Administration: NASA’s evolutionary Xenon thruster. Briefing for New Frontiers AO (2008)

  35. Nordley, G.D., Forward, R.L.: Mars-Earth rapid interplanetary tether transport system: I. initial feasibility analysis. J. Propuls. Power 17(3), 499–507 (2001). https://doi.org/10.2514/2.5798

    Article  Google Scholar 

  36. Oberth, H.: Ways to Spaceflight. Tech. rep. NASA (1972)

  37. Patel, M.R., Longuski, J.M., Sims, J.A.: Mars free return trajectories. J. Spacecr. Rocket. 35(3), 350–354 (1998). https://doi.org/10.2514/2.3333

    Article  Google Scholar 

  38. Pelle, S., Gargioli, E., Berga, M., Pisacreta, J., Viola, N., Dalla Sega, A., Pagone, M.: Earth-Mars cyclers for a sustainable human exploration of Mars. Acta Astronaut. 154, 286–294 (2019). https://doi.org/10.1016/j.actaastro.2018.04.034

    Article  Google Scholar 

  39. Portree, D.S.F.: Humans to Mars: Fifty Years of Mission Planning, 1950-2000. Tech Rep. NASA History Division, Washington DC (2001)

  40. Price, H., Hawkins, A., Radcliffe, T.: Austere Human Missions to Mars. In: AIAA SPACE 2009 Conference & Exposition, American Institute of Aeronautics and Astronautics, Reston, VA. https://doi.org/10.2514/6.2009-6685 (2009)

  41. Prince, J.L.H., Powell, R.W., Murri, D.: Autonomous aerobraking: a design, development, and feasibility study. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference. Advances in the Astronautical Sciences Series, vol. 142, AAS 11-473 (2011)

  42. Ranieri, C.L., Ocampo, C.A.: Indirect optimization of three-dimensional finite-burning interplanetary transfers including spiral dynamics. J. Guid. Contr. Dyn. 32(2), 445–455 (2009). https://doi.org/10.2514/1.38170

    Article  Google Scholar 

  43. Pratt & Whitney Rocketdyne: Common extensible cryogenic engine (CECE). http://www.pw.utc.com/products/pwr/propulsion_solutions/cece.asp accessed 12 March 2012 (2009a)

  44. Pratt & Whitney Rocketdyne: Rl10b-2. http://www.pw.utc.com/products/pwr/assets/pwr_rl10b-2.pdf, accessed 12 March 2012 (2009b)

  45. Rubbia, C.: Nuclear Space Propulsion with a Pure Electromagnetic Thrust. Tech Rep. CERN, Geneva (2002)

  46. Sankaran, K., Cassady, L., Kodys, a D, Choueiri, E.Y.: A survey of propulsion options for cargo and piloted missions to Mars. Ann. N. Y. Acad. Sci. 1017, 450–467 (2004). https://doi.org/10.1196/annals.1311.027

    Article  Google Scholar 

  47. Snecma: PPS 1350-G stationary plasma thruster. http://www.safran-aircraft-engines.com/space-engines/satellites/pps-1350-g, accessed 12 March 2012 (2011)

  48. Society, T.P.: Nuclear space initiative: A planetary society white paper. http://www.planetary.org/action/opinions/nuclear_propulsion%_0505.html (2005)

  49. Tajmar, M., Bertolami, O.: Hyopthetical gravity control and possible influence on space propulsion. J. Propuls. Power 21(4), 692–696 (2005). https://doi.org/10.2514/1.15240

    Article  Google Scholar 

  50. Teixeira, F.A.C.G., Gil, P.J.S.: Rocket equation with burn losses and propellant tanks jettison. J. Spacecr. Rocket. https://doi.org/10.2514/1.A35201 (2021)

  51. Transportation, A.S.: Propellant tanks for spacecraft. www.space-propulsion.com, accessed 12 March 2012 (2010)

  52. Turner, M.J.L.: Rocket and Spacecraft Propulsion: Principles Practice and New Developments, 3rd edn. Springer, Heidelberg (2008)

    Google Scholar 

  53. Vulpetti, G., Johnson, L., Matloff, G.L.: Solar Sails: a Novel Approach to Interplanetary Travel. Copernicus Books, New York (2008)

    Google Scholar 

  54. Wertz, J.R.: Interplanetary round trip mission design. Acta Astronaut. 55(3), 221–232 (2004). https://doi.org/10.1016/j.actaastro.2004.05.019

    Article  Google Scholar 

  55. Wiesel, W.E.: Spaceflight Dynamics, 3rd edn. Aphelion Press, New York (2010)

    Google Scholar 

  56. Woods, W.D.: How Apollo Flew to the Moon, ext edn. Springer, New York (2011)

    Book  Google Scholar 

  57. Wooster, P.D., Braun, R.D., Ahn, J., Putnam, Z.R.: Mission design options for human Mars missions. Mars 3, 12–28 (2007). https://doi.org/10.1555/mars.2007.0002

    Google Scholar 

  58. Wright, H.S., Oh, D.Y., Westhelle, C.H., Fisher, J.L., Dyke, R.E., Edquist, K.T., Brown, J.L., Justh, H.L., Munk, M.M.: Mars aerocapture systems study. Tech. rep., NASA/TM-2006-214522 (2006)

  59. Zubrin, R., Wagner, R.: The Case for Mars: the Plan to Settle the Red Planet and Why We Must. The Free Press, New York (1996)

    Google Scholar 

Download references

Acknowledgements

The work of Paulo J. S. Gil was supported by FCT, through IDMEC, under LAETA, project UIDB/50022/2020. The authors would like to thank John Brophy for helpful comments and suggestions on some issues of this manuscript. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André G. C. Guerra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra, A.G.C., Bertolami, O. & Gil, P.J.S. Comparison of Four Space Propulsion Methods for Reducing Transfer Times of Crewed Mars Missions. J Astronaut Sci 69, 284–311 (2022). https://doi.org/10.1007/s40295-021-00300-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-021-00300-0

Keywords

Navigation