Skip to main content
Log in

Centralized Autonomous Relative Navigation of Multiple Cubesats around Didymos System

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

This paper presents an on-board, centralized autonomous navigation algorithm able to reconstruct the trajectories of a fleet of CubeSats relative to an asteroid binary system. The algorithm is executed on-board the main spacecraft, which takes relative measurements using a narrow optical camera and an additional relative measurement, being inter satellite ranging in this paper. The image processing algorithm detects and tracks the CubeSats, deriving line-of-sight measurements. A non-linear estimation filter is employed to reconstruct the trajectory. The algorithm is tested using high-fidelity trajectory simulator and synthetic images generation routines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Adams, E., O’Shaughnessy, D., Reinhart, M., John, J., Congdon, E., Gallagher, D., Abel, E., Atchison, J., Fletcher, Z., Chen, M., et al.: Double asteroid redirection test: the earth strikes back. In: 2019 IEEE Aerospace Conference, pp 1–11. IEEE (2019)

  2. Balmino, G.: Gravitational potential harmonics from the shape of an homogeneous body. Celest. Mech. Dyn. Astron. 60(3), 331–364 (1994)

    Article  Google Scholar 

  3. Capannolo, A., Ferrari, F., Lavagna, M.: Families of bounded orbits near binary asteroid 65803 didymos. J. Guid. Control Dynam. 42(1), 189–198 (2018)

    Article  Google Scholar 

  4. Capannolo, A., Lavagna, M., Ferrari, F., Lunghi, P.: Nanosatellite formation flying to enhance science in binary asteroid environment. In: 67th International Astronautical Congress (IAC), Guadalajara, Mexico, pp. 26–30 (2016)

  5. Capannolo, A., Lavagna, M., Ferrari, F., Lunghi, P.: Optimal Configurations for nanosatellite formation flying in binary asteroid environment. In: 26th International Symposium on Space Flight Dynamics, pp. 1–9 (2017)

  6. Capannolo, A., Zanotti, G., Lavagna, M., Epifani, E.M., Dotto, E., Della Corte, V., Gai, I., Zannoni, M., Amoroso, M., Pirrotta, S.: Challenges in licia cubesat trajectory design to support dart mission science. Acta Astronautica (2020)

  7. Carpenter, J.R., Souza, C.N.D.: Navigation filter best practices. April NASA (2018)

  8. Chang, G.: Robust Kalman filtering based on Mahalanobis distance as outlier judging criterion. J. Geod. 88(4), 391–401 (2014). https://doi.org/10.1007/s00190-013-0690-8

    Article  Google Scholar 

  9. Cheng, A.F., Rivkin, A.S., Michel, P., Atchison, J., Barnouin, O., Benner, L., Chabot, N.L., Ernst, C., Fahnestock, E.G., Kueppers, M., et al.: Aida dart asteroid deflection test: Planetary defense and science objectives. Planet. Space Sci. 157, 104–115 (2018)

    Article  Google Scholar 

  10. Dell’Elce, L., Baresi, N., Naidu, S., Benner, L., Scheeres, D.: Numerical investigation of the dynamical environment of 65803 didymos. Adv. Space Res. 59(5), 1304–1320 (2017)

    Article  Google Scholar 

  11. Dotto, E., Della Corte, V., Amoroso, M., Bertini, I., Brucato, J., Capannolo, A., Cotugno, B., Cremonese, G., Di Tana, V., Gai, I., et al.: Liciacube-the light italian cubesat for imaging of asteroids in support of the nasa dart mission towards asteroid (65803) didymos. Planetary and Space Science p 105185 (2021)

  12. ESA: Asteroid impact mission: Didymos and ejecta reference model. Tech. rep., European Space Agency (2016)

  13. ESA-TECSAG-TN-011315: HERA: Proximity Operations. ESA (2018)

  14. Ferrari, F., Lavagna, M.: Consolidated phase a design of asteroid impact mission: Mascot-2 landing on binary asteroid didymos. In: Proceedings of AAS/AIAA Space Flight Mechanics Meeting, Napa, CA, USA (2016)

  15. Ferrari, F., Lavagna, M., Carnelli, I.: Coupling high fidelity body modeling with non-keplerian dynamics to design aim-mascot-2 landing trajectories on didymos binary asteroid. In: Proceedings of the 6th International Conference on Astrodynamics Tools and Techniques, Darmstadt, DE (2016)

  16. Giannitrapani, A., Ceccarelli, N., Scortecci, F., Garulli, A.: Comparison of EKF and UKF for spacecraft localization via angle measurements. IEEE Trans. Aerosp. Electron. Syst. 47(1), 75–84 (2011). https://doi.org/10.1109/TAES.2011.5705660

    Article  Google Scholar 

  17. Gil-Fernandez, J., Ortega-Hernando, G.: Autonomous vision-based navigation for proximity operations around binary asteroids. CEAS Space J. 10(2), 287–294 (2018). https://doi.org/10.1007/s12567-018-0197-5

    Article  Google Scholar 

  18. Goldberg, H.R., Karatekin, O., Ritter, B., Herique, A., Tortora, P., Prioroc, C., Gutierrez, B.G., Martino, P., Carnelli, I.: The Juventas Cubesat in Support of Esa ’ S Hera Mission to the Asteroid Didymos. In: 33rd Annual AIAA/USU Conference on Small Satellites (2019)

  19. Grebow, D.: Generating periodic orbits in the circular restricted three-body problem with applications to lunar south pole coverage. MSAA Thesis, School of Aeronautics and Astronautics Purdue University (2006)

  20. Holger, S., Keller, H., Jaumann, R., Michalik, H.T.B.F.B., et al.: The Dawn framing camera. Space Sci. Rev. 163(1-4), 263–327 (2011)

    Article  Google Scholar 

  21. Katake, A.B.: Modeling, image processing and attitude estimation of high speed star sensors. Ph.D. thesis, Texas A&M University (2006)

  22. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical systems, the three-body problem and space mission design. California Institute of Technology, Pasadena, CA USA (2006)

  23. Liebe, C.C.: Pattern recognition of star constellations for spacecraft applications. IEEE Aerosp. Electron. Syst. Mag. 7(6), 34–41 (1992)

    Article  Google Scholar 

  24. Lou, T., Fu, H., Wang, Z., Zhang, Y.: Schmidt-Kalman filter for navigation biases mitigation during mars entry. J. Aerospace Eng. 28 (4), 04014101 (2014). https://doi.org/10.1061/(asce)as.1943-5525.0000423

    Article  Google Scholar 

  25. MacMillan, W.D.: The theory of the potential. Dover (1958)

  26. Naidu, S., Benner, L., Brozovic, M., Nolan, M., Ostro, S., Margot, J., Giorgini, J., Hirabayashi, T., Scheeres, D., Pravec, P., et al.: Radar observations and a physical model of binary near-earth asteroid 65803 didymos, target of the dart mission. Icarus 348, 113777 (2020)

    Article  Google Scholar 

  27. Pellacani, A., Graziano, M., Fittock, M., Gil, J., Carnelli, I.: HERA vision based GNC and autonomy. In: 8th European Conference For Aeronautics And Space Sciences (EUCASS), pp. 1–14. https://doi.org/10.13009/EUCASS2019-39 (2019)

  28. Pesce, V., Losi, L., Lavagna, M.: Vision-based algorithm and robust filtering for state estimation of an uncooperative object in space. In: Proceedings of the 14th Symposium on Advanced Space Technologies in Robotics and Automation ASTRA 2017, Leiden, The Netherlands (2017)

  29. Pesce, V., Opromolla, R., Sarno, S., Lavagna, M., Grassi, M.: Autonomous relative navigation around uncooperative spacecraft based on a single camera. Aerospace Science and Technology. https://doi.org/10.1016/j.ast.2018.11.042 (2018)

  30. Pravec, P., Scheirich, P., Kušnirák, P., Šarounová, L., Mottola, S., Hahn, G., Brown, P., Esquerdo, G., Kaiser, N., Krzeminski, Z., et al.: Photometric survey of binary near-earth asteroids. Icarus 181(1), 63–93 (2006)

    Article  Google Scholar 

  31. Riedel, J.E., Bhaskaran, S., Eldred, D.B., Gaskell, R.A., Grasso, C.A., Kennedy, B., Kubitschek, D., Mastrodemos, N., Synnott, S.P., Vaughan, A., Werner, R.A.: AutoNav Mark3: Engineering the next generation of autonomous onboard navigation and guidance. Collection of Technical Papers - AIAA Guidance Navigation, and Control Conference 7(2006), 4835–4852 (2006). https://doi.org/10.2514/6.2006-6708

    Google Scholar 

  32. Stone, R.C.: A comparison of digital centering algorithms. Astronom. J. 97, 1227–1237 (1989)

    Article  Google Scholar 

  33. Szebehely, V.: Theory of Orbits: The restricted problem of three bodies. Tech. rep. Yale univ New Haven CT (1967)

  34. Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 castalia. Celest. Mech. Dyn. Astron. 65(3), 313–344 (1996)

    MATH  Google Scholar 

Download references

Acknowledgements

The presented work was carried out under ESA funding ESA RFP/ 3-16012/19/NL/CRS/hh, item no. 19.3EC.04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Silvestrini.

Ethics declarations

Conflict of Interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented at the AIAA Scitech 2020 Forum ESA RFP/ 3-16012/19/NL/CRS/hh-19.3EC.04

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvestrini, S., Piccinin, M., Capannolo, A. et al. Centralized Autonomous Relative Navigation of Multiple Cubesats around Didymos System. J Astronaut Sci 68, 750–784 (2021). https://doi.org/10.1007/s40295-021-00268-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-021-00268-x

Keywords

Navigation