Skip to main content
Log in

Deorbiter CubeSat System Engineering

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

This paper presents the mission concept and engineering design of a debris-removing nanosatellite called Deorbiter CubeSat, within the framework of NASA’s Pre-Phase A studies. The spacecraft is designed based on the utilization of an eight-unit form factor, and is intended for the removal of predetermined sizable debris objects from the low Earth orbit. A number of attitude and orbit determination sensors and control actuators are included on the CubeSat, which are employed during the rendezvous, attachment, and deorbiting operations. Upon attaching to a debris, the CubeSat stabilizes the rotational motion of the debris, and then proceeds to reducing the debris orbit size, in order to re-enter Earth’s atmosphere and burn up due to the high atmospheric density. The engineering design of Deorbiter CubeSat is outlined, and the selected components are detailed. The selected components are commercially available and have long space heritage. System’s mass budget is analyzed, and preliminary component costs are estimated. Three scenarios for the Deorbiter CubeSat mission operations are considered, and the spacecraft power budget and components duty cycles are investigated for each scenario. In light of the results, the feasibility of each scenario for the Deorbiter CubeSat mission is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. IFM stands for Indium FEEP Multiemitter [61], where FEEP stands for Field Emission Electric Propulsion.

References

  1. California Polytechnic State University, CubeSat design specification, Rev. 13, 2014

  2. Woellert, K., Ehrenfreund, P., Ricco, A. J., Hertzfeld, H.: Cubesats: Cost-effective science and technology platforms for emerging and developing nations. Adv. Space Res. 47, 663–684 (2010). https://doi.org/10.1016/j.asr.2010.10.009

    Article  Google Scholar 

  3. Selva, D., Krejci, D.: A survey and assessment of the capabilities of CubeSats for earth observation. Acta Astronaut. 74, 50–68 (2012). https://doi.org/10.1016/j.actaastro.2011.12.014

    Article  Google Scholar 

  4. Poghosyan, A., Golkar, A.: CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions. Prog. Aerospace Sci. 88, 59–83 (2017). https://doi.org/10.1016/j.paerosci.2016.11.002

    Article  Google Scholar 

  5. Santilli, G., Vendittozzi, C., Cappelletti, C., Battistini, S., Gessini, P.: CubeSat constellations for disaster management in remote areas. Acta Astronaut. 145, 11–17 (2018). https://doi.org/10.1016/j.actaastro.2017.12.050

    Article  Google Scholar 

  6. Inter-Agency Space Debris Coordination Committee, Stability of the future LEO environment, Tech. Rep. (IADC-12-08 Rev 1), Jan. 2013

  7. Kelso, T. S.: NORAD two-line element sets: Current data https://celestrak.com/NORAD/elements/, 2019, accessed: 2019-01-12

  8. Mark, C. P., Kamath, S.: Review of active space debris removal methods, Space Policy. https://doi.org/10.1016/j.spacepol.2018.12.005 (2019)

  9. Hakima, H., Emami, M. R.: Assessment of active methods for removal of LEO debris. Acta Astronaut. 144, 225–243 (2018). https://doi.org/10.1016/j.actaastro.2017.12.036

    Article  Google Scholar 

  10. Shan, M., Guo, J., Gill, E.: Review and comparison of active space debris capturing and removal methods. Prog. Aerospace Sci. 80, 18–32 (2016). https://doi.org/10.1016/j.paerosci.2015.11.001

    Article  Google Scholar 

  11. Bonin, G.: Microspace and human spaceflight http://www.thespacereview.com/article/1441/1, 2009, accessed: 2019-01-21

  12. Innovative Solutions in Space, CubeSat deployers https://www.isispace.nl/wp-content/uploads/2016/02/ISIS-CubeSat-Deployers-Brochure-v1.pdf, 2016, accessed: 2018-09-10

  13. Antonello, A., Tsiotras, P.: Vision-based attitude determination using a SLAM algorithm during relative circumnavigation of non-cooperative objects. In: 67th international astronautical congress. IAC, Guadalajara (2017)

  14. Kucharski, D., Kirchner, G., Koidl, F., Fan, C., Carman, R., Moore, C., Dmytrotsa, A., Ploner, M., Bianco, G., Medvedskij, M., Makeyev, A., Appleby, G., Suzuki, M., Torre, J. M., Zhongping, Z., Grunwaldt, L., Feng, Q.: Attitude and spin period of space debris Envisat measured by satellite laser ranging. IEEE Trans. Geosci. Remote Sens. 52(12), 7651–7657 (Dec 2014). https://doi.org/10.1109/TGRS.2014.2316138

  15. Feng, Q., Zhu, Z. H., Pan, Q., Liu, Y.: Pose and motion estimation of unknown tumbling spacecraft using stereoscopic vision. Adv Space Res 62(2), 359–369 (2018). https://doi.org/10.1016/j.asr.2018.04.034

    Article  Google Scholar 

  16. Muralidharan, V., Emami, M. R.: Concurrent rendezvous control of underactuated spacecraft. Acta Astronaut. 138, 28–42 (2017). https://doi.org/10.1016/j.actaastro.2017.05.003. The Fifth International Conference on Tethers in Space

    Article  Google Scholar 

  17. Hakima, H., Emami, M.R.: Concurrent attitude and orbit control for Deorbiter CubeSats, Aerospace Science and Technology, vol. 97. https://doi.org/10.1016/j.ast.2019.105616 (2020)

  18. Klinkrad, H., Debris, Space: Models and risk analysis. Springer-Verlag, Berlin (2006)

    Google Scholar 

  19. Piscane, V. L.: Fundamentals of space systems, 2nd edn. Oxford University Press, Oxford (2005)

    Google Scholar 

  20. Hakima, H., Bazzocchi, M. C. F., Emami, M. R.: A deorbiter CubeSat for active orbital debris removal. Adv. Space Res. 61(9), 2377–2392 (2018). https://doi.org/10.1016/j.asr.2018.02.021

    Article  Google Scholar 

  21. Kessler, D. J., Cour-Palais, B. G.: Collision frequency of artificial satellites: The creation of a debris belt. J. Geophys. Res. Space Phys. 83(A6), 2637–2646 (1978)

    Article  Google Scholar 

  22. Aghili, F.: Optimal control of a space manipulator for detumbling of a target satellite, in. IEEE International Conference on Robotics and Automation, May 2009, 3019–3024 (2009). https://doi.org/10.1109/ROBOT.2009.5152235

    Google Scholar 

  23. Hakima, H., Emami, M. R.: Prioritizing orbital debris for active debris removal missions. In: IEEE Aerospace Conference. https://doi.org/10.1109/AERO.2017.7943788 (2017)

  24. Lowe, C. J., Macdonal, M.: Rapid model-based inter-disciplinary design of a CubeSat mission. Acta Astronaut. 105(1), 321–332 (2014). https://doi.org/10.1016/j.actaastro.2014.10.002

    Article  Google Scholar 

  25. NASA, State of the art of small spacecraft technology https://sst-soa.arc.nasa.gov, 2016, accessed: 2017-11-16

  26. NewSpace, Sun sensor performance http://www.newspacesystems.com/wp-content/uploads/2018/10/NewSpace-Sun-Sensor_8a.pdf, 2018, accessed: 2020-01-13

  27. ZARM-Technik, ZARM AMR magnetometer https://www.zarm-technik.de/products/magnetometer/, accessed: 2018-09-01

  28. Analog Devices, Triaxial Inertial Sensor with Magnetometer ADIS16405, 2016, Rev. D

  29. Sinclair Interplanetary, Microsatellite Reaction Wheels (RW3-0.060), 2016, 2016a

  30. NewSpace Systems, Magnetorquer Rod, Version 7b

  31. Camillo, P. J., Markley, F. L.: Orbit-averaged behavior of magnetic control laws for momentum unloading, vol. 3. https://doi.org/10.2514/3.19725 (1980)

  32. Innovative Solutions in Space, ISIS on board computer https://www.isispace.nl/product/on-board-computer/, accessed: 2018-09-01

  33. Muri, P., McNair, J.: A survey and communication sub-systems for intersatellite linked systems and CubeSat missions. J. Commun. 7(4), 290–308 (2012). https://doi.org/10.4304/jcm.7.4.290-308

    Article  Google Scholar 

  34. Radhakrishnan, R., Edmonson, W. W., Afghah, F., Rodriguez-Osorio, R. M., Pinto, F., Burleigh, S. C.: Survey of inter-satellite communication for small satellite systems: Physical layer to network layer view. IEEE Commun. Surv. Tutorials 18(4), 2442–2473 (2016). https://doi.org/10.1109/COMST.2016.2564990

    Article  Google Scholar 

  35. Azur Space Solar Power GmbH, 30% Triple Junction GaAs Solar Cell Type: TJ Solar Cell 3G30C Advanced (80μm), 2016

  36. Gilmore, D. G. (ed.): Spacecraft thermal control handbook. Volume 1: Fundamental technologies, 2nd edn. The Aerospace Press, Washington (2002)

  37. Nader, R., Uriguen, M., Drouet, S., Nader, G.: High energy density battery array for CubeSat. In: 67th international astronautical congress (2016)

  38. Agencia Espacial Civil Ecuatoriana, BA0X: 1U Hight Capacity Battery Arrays, 2016, Rev. 5

  39. Clyde Space, User Manual: 3rd Generation EPS Range - No Inhibits, 2017, USM-1335 Rev. D

  40. Patel, M.: Spacecraft power systems. CRC Press, New York (2005)

    Google Scholar 

  41. Rawat, R., Chandel, S. S.: Review of maximum-power-point tracking techniques for solar-photovoltaic systems. Energy Technol. 1, 438–448 (2013). https://doi.org/10.1002/ente.201300053

    Article  Google Scholar 

  42. NanoAvionics, GPS receiver piNAV-L1 https://n-avionics.com/subsystems/cubesat-gps-receiver/, accessed: 2018-09-01

  43. Busek Co. Inc., 3 cm RF ion thruster (BIT-3), 2018, 70010819 Rev. E

  44. IQ Spacecom, HiSPiCO, 2018, Rev. 03

  45. GomSpace, NanoCom AX100 Datasheet Long-range software configurable VHF/UHF transceiver, 2016

  46. Goebel, D. M., Katz, I.: Fundamentals of electric propulsion: Ion and hall thrusters. Wiley, New York (2008)

    Book  Google Scholar 

  47. Sutton, G. P.: Rocket propulsion, 2nd ed. Wiley, New York (2000)

    MATH  Google Scholar 

  48. Crofton, M. W., Hain, T. D.: Environmental considerations for xenon electric propulsion. In: Proceedings of the 30th international electric propulsion conference (2007)

  49. Dressler, R., Chiu, Y. -H., Levandier, D.: Propellant alternatives for ion and Hall effect thrusters. In: 38th aerospace sciences meeting and exhibit American institute of aeronautics and astronautics. https://doi.org/10.2514/6.2000-602 (2000)

  50. Tverdokhlebov, O., Semenkin, A.: Iodine propellant for electric propulsion - to be or not to be. In: 37th joint propulsion conference and exhibit American institute of aeronautics and astronautics. https://doi.org/10.2514/6.2001-3350 (2001)

  51. Busek Co. Inc., First iodine fueled ion engines pass major milestone http://www.busek.com/index_htm_files/IonThrusterMilestone31JUL2017.pdf, accessed: 2018-11-01

  52. Tsay, M., Frongillo, J., Hohman, K., Malphrus, B. K.: LunarCube: A deep space 6U CubeSat with mission enabling ion propulsion technology. In: Proceedings of the AIAA/USU conference on small satellites, Logan Utah (2015)

  53. Antonello, A., Tsiotras, P.: Overview of electric propulsion research activities in Japan. In: Proceedings of the joint conference of 30th ISTS, 34th IEPC and 6th NSAT, Kobe-Hyogo, Japan (2015)

  54. Ariane Group, Radio frequency ion propulsion http://www.space-propulsion.com/spacecraft-propulsion/propulsion-systems/electric-propulsion/index.htmlhttp://www.space-propulsion.com/spacecraft-propulsion/propulsion-systems/electric-propulsion/index.html, accessed: 2018-11-01

  55. Enpulsion Space Technology, IFM Nano Thruster, 2018 ENP 2018-001, Rev. E. 2

  56. Innovative Solutions in Space, CubeSat structures https://www.isispace.nl/wp-content/uploads/2016/02/ISIS-CubeSat-Structures-Brochure-v1.pdf, 2015, accessed: 2017-12-01

  57. Saravia, W., Udrea, B.: Highly compliant active clinging mechanism. In: IEEE aerospace conference. https://doi.org/10.1109/AERO.2016.7500742 (2016)

  58. Jiang, H., Hawkes, E. W., Fuller, C., Estrada, M. A., Suresh, S. A., Abcouwer, N., Han, A. K., Wang, S., Ploch, C. J., Parness, A., Cutkosky, M. R.: A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity. Sci. Robot. 2, 7 (2017). https://doi.org/10.1126/scirobotics.aan4545

    Article  Google Scholar 

  59. Estrada, M. A., Hockman, B., Bylard, A., Hawkes, E. W., Cutkosky, M. R., Pavone, M.: Free-flyer acquisition of spinning objects with gecko-inspired adhesives. In: 2016 IEEE international conference on robotics and automation (ICRA), May, pp 4907–4913 (2016)

  60. Bylard, A., MacPherson, R., Hockman, B., Cutkosky, M. R., Pavone, M.: Robust capture and deorbit of rocket body debris using controllable dry adhesion. In: 2017 IEEE aerospace conference. https://doi.org/10.1109/AERO.2017.7943844 (2017)

  61. Jelem, D., Reissner, A., Seifert, B., Buldrini, N., Wilding, L., Krejci, D.: Direct thrust and plume divergence measurements of the IFM Nano Thruster. Adv. Space Res. 62, 3398–3404 (2018). https://doi.org/10.1016/j.asr.2018.06.028

    Article  Google Scholar 

  62. Enpulsion Spacecraft Technology, IFM Nano Thruster SE https://www.enpulsion.com/uploads/products/IFM-Nano-Thruster-SE/ENP_-_IFM_Nano_Thruster_SE_-_Product_Overview.pdf, accessed: 2019-01-24

  63. Chobotov, V. A. (ed.): Orbital mechanics, 3rd edn. American Institute of Aeronautics and Astronautics, Inc., Reston (2002)

  64. Vallado, D. A.: Fundamentals of astrodynamics and applications, 1st edn. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  65. ESA, Margin philosophy for science assessment studies, 2012, SRE-PA/2011.097, Rev. 3, Issue 1

  66. Electropedia, Battery and energy technologies https://www.mpoweruk.com/life.htm, accessed: 2018-12-01

  67. Salameh, Z. M., Kim, B. G.: Advanced lithium polymer batteries. In: Proceedings of the 2009 IEEE power energy society general meeting. https://doi.org/10.1109/PES.2009.5275404 (2009)

  68. Palacín, M.R., de Guibert, A.: Why do batteries fail? Science 351(6273), 574–581 (2016). https://doi.org/10.1126/science.1253292

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reza Emami.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakima, H., Emami, M.R. Deorbiter CubeSat System Engineering. J Astronaut Sci 67, 1600–1635 (2020). https://doi.org/10.1007/s40295-020-00220-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-020-00220-5

Keywords

Navigation