Skip to main content
Log in

Angiotensin II and Cardiovascular-Renal Remodelling in Hypertension: Insights from a Human Model Opposite to Hypertension

  • Review Article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Insights into the Angiotensin II (Ang II) signalling pathways have been provided by extensive studies using Bartter’s/Gitelman’s syndromes patients. These syndromes are characterized by activation of the renin-angiotensin-aldosterone system but do not develop hypertension and cardiovascular remodelling, therefore represent a mirror image of hypertension and clinically manifest themselves as the opposite of hypertension. The short and the long-term signalling of Ang II remain an important matter of investigation to shed light on mechanisms responsible for the pathophysiology of hypertension and its long-term complications, such as cardiovascular remodelling and atherogenesis. In particular the long-term signalling of Ang II is involved in the pathophysiology of cardiovascular-renal remodelling, inflammatory and hypertrophic responses in which the relationship between RhoA/Rho kinase pathway and NO system plays a crucial role. This review reports the results of our studies in Bartter’s and Gitelman’s syndromes to get better insight these processes and the role of Ang II signaling. The information obtained from the studies in Bartter’s/Gitelman’s patients can, in fact, clarify, confirm or be used to gather more general data on the biochemical mechanisms responsible for the pathophysiology of hypertension and its long-term complications and could contribute to identify additional potential significant targets of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mehta PK, Griendling KK. Angiotensin II cell signaling. Physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;92:C82–97.

    Google Scholar 

  2. Nguyen Dinh Cat A, Touyz RM. Cell signaling of angiotensin II on vascular tone: novel mechanisms. Curr Hypertens Rep. 2011;13:122–8.

    Article  CAS  PubMed  Google Scholar 

  3. Dzau VJ, Lopez-Ilasaca M. Searching for transcriptional regulators of Ang II induced vascular pathology. J Clin Invest. 2005;115:2319–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M, Conti S, Rottoli D, Longaretti L, Cassis P, Morigi M, Coffman TM, Remuzzi G. Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest. 2009;119:524–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Calò L, D’Angelo A, Cantaro S, Rizzolo M, Favaro S, Antonello A, Borsatti A. Intracellular calcium signalling and vascular reactivity in Bartter’s syndrome. Nephron. 1996;72:570–3.

    Article  PubMed  Google Scholar 

  6. Calò LA, Schiavo S, Davis PA, Pagnin E, Mormino P, D’Angelo A, Pessina AC. Angiotensin II signaling via type 2 receptors in a human model of vascular hyporeactivity: implications for hypertension. J Hypertens. 2010;28:111–8.

    Article  PubMed  Google Scholar 

  7. Calò LA, Davis PA, Rossi GP. Understanding the mechanisms of angiotensin II signaling involved in hypertension and its long-term sequelae: insights from Bartter’s and Gitelman’s syndromes, human models of endogenous angiotensin II signaling antagonism. J Hypertens. 2014;32:2109–19.

    Article  PubMed  Google Scholar 

  8. Bartter FC, Pronove P, Gill JR, Maccardle RC. Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. Am J Med. 1962;33:811–28.

    Article  CAS  PubMed  Google Scholar 

  9. Naesens M, Steels P, Verberckmoes R, Vanrenterghem Y, Kuypers D. Bartter’s and Gitelman’s syndromes: From gene to clinic. Nephron Physiol. 2004;96:65–78.

    Article  Google Scholar 

  10. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na–K–2Cl cotransporter NKCC2. Nat Genet. 1996;13:183–8.

    Article  CAS  PubMed  Google Scholar 

  11. Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP. Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet. 1996;14:152–6.

    Article  CAS  PubMed  Google Scholar 

  12. Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A, Rodriguez-Soriano J, Morales JM, Sanjad SA, Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, Lifton RP. Mutation in the chloride channel gene CLCNKB cause Bartter’s syndrome type III. Nat Genet. 1997;17:171–9.

    Article  CAS  PubMed  Google Scholar 

  13. Gitelman HJ, Graham JB, Welt LG. A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Phys. 1966;79:221–35.

    CAS  PubMed  Google Scholar 

  14. Bettinelli A, Tosetto C, Colussi G, Tommasini G, Edefonti A, Bianchetti MG. Electrocardiogram with prolonged QT interval in Gitelman disease. Kidney Int. 2002;62:580–4.

    Article  PubMed  Google Scholar 

  15. Scognamiglio R, Calò LA, Negut C, Coccato M, Mormino P, Pessina AC. Myocardial perfusion defects in Bartter and Gitelman syndromes. Eur J Clin Invest. 2008;38:888–95.

    Article  CAS  PubMed  Google Scholar 

  16. Favero M, Calò LA, Schiavon F, Punzi L. Bartter’s and Gitelman’s diseases. Best Pract Res Clin Rheumatol. 2011;25:637–48.

    Article  CAS  PubMed  Google Scholar 

  17. Vargas-Poussou R, Dahan K, Kahila D, Venisse A, Riveira-Munoz E, Debaix H, Grisart B, Bridoux F, Unwin R, Moulin B, Haymann JP, Vantyghem MC, Rigothier C, Dussol B, Godin M, Nivet H, Dubourg L, Tack I, Gimenez-Roqueplo AP, Houillier P, Blanchard A, Devuyst O, Jeunemaitre X. Spectrum of mutation in Gitelman syndrome. J Am Soc Nephrol. 2011;22:693–703.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Nguyen Dinh Cat A, Touyz RM. A new look at the renin-angiotensin system—focusing on the vascular system. Peptides. 2011;31:2141–50.

    Article  Google Scholar 

  19. Crowley SD, Coffman TM. Recent advances involving the renin-angiotensin system. Exp Cell Res. 2012;318:1049–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Clementi E. Role of nitric oxide and its intracellular signalling pathways in the control of Ca2+ homeostasis. Biochem Pharmacol. 1998;55:713–8.

    Article  CAS  PubMed  Google Scholar 

  21. Dzau VJ. Tissue angiotensin and pathobiology of vascular disease. A unifying hypothesis. Hypertension. 2001;37:1047–52.

    Article  CAS  PubMed  Google Scholar 

  22. Touyz RM, Schiffrin EL. Signal transduction Mechanisms Mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev. 2000;52:639–72.

    CAS  PubMed  Google Scholar 

  23. Calò LA, Ceolotto G, Milani M, Pagnin E, van den Heuvel LP, Sartori M, Davis PA, Costa R, Semplicini A. Abnormalities of Gq-mediated cell signaling in Bartter and Gitelman syndromes. Kidney Int. 2001;60:882–9.

    Article  PubMed  Google Scholar 

  24. Calò LA, Davis PA, Semplicini A. Reduced content of alpha subunit of Gq-protein in monocytes of Bartter and Gitelman syndromes: relationship with vascular hyporeactivity. Kidney Int. 2002;61:353–4.

    Article  PubMed  Google Scholar 

  25. Calò LA. Vascular tone control in humans: insights from studies in Bartter’s/Gitelman’s syndromes. Kidney Int. 2006;69:963–6.

    Article  PubMed  Google Scholar 

  26. Calò L, Davis PA, Milani M, Cantaro S, Antonello A, Favaro S, D’Angelo A. Increased endothelial nitric oxide synthase mRNA level in Bartter’s and Gitelman’s syndrome. Relationship to vascular reactivity. Clin Nephrol. 1999;51:12–7.

    PubMed  Google Scholar 

  27. Calò L, Cantaro S, Calabrò A, Piarulli F, Rizzolo M, Favaro S, Antonello A, Crepaldi G, Borsatti A. Endothelium-derived vasoactive substances in Bartter’s syndrome. Angiology. 1995;46:905–13.

    Article  PubMed  Google Scholar 

  28. Calò L, D’Angelo A, Cantaro S, Bordin MC, Favaro S, Antonello A, Borsatti A. Increased urinary NO2-/NO3- and cyclic GMP levels in patients with Bartter’s syndrome: relationship to vascular reactivity. Am J Kidney Dis. 1996;27:874–9.

    Article  Google Scholar 

  29. Calò LA, Puato M, Schiavo S, Zanardo M, Tirrito C, Pagnin E, Balbi G, Davis PA, Palatini P, Pauletto P. Absence of vascular remodelling in a high angiotensin-II state (Bartter’s and Gitelman’s syndromes): implications for angiotensin II signalling pathways. Nephrol Dial Transplant. 2008;23:2804–9.

    Article  PubMed  Google Scholar 

  30. Calò LA, Pagnin E, Davis PA, Sartori M, Semplicini A. Oxidative stress related factors in Bartter’s and Gitelman’s sindrome: relevance for angiotensin II signaling. Nephrol Dial Transplant. 2003;18:1518–25.

    Article  PubMed  Google Scholar 

  31. Calò LA, Sartore G, Bassi A, Basso C, Bertocco S, Marin R, Zambon S, Cantaro S, D’Angelo A, Davis PA, Manzato E, Crepaldi G. Reduced susceptibility of low density lipoprotein to oxidation in patients with overproduction of nitric oxide (Bartter’s and Gitelman’s sindrome). J Hypertens. 1998;16:1001–8.

    Article  PubMed  Google Scholar 

  32. Heximer SP, Blumer KJ. RGS proteins: Swiss army knives in seven-transmembrane domain receptor signaling networks. Sci STKE. 2007;370:pe2.

    Google Scholar 

  33. Zhong H, Neubig RR. Regulator of G protein signalling proteins; novel multifunctional drug targets. J Pharmacol Exp Ther. 2001;297:837–45.

    CAS  PubMed  Google Scholar 

  34. Tang M, Wang G, Lu P, Karas RH, Karas RH, Aronovitz M, Heximer SP, Kaltenbronn KM, Blumer KJ, Siderovski DP, Zhu Y, Mendelsohn ME. Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med. 2003;9:1506–12.

    Article  CAS  PubMed  Google Scholar 

  35. Calò LA, Pagnin E, Davis PA, Sartori M, Ceolotto G, Pessina AC, Semplicini A. Increased expression of regulator of G protein signaling-2 (RGS-2) in Bartter’s/Gitelman’s syndrome. A role in the control of vascular tone and implication for hypertension. J Clin Endocrinol Metab. 2004;89:4153–7.

    Article  PubMed  Google Scholar 

  36. Semplicini A, Lenzini L, Sartori M, Papparella I, Calò LA, Pagnin E, Strapazzon G, Benna C, Costa R, Avogaro A, Ceolotto G, Pessina AC. Reduced expression of regulator of G protein signaling-2 in hypertensive patients increases calcium mobilization and ERK1/2 phosphorylation induced by angiotensin II. J Hypertens. 2006;24:1115–24.

    Article  CAS  PubMed  Google Scholar 

  37. Calò LA, Pagnin E, Ceolotto G, Davis PA, Schiavo S, Papparella I, Semplicini A, Pessina AC. Silencing regulator of G protein signaling-2 (RGS-2) increases angiotensin II signaling: insights into hypertension from findings in Bartter’s/Gitelman’s syndromes. J Hypertens. 2008;26:938–45.

    Article  PubMed  Google Scholar 

  38. Heximer SP, Knutsen RH, Sun X, Kaltenbronn KM, Rhee MH, Peng N, Oliveira-dos-Santos A, Penninger JM, Muslin AJ, Steinberg TH, Wyss JM, Mecham RP, Blumer KJ. Hypertension and prolonged vasoconstrictor signalling in RGS2-deficient mice. J Clin Invest. 2003;111:445–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Touyz RM. Role of Angiotensin II in regulating vascular structural and functional changes in hypertension. Curr Hypertens Rep. 2003;5:155–64.

    Article  PubMed  Google Scholar 

  40. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury. Part II. Animal and human studies. Circulation. 2003;108:2034–40.

    Article  PubMed  Google Scholar 

  41. Griendling KK, Soresen D, Ushio-Fukai M. NAD(P)H oxidase. Role in cardiovascular biology and disease. Circ Res. 2000;86:494–501.

    Article  CAS  PubMed  Google Scholar 

  42. Pagnin E, Davis PA, Sartori M, Semplicini A, Pessina AC, Calò LA. Rho kinase and PAI-1 in Bartter’s/Gitelman’s syndromes: relationship to angiotensin II signaling. J Hypertens. 2004;22:1963–9.

    Article  CAS  PubMed  Google Scholar 

  43. Calò LA, Pessina AC. RhoA/Rho-kinase pathway: much more than just a modulation of vascular tone. Evidence from studies in humans. J Hypertens. 2007;25:259–64.

    Article  PubMed  Google Scholar 

  44. Loirand G, Guerin P, Pacaud P. Rho kinases in cardiovascular physiology and pathophysiology. Circ Res. 2006;98:322–34.

    Article  CAS  PubMed  Google Scholar 

  45. Shimokawa H, Takeshita A. Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol. 2005;25:1767–75.

    Article  CAS  PubMed  Google Scholar 

  46. Budzyn K, Marley PD, Sobey CG. Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends Pharmacol Sci. 2006;27:97–104.

    Article  CAS  PubMed  Google Scholar 

  47. Takemoto M, Sun J, Hiroki J, Shimokawa H, Liao JK. Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation. 2002;106:57–62.

    Article  CAS  PubMed  Google Scholar 

  48. Sauzeau V, Rolli-Derkinderen M, Marionneau C, Loirand G, Pacaud P. RhoA expression is controlled by nitric oxide through cGMP-dependent protein kinase activation. J Biol Chem. 2003;278:9472–80.

    Article  CAS  PubMed  Google Scholar 

  49. Jin HG, Yamashita H, Nagano Y, Fukuba H, Hiji M, Ohtsuki T, Takahashi T, Kohriyama T, Kaibuchi K, Matsumoto M. Hypoxia-induced upregulation of endothelial small G protein RhoA and Rho-kinase/ROCK2 inhibits eNOS expression. Neurosci Lett. 2006;408:62–7.

    Article  CAS  PubMed  Google Scholar 

  50. Chitaley K, Weber D, Webb RC. RhoA/Rho-kinase, vascular changes and hypertension. Curr Hypertens Rep. 2001;3:139–44.

    Article  CAS  PubMed  Google Scholar 

  51. Higashi M, Shimokawa H, Hattori T, Hiroki J, Mukai Y, Morikawa K, Ichiki T, Takahashi S, Takeshita A. Long-term inhibition of Rho-Kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo. Effect on endothelial NAD(P)H oxidase system. Circ Res. 2003;93:767–75.

    Article  CAS  PubMed  Google Scholar 

  52. Yamakawa T, Tanaka S, Numaguchi K, Yamakawa Y, Motley ED, Ichihara S, Inagami T. Involvement of Rho-kinase in angiotensin II-induced hypertrophy of rat vascular smooth muscle cells. Hypertension. 2000;35:313–8.

    Article  CAS  PubMed  Google Scholar 

  53. Kataoka C, Egashira K, Inoue S, Takemoto M, Ni W, Koyanagi M, Kitamoto S, Usui M, Kaibuchi K, Shimokawa H, Takeshita A. Important role of Rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Hypertension. 2002;39:245–50.

    Article  CAS  PubMed  Google Scholar 

  54. Pagnin E, Davis PA, Semplicini A, Calò LA. The search for a link between inflammation and hypertension—contribution from Bartter’s/Gitelman’s syndromes. Nephrol Dial Transplant. 2006;21:2340–2.

    Article  PubMed  Google Scholar 

  55. Sowers JR. Insulin resistance and hypertension. Am J Physiol Heart Circ Physiol. 2004;286:H1597–602.

    Article  CAS  PubMed  Google Scholar 

  56. Takeda K, Ichiki T, Tokunou T, Takemoto M, Ni W, Koyanagi M, Kitamoto S, Usui M, Kaibuchi K, Shimokawa H, Takeshita A. Critical role of Rhokinase and MEK-ERK pathways for angiotensin II-induced plasminogen activator inhibitor type-1 gene expression. Arterioscler Thromb Vasc Biol. 2001;21:868–73.

    Article  CAS  PubMed  Google Scholar 

  57. Eto Y, Shimokawa H, Hiroki J, Morishige K, Kandabashi T, Matsumoto Y, Amano M, Hoshijima M, Kaibuchi K, Takeshita A. Gene transfer of dominant negative Rho kinase suppresses neointimal formation after balloon injury in pigs. Am J Physiol. 2000;278:H1744–50.

    CAS  Google Scholar 

  58. Nakakuki T, Ito M, Iwasaki H, Kureishi Y, Okamoto R, Moriki N, Kongo M, Kato S, Yamada N, Isaka N, Nakano T. Rho/Rho-kinase pathway contributes to C-reactive protein-induced plasminogen activator inhibitor-1 expression in endothelial cells. Arterioscler Thromb Vasc Biol. 2005;25:2088–93.

    Article  CAS  PubMed  Google Scholar 

  59. Wolfrum S, Dendorfer A, Rikitake Y, Stalker TJ, Gong Y, Scalia R, Dominiak P, Liao JK. Inhibition of Rhokinase leads to rapid activation of phosphatidylinositol 3 kinase/protein kinase Akt and cardiovascular protection. Arterioscler Thromb Vasc Biol. 2004;24:1842–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Wennerberg K, Der CJ. Rho-family GTPases: it’s not only Rac and Rho (and I like it). J Cell Sci. 2004;117:1301–12.

    Article  CAS  PubMed  Google Scholar 

  61. Siderovski DP, Willard FS. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci. 2005;1:51–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Ying Z, Jin L, Dorrance AM, Webb RC. Increased expression of mRNA for regulator of G protein signaling domain-containing Rho guanine nucleotide exchange factors in aorta from stroke-prone spontaneously hypertensive rats. Am J Hypertens. 2004;17:981–5.

    Article  CAS  PubMed  Google Scholar 

  63. Wuertz MC, Lorincz A, Vettel C, Thomas MA, Wieland T, Lutz S. p63RhoGEF—a key mediator of angiotensin II dependent signaling and processes in vascular smooth muscle cells. FASEB J. 2010;24:4865–76.

    Article  CAS  PubMed  Google Scholar 

  64. Momotani K, Artamonov MV, Utepbergenov D, Derewenda U, Derewenda ZS, Somlyo AV. p63RhoGEF couples Gaq/11-mediated signaling to Ca2+ sensitization of vascular smooth muscle contractility. Circ Res. 2011;109:993–1002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Guilluy C, Brégeon J, Toumaniantz G, et al. The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure. Nat Med. 2010;16:183–90.

    Article  CAS  PubMed  Google Scholar 

  66. Calò LA, Pagnin E, Davis PA, Sartori M, Semplicini A, Pessina AC. Rho kinase inhibition and vascular protection: support from studies in Bartter and Gitelman syndrome. Arterioscler Thromb Vasc Biol. 2005;25:34–5.

    Article  Google Scholar 

  67. Calò LA, Pagnin E, Sartori M, Semplicini A, Pessina AC. Bartter’s and Gitelman’s syndromes: a confirm in humans of the utility of Rho kinase inhibition for cardiovascular protection. J Hypertens. 2005;23:1273–5.

    Article  PubMed  Google Scholar 

  68. Datla SR, Dusting GJ, Mori TA, Taylor CJ, Croft KD, Jiang F. Induction of heme oxygenase-1 in vivo suppresses NADPH oxidase derived oxidative stress. Hypertension. 2007;50:636–42.

    Article  CAS  PubMed  Google Scholar 

  69. Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J, De Galarreta CM, Cuadrado A. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem. 2004;279:8919–29.

    Article  CAS  PubMed  Google Scholar 

  70. Pagnin E, Semplicini A, Sartori M, Pessina AC, Calò LA. Reduced mRNA and protein content of Rho guanine nucleotide exchange factor (RhoGEF) in Bartter’s and Gitelman’s syndromes: relevance for the pathophysiology of hypertension. Am J Hypertens. 2005;18:1200–5.

    Article  CAS  PubMed  Google Scholar 

  71. Calò LA, Davis PA, Pagnin E, Dal Maso L, Maiolino G, Seccia TM, Pessina AC, Rossi GP. Increased level of p63RhoGEF and RhoA/Rho kinase activity in hypertensive patients. Implications for vascular tone regulation and cardiovascular remodeling. J Hypertens. 2014;32:331–8.

    Article  PubMed  Google Scholar 

  72. Wirth A. Rho kinase and hypertension. Biochim Biophys Acta. 2010;1802:1276–84.

    Article  CAS  PubMed  Google Scholar 

  73. Savoia C, Tabet F, Yao G, Schiffrin EL, Touyz RM. Negative regulation of RhoA/Rho kinase by angiotensin II type 2 receptor in vascular smooth muscle cells: role in angiotensin II-induced vasodilation in stroke-prone spontaneously hypertensive rats. J Hypertens. 2005;23:1037–45.

    Article  CAS  PubMed  Google Scholar 

  74. Calò LA, Montisci R, Scognamiglio R, Davis PA, Pagnin E, Schiavo S, Mormino P, Semplicini A, Palatini P, D’Angelo A, Pessina AC. High angiotensin II state without cardiac remodeling (Bartter’s and Gitelman’s syndromes). Are angiotensin II type 2 receptors involved? J Endocrinol Invest. 2009;32:832–6.

    Article  PubMed  Google Scholar 

  75. Carey RM. Cardiovascular and renal regulation by the angiotensin type 2 receptor: the AT2 receptor comes of age. Hypertension. 2005;45:840–4.

    Article  CAS  PubMed  Google Scholar 

  76. Siragy HM. Evidence for benefits of angiotensin receptor blockade beyond blood pressure control. Curr Hypertens Rep. 2008;10:261–7.

    Article  PubMed  Google Scholar 

  77. Davis PA, Mussap M, Pagnin E, Bertipaglia L, Savica V, Semplicini A, Calò LA. Early markers of inflammation in a high angiotensin II state. Results of studies in Bartter’s/Gitelman’s syndromes. Nephrol Dial Transplant. 2006;21:1697–701.

    Article  CAS  PubMed  Google Scholar 

  78. Ruiz-Ortega M, Ruperez M, Lorenzo O, Esteban V, Blanco J, Mezzano S, Egido J. Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney. Kidney Int. 2002;62(Suppl. 82):12–22.

    Article  Google Scholar 

  79. Cheng ZJ, Vapaatalo H, Mervaala E. Angiotensin II and vascular inflammation. Med Sci Monit. 2005;11:RA194–205.

    CAS  PubMed  Google Scholar 

  80. Das UN. Is angiotensin II an endogenous pro-inflammatory molecule? Med Sci Monit. 2005;11:155–62.

    Google Scholar 

  81. Perona R, Montaner S, Saniger L, Sanchez-Perez I, Bravo R, Lacal JC. Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins. Genes Dev. 1997;11:463–75.

    Article  CAS  PubMed  Google Scholar 

  82. Segain JP, Raingeard de la Bletiere D, Sauzeau V, Bourreille A, Hilaret G, Cario-Toumaniantz C, Pacaud P, Galmiche JP, Loirand G. Rho kinase blockade prevents inflammation via nuclear factor kappa B inhibition: evidence in Crohn’s disease and experimental colitis. Gastroenterology. 2003;124:1180–7.

    Article  CAS  PubMed  Google Scholar 

  83. Calò LA, Davis PA, Pagnin E, Schiavo S, Semplicini A, Pessina AC. Linking inflammation and hypertension in humans: studies in Bartter’s/Gitelman’s syndromes. J Hum Hypertens. 2008;22:223–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo A. Calò.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravarotto, V., Pagnin, E., Fragasso, A. et al. Angiotensin II and Cardiovascular-Renal Remodelling in Hypertension: Insights from a Human Model Opposite to Hypertension. High Blood Press Cardiovasc Prev 22, 215–223 (2015). https://doi.org/10.1007/s40292-015-0082-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-015-0082-7

Keywords

Navigation