Skip to main content
Log in

Epigenetics Beyond Fetal Growth Restriction: A Comprehensive Overview

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Fetal growth restriction is a pathological condition occurring when the fetus does not reach the genetically determined growth potential. The etiology of fetal growth restriction is expected to be multifactorial and include fetal, maternal, and placental factors, the latter being the most frequent cause of isolated fetal growth restriction. Severe fetal growth restriction has been related to both an increased risk of perinatal morbidity and mortality, and also a greater susceptibility to developing diseases (especially cardio-metabolic and neurological disorders) later in life. In the last decade, emerging evidence has supported the hypothesis of the Developmental Origin of Health and Disease, which states that individual developmental ‘programming’ takes place via a delicate fine tuning of fetal genetic and epigenetic marks in response to a large variety of ‘stressor’ exposures during pregnancy. As the placenta is the maternal-fetal interface, it has a crucial role in fetal programming, such that any perturbation altering placental function interferes with both in-utero fetal growth and also with the adult life phenotype. Several epigenetic mechanisms have been highlighted in modulating the dynamic placental epigenome, including alterations in DNA methylation status, post-translational modification of histones, and non-coding RNAs. This review aims to provide a comprehensive and critical overview of the available literature on the epigenetic background of fetal growth restriction. A targeted research strategy was performed using PubMed, MEDLINE, Embase, and The Cochrane Library up to January 2022. A detailed and fully referenced synthesis of available literature following the Scale for the Assessment of Narrative Review Articles guidelines is provided. A variety of epigenetic marks predominantly interfering with placental development, function, and metabolism were found to be potentially associated with fetal growth restriction. Available evidence on the role of environmental exposures in shaping the placental epigenome and the fetal phenotype were also critically discussed. Because of the highly dynamic crosstalk between epigenetic mechanisms and the extra level of complexity in interpreting the final placental transcriptome, a full comprehension of these phenomenon is still lacking and advances in multi-omics approaches are urgently needed. Elucidating the role of epigenetics in the developmental origins of health and disease represents a new challenge for the coming years, with the goal of providing early interventions and prevention strategies and, hopefully, new treatment opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Adapted from Goyal et al. [14]

Similar content being viewed by others

References

  1. Salafia CM, Charles AK, Maas EM. Placenta and fetal growth restriction. Clin Obstet Gynecol. 2006;49:236–56.

    Article  PubMed  Google Scholar 

  2. Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48:333–9.

    Article  PubMed  CAS  Google Scholar 

  3. ACOG practice bulletin No. 227: fetal growth restriction. Obstet Gynecol. 2021;137:e16–28.

  4. Sun C, Groom KM, Oyston C, Chamley LW, Clark AR, James JL. The placenta in fetal growth restriction: what is going wrong? Placenta. 2020;96:10–8.

    Article  PubMed  Google Scholar 

  5. Lackman F, Capewell V, Gagnon R, Richardson B. Fetal umbilical cord oxygen values and birth to placental weight ratio in relation to size at birth. Am J Obstet Gynecol. 2001;185:674–82.

    Article  PubMed  CAS  Google Scholar 

  6. Figueras F, Gratacos E. An integrated approach to fetal growth restriction. Best Pract Res Clin Obstet Gynaecol. 2017;38:48–58.

    Article  PubMed  Google Scholar 

  7. Hemberger M. Epigenetic landscape required for placental development. Cell Mol Life Sci. 2007;64:2422–36.

    Article  PubMed  CAS  Google Scholar 

  8. Waddington CH. The epigenotype. 1942. Int J Epidemiol. 2012;41:10–3.

  9. Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975;187:226–32.

    Article  PubMed  CAS  Google Scholar 

  10. Bird A. Perceptions of epigenetics. Nature. 2007;447:396–8.

    Article  PubMed  CAS  Google Scholar 

  11. Lappalainen T, Greally JM. Associating cellular epigenetic models with human phenotypes. Nat Rev Genet. 2017;18:441–51.

    Article  PubMed  CAS  Google Scholar 

  12. Skvortsova K, Iovino N, Bogdanović O. Functions and mechanisms of epigenetic inheritance in animals. Nat Rev Mol Cell Biol. 2018;19:774–90.

    Article  PubMed  CAS  Google Scholar 

  13. Talens RP, Christensen K, Putter H, Willemsen G, Christiansen L, Kremer D, et al. Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell. 2012;11:694–703.

    Article  PubMed  CAS  Google Scholar 

  14. Goyal D, Limesand SW, Goyal R. Epigenetic responses and the developmental origins of health and disease. J Endocrinol. 2019;242:T105–19.

    Article  PubMed  CAS  Google Scholar 

  15. Lee HS. Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients. 2015;7:9492–507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chango A, Pogribny IP. Considering maternal dietary modulators for epigenetic regulation and programming of the fetal epigenome. Nutrients. 2015;7:2748–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lees C, Marlow N, Arabin B, Bilardo CM, Brezinka C, Derks JB, et al. TRUFFLE Group. Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol. 2013;42:400–8.

  18. Jaddoe VW, de Jonge LL, Hofman A, Franco OH, Steegers EA, Gaillard R. First trimester fetal growth restriction and cardiovascular risk factors in school age children: population based cohort study. BMJ. 2014;348: g14.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol. 2016;594:807–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Francis JH, Permezel M, Davey MA. Perinatal mortality by birthweight centile. Aust N Z J Obstet Gynaecol. 2014;54:354–9.

    Article  PubMed  Google Scholar 

  21. Baethge C, Goldbeck-Wood S, Mertens S. SANRA-a scale for the quality assessment of narrative review articles. Res Integr Peer Rev. 2019;4:5.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38:23–38.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang ZM, Lu R, Wang P, Yu Y, Chen D, Gao L, et al. Structural basis for DNMT3A-mediated de novo DNA methylation. Nature. 2018;554:387–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA. 2006;103:1412–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Schulz WA, Steinhoff C, Florl AR. Methylation of endogenous human retroelements in health and disease. Curr Top Microbiol Immunol. 2006;310:211–50.

    PubMed  CAS  Google Scholar 

  26. Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol. 2002;241:172–82.

    Article  PubMed  CAS  Google Scholar 

  27. Lambertini L, Lee TL, Chan WY, Lee MJ, Diplas A, Wetmur J, Chen J. Differential methylation of imprinted genes in growth-restricted placentas. Reprod Sci. 2011;18:1111–7.

    Article  PubMed  CAS  Google Scholar 

  28. Gicquel C, El-Osta A, Le Bouc Y. Epigenetic regulation and fetal programming. Best Pract Res Clin Endocrinol Metab. 2008;22:1–16.

    Article  PubMed  CAS  Google Scholar 

  29. Wood AJ, Oakey RJ. Genomic imprinting in mammals: emerging themes and established theories. PLoS Genet. 2006;2: e147.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nelissen EC, Van Montfoort AP, Dumoulin JC, Evers JL. Epigenetics and the placenta. Hum Reprod Update. 2011;17:397–417.

    Article  PubMed  CAS  Google Scholar 

  31. Wu WB, Xu YY, Cheng WW, Yuan B, Zhao JR, Wang YL, et al. Decreased PGF may contribute to trophoblast dysfunction in fetal growth restriction. Reproduction. 2017;154:319–29.

    Article  PubMed  CAS  Google Scholar 

  32. Randhawa R, Cohen P. The role of the insulin-like growth factor system in prenatal growth. Mol Genet Metab. 2005;86:84–90.

    Article  PubMed  CAS  Google Scholar 

  33. Nawathe AR, Christian M, Kim SH, Johnson M, Savvidou MD, Terzidou V. Insulin-like growth factor axis in pregnancies affected by fetal growth disorders. Clin Epigenet. 2016;8:11.

    Article  Google Scholar 

  34. Börzsönyi B, Demendi C, Nagy Z, Tóth K, Csanád M, Pajor A, et al. Gene expression patterns of insulin-like growth factor 1, insulin-like growth factor 2 and insulin-like growth factor binding protein 3 in human placenta from pregnancies with intrauterine growth restriction. J Perinat Med. 2011;39:701–7.

    Article  PubMed  Google Scholar 

  35. Lee MH, Jeon YJ, Lee SM, Park MH, Jung SC, Kim YJ. Placental gene expression is related to glucose metabolism and fetal cord blood levels of insulin and insulin-like growth factors in intrauterine growth restriction. Early Hum Dev. 2010;86:45–50.

    Article  PubMed  CAS  Google Scholar 

  36. Xiao X, Zhao Y, Jin R, Chen J, Wang X, Baccarelli A, et al. Fetal growth restriction and methylation of growth-related genes in the placenta. Epigenomics. 2016;8:33–42.

    Article  PubMed  CAS  Google Scholar 

  37. Stewart PM, Murry BA, Mason JI. Type 2 11 beta-hydroxysteroid dehydrogenase in human fetal tissues. J Clin Endocrinol Metab. 1994;78:1529–32.

    PubMed  CAS  Google Scholar 

  38. Marsit CJ, Maccani MA, Padbury JF, Lester BM. Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PLoS ONE. 2012;7: e33794.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zhao Y, Gong X, Chen L, et al. Site-specific methylation of placental HSD11B2 gene promoter is related to intrauterine growth restriction. Eur J Hum Genet. 2014;22:734–40.

    Article  PubMed  CAS  Google Scholar 

  40. Zhu P, Wang W, Zuo R, Sun K. Mechanisms for establishment of the placental glucocorticoid barrier, a guard for life. Cell Mol Life Sci. 2019;76:13–26.

    Article  PubMed  CAS  Google Scholar 

  41. Chelbi ST, Mondon F, Jammes H, Buffat C, Mignot TM, Tost J, et al. Expressional and epigenetic alterations of placental serine protease inhibitors: SERPINA3 is a potential marker of preeclampsia. Hypertension. 2007;49:76–83.

    Article  PubMed  CAS  Google Scholar 

  42. Chelbi ST, Wilson ML, Veillard AC, Ingles SA, Zhang J, Mondon F, et al. Genetic and epigenetic mechanisms collaborate to control SERPINA3 expression and its association with placental diseases. Hum Mol Genet. 2012;21:1968–78.

    Article  PubMed  CAS  Google Scholar 

  43. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454:766–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet. 2018;19:491–504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hillman SL, Finer S, Smart MC, Mathews C, Lowe R, Rakyan VK, et al. Novel DNA methylation profiles associated with key gene regulation and transcription pathways in blood and placenta of growth-restricted neonates. Epigenetics. 2015;10:50–61.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wutz A, Smrzka OW, Schweifer N, Schellander K, Wagner EF, Barlow DP. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature. 1997;389:745–9.

    Article  PubMed  CAS  Google Scholar 

  47. Wilhelm-Benartzi CS, Houseman EA, Maccani MA, Poage GM, Koestler DC, Langevin SM, et al. In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta. Environ Health Perspect. 2012;120:296–302.

    Article  PubMed  CAS  Google Scholar 

  48. Ferguson-Smith AC. Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet. 2011;12:565–75.

    Article  PubMed  CAS  Google Scholar 

  49. McMinn J, Wei M, Schupf N, Cusmai J, Johnson EB, Smith AC, et al. Unbalanced placental expression of imprinted genes in human intrauterine growth restriction. Placenta. 2006;27:540–9.

    Article  PubMed  CAS  Google Scholar 

  50. Tycko B. Imprinted genes in placental growth and obstetric disorders. Cytogenet Genome Res. 2006;113:271–8.

    Article  PubMed  CAS  Google Scholar 

  51. Tycko B, Morison IM. Physiological functions of imprinted genes. J Cell Physiol. 2002;192:245e58.

  52. Higashimoto K, Jozaki K, Kosho T, Matsubara K, Fuke T, Yamada D, et al. A novel de novo point mutation of the OCT-binding site in the IGF2/H19-imprinting control region in a Beckwith-Wiedemann syndrome patient. Clin Genet. 2014;86:539–44.

    Article  PubMed  CAS  Google Scholar 

  53. Yamaguchi Y, Tayama C, Tomikawa J, Akaishi R, Kamura H, Matsuoka K, et al. Placenta-specific epimutation at H19-DMR among common pregnancy complications: its frequency and effect on the expression patterns of H19 and IGF2. Clin Epigenetics. 2019;11:113.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tsunoda Y, Kudo M, Wada R, Ishino K, Kure S, Sakatani T, et al. Expression level of long noncoding RNA H19 of normotensive placentas in late pregnancy relates to the fetal growth restriction. J Obstet Gynaecol Res. 2020;46:1025–34.

    Article  PubMed  CAS  Google Scholar 

  55. Koukoura O, Sifakis S, Zaravinos A, Apostolidou S, Jones A, Hajiioannou J, et al. Hypomethylation along with increased H19 expression in placentas from pregnancies complicated with fetal growth restriction. Placenta. 2011;32:51–7.

    Article  PubMed  CAS  Google Scholar 

  56. Koukoura O, Sifakis S, Soufla G, Zaravinos A, Apostolidou S, Jones A, et al. Loss of imprinting and aberrant methylation of IGF2 in placentas from pregnancies complicated with fetal growth restriction. Int J Mol Med. 2011;28:481–7.

    PubMed  CAS  Google Scholar 

  57. St-Pierre J, Hivert MF, Perron P, et al. IGF2 DNA methylation is a modulator of newborn’s fetal growth and development. Epigenetics. 2012;7:1125–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bourque DK, Avila L, Penaherrera M, Von Dadelszen P, Robinson WP. Decreased placental methylation at the H19/IGF2 imprinting control region is associated with normotensive intrauterine growth restriction but not pre-eclampsia. Placenta. 2010;31:197–202.

    Article  PubMed  CAS  Google Scholar 

  59. Cordeiro A, Neto AP, Carvalho F, Ramalho C, Doria S. Relevance of genomic imprinting in intrauterine human growth expression of CDKN1C, H19, IGF2, KCNQ1 and PHLDA2 imprinted genes. J Assist Reprod Genet. 2014;31:1361–8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Stalman SE, Solanky N, Ishida M, Alemán-Charlet C, Abu-Amero S, Alders M, et al. Genetic analyses in small-for-gestational-age newborns. J Clin Endocrinol Metab. 2018;103:917–25.

    Article  PubMed  Google Scholar 

  61. Eggermann T, Binder G, Brioude F, Maher ER, Lapunzina P, Cubellis MV, et al. CDKN1C mutations: two sides of the same coin. Trends Mol Med. 2014;20:614–22.

    Article  PubMed  CAS  Google Scholar 

  62. Caniçais C, Vasconcelos S, Ramalho C, Marques CJ, Dória S. Deregulation of imprinted genes expression and epigenetic regulators in placental tissue from intrauterine growth restriction. J Assist Reprod Genet. 2021;38:791–801.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Diplas AI, Lambertini L, Lee MJ, Sperling R, Lee YL, Wetmur J, et al. Differential expression of imprinted genes in normal and IUGR human placentas. Epigenetics. 2009;4:235–40.

    Article  PubMed  CAS  Google Scholar 

  64. Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet. 2006;38:1341–7.

    Article  PubMed  CAS  Google Scholar 

  65. Sutton VR, Shaffer LG. Search for imprinted regions on chromosome 14: comparison of maternal and paternal UPD cases with cases of chromosome 14 deletion. Am J Med Genet. 2000;93:381–7.

    Article  PubMed  CAS  Google Scholar 

  66. Wylie AA, Murphy SK, Orton TC, Jirtle RL. Novel imprinted DLK1/GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation. Genome Res. 2000;10:1711–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Sekita Y, Wagatsuma H, Nakamura K, Ono R, Kagami M, Wakisaka N, et al. Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat Genet. 2008;40:243e8.

  68. Fujioka K, Nishida K, Ashina M, Abe S, Fukushima S, Ikuta T, Ohyama S, Morioka I, Iijima K. DNA methylation of the Rtl1 promoter in the placentas with fetal growth restriction. Pediatr Neonatol. 2019;60:512–6.

    Article  PubMed  Google Scholar 

  69. Barlow DP, Bartolomei MS. Genomic imprinting in mammals. Cold Spring Harb Perspect Biol. 2014;6: a018382.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA. 1964;51:786–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447:425–32.

    Article  PubMed  CAS  Google Scholar 

  73. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80.

    Article  PubMed  CAS  Google Scholar 

  74. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Article  Google Scholar 

  75. Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature. 2007;445:214–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Alsat E, Guibourdenche J, Couturier A, Evain-Brion D. Physiological role of human placental growth hormone. Mol Cell Endocrinol. 1998;140:121–7.

    Article  PubMed  CAS  Google Scholar 

  77. Kimura AP, Liebhaber SA, Cooke NE. Epigenetic modifications at the human growth hormone locus predict distinct roles for histone acetylation and methylation in placental gene activation. Mol Endocrinol. 2004;18:1018–32.

    Article  PubMed  CAS  Google Scholar 

  78. Paauw ND, Lely AT, Joles JA, Franx A, Nikkels PG, Mokry M, et al. H3K27 acetylation and gene expression analysis reveals differences in placental chromatin activity in fetal growth restriction. Clin Epigenet. 2018;10:85.

    Article  CAS  Google Scholar 

  79. Maltepe E, Krampitz GW, Okazaki KM, Red-Horse K, Mak W, Simon MC, et al. Hypoxia-inducible factor-dependent histone deacetylase activity determines stem cell fate in the placenta. Development. 2005;132:3393–403.

    Article  PubMed  CAS  Google Scholar 

  80. Alahari S, Post M, Rolfo A, Weksberg R, Caniggia I. Compromised JMJD6 histone demethylase activity affects VHL gene repression in preeclampsia. J Clin Endocrinol Metab. 2018;103:1545–57.

    Article  PubMed  Google Scholar 

  81. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Gebremedhn S, Ali A, Hossain M, Hoelker M, Salilew-Wondim D, Anthony RV, et al. MicroRNA-mediated gene regulatory mechanisms in mammalian female reproductive health. Int J Mol Sci. 2021;22:938.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Frías-Lasserre D, Villagra CA. The Importance of ncRNAs as epigenetic mechanisms in phenotypic variation and organic evolution. Front Microbiol. 2017;8:2483.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs as regulators in epigenetics (Review). Oncol Rep. 2017;37:3–9.

    Article  PubMed  Google Scholar 

  85. Chisholm KM, Wan Y, Li R, Montgomery KD, Chang HY, West RB. Detection of long non-coding RNA in archival tissue: correlation with polycomb protein expression in primary and metastatic breast carcinoma. PLoS ONE. 2012;7: e47998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Martinez VD, Cohn DE, Telkar N, Minatel BC, Pewarchuk ME, Marshall EA, et al. Profiling the small non-coding RNA transcriptome of the human placenta. Sci Data. 2021;8:166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Santoro G, Lapucci C, Giannoccaro M, Caporilli S, Rusin M, Seidenari A, et al. Abnormal circulating maternal miRNA expression is associated with a low (< 4%) cell-free DNA fetal fraction. Diagn (Basel). 2021;11:2108.

    CAS  Google Scholar 

  88. Addo KA, Palakodety N, Hartwell HJ, Tingare A, Fry RC. Placenta microRNAs: responders to environmental chemicals and mediators of pathophysiology of the human placenta. Toxicol Rep. 2020;7:1046–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Hromadnikova I. Extracellular nucleic acids in maternal circulation as potential biomarkers for placental insufficiency. DNA Cell Biol. 2012;31:1221–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet. 2005;37:766–70.

    Article  PubMed  CAS  Google Scholar 

  91. Xie L, Mouillet JF, Chu T, Parks WT, Sadovsky E, Knöfler M, et al. C19MC microRNAs regulate the migration of human trophoblasts. Endocrinology. 2014;155:4975–85.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mong EF, Yang Y, Akat KM, Canfield J, VanWye J, Lockhart J, et al. Chromosome 19 microRNA cluster enhances cell reprogramming by inhibiting epithelial-to-mesenchymal transition. Sci Rep. 2020;10:3029.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W, Schoenleben M, Markert UR. Pregnancy-associated miRNA-clusters. J Reprod Immunol. 2013;97:51–61.

    Article  PubMed  CAS  Google Scholar 

  94. Gu Y, Sun J, Groome LJ, Wang Y. Differential miRNA expression profiles between the first and third trimester human placentas. Am J Physiol Endocrinol Metab. 2013;304:E836–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genom. 2007;8:166.

    Article  Google Scholar 

  96. Kochhar P, Vukku M, Rajashekhar R, Mukhopadhyay A. microRNA signatures associated with fetal growth restriction: a systematic review. Eur J Clin Nutr. 2022;76:1088–102.

    Article  PubMed  CAS  Google Scholar 

  97. Ghosh G, Subramanian IV, Adhikari N, Zhang X, Joshi HP, Basi D, et al. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. J Clin Investig. 2010;120:4141–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 2008;283:15878–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Zou Z, Forbes K, Harris LK, Heazell AEP. The potential role of the E SRRG pathway in placental dysfunction. Reproduction. 2021;161:R45-60.

    Article  PubMed  CAS  Google Scholar 

  100. Takeda Y, Liu X, Sumiyoshi M, Matsushima A, Shimohigashi M, Shimohigashi Y. Placenta expressing the greatest quantity of bisphenol A receptor ERR{gamma} among the human reproductive tissues: predominant expression of type-1 ERRgamma isoform. J Biochem. 2009;146:113–22.

    Article  PubMed  CAS  Google Scholar 

  101. Zhu H, Huang L, He Z, Zou Z, Luo Y. Estrogen-related receptor γ regulates expression of 17β-hydroxysteroid dehydrogenase type 1 in fetal growth restriction. Placenta. 2018;67:38–44.

    Article  PubMed  CAS  Google Scholar 

  102. Backes C, Meese E, Keller A. Specific miRNA disease biomarkers in blood, serum and plasma: challenges and prospects. Mol Diagn Ther. 2016;20:509–18.

    Article  PubMed  CAS  Google Scholar 

  103. Kotlabova K, Doucha J, Hromadnikova I. Placental-specific microRNA in maternal circulation: identification of appropriate pregnancy-associated microRNAs with diagnostic potential. J Reprod Immunol. 2011;89:185–91.

    Article  PubMed  CAS  Google Scholar 

  104. Luo X, Li X. Long non-coding RNAs serve as diagnostic biomarkers of preeclampsia and modulate migration and invasiveness of trophoblast cells. Med Sci Monit. 2018;24:84–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Brannan CI, Dees EC, Ingram RS, Tilghman SM. The product of the H19 gene may function as an RNA. Mol Cell Biol. 1990;10:28–36.

    PubMed  PubMed Central  CAS  Google Scholar 

  106. Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52:101–12.

    Article  PubMed  CAS  Google Scholar 

  107. Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA. 2007;13:313–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol. 2012;14:659–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Koerner MV, Pauler FM, Huang R, Barlow DP. The function of non-coding RNAs in genomic imprinting. Development. 2009;136:1771–83.

    Article  PubMed  CAS  Google Scholar 

  110. Gremlich S, Damnon F, Reymondin D, Braissant O, Schittny JC, Baud D, et al. The long non-coding RNA NEAT1 is increased in IUGR placentas, leading to potential new hypotheses of IUGR origin/development. Placenta. 2014;35:44–9.

    Article  PubMed  CAS  Google Scholar 

  111. Huang X, Anderle P, Hostettler L, Baumann MU, Surbek DV, Ontsouka EC, et al. Identification of placental nutrient transporters associated with intrauterine growth restriction and pre-eclampsia. BMC Genom. 2018;19:173.

    Article  Google Scholar 

  112. Monteiro LJ, Peñailillo R, Sánchez M, Acuña-Gallardo S, Mönckeberg M, Ong J, et al. The role of long non-coding RNAs in trophoblast regulation in preeclampsia and intrauterine growth restriction. Genes (Basel). 2021;12:970.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Medina-Bastidas D, Guzmán-Huerta M, Borboa-Olivares H, Ruiz-Cruz C, Parra-Hernández S, Flores-Pliego A, et al. Placental microarray profiling reveals common mRNA and lncRNA expression patterns in preeclampsia and intrauterine growth restriction. Int J Mol Sci. 2020;21:3597.

    Article  PubMed Central  Google Scholar 

  114. Lipka A, Jastrzebski JP, Paukszto L, Makowczenko KG, Lopienska-Biernat E, Gowkielewicz M, et al. Sex-biased lncRNA signature in fetal growth restriction (FGR). Cells. 2021;10:921.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Hitchins MP. Inheritance of epigenetic aberrations (constitutional epimutations) in cancer susceptibility. Adv Genet. 2010;70:201–43.

    Article  PubMed  CAS  Google Scholar 

  116. Terstappen F, Calis JJA, Paauw ND, Joles JA, van Rijn BB, Mokry M, et al. Developmental programming in human umbilical cord vein endothelial cells following fetal growth restriction. Clin Epigenet. 2020;12:185.

    Article  CAS  Google Scholar 

  117. Daxinger L, Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet. 2012;13:153–62.

    Article  PubMed  CAS  Google Scholar 

  118. Xavier MJ, Roman SD, Aitken RJ, Nixon B. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update. 2019;25:518–40.

    Article  PubMed  Google Scholar 

  119. Roberts CT. IFPA Award in Placentology Lecture: complicated interactions between genes and the environment in placentation, pregnancy outcome and long term health. Placenta. 2010;Suppl.:S47–53.

  120. Mikheev AM, Nabekura T, Kaddoumi A, Bammler TK, Govindarajan R, Hebert MF, et al. Profiling gene expression in human placentae of different gestational ages: an OPRU Network and UW SCOR Study. Reprod Sci. 2008;15:866–77.

    Article  PubMed  CAS  Google Scholar 

  121. Yuen RK, Avila L, Peñaherrera MS, von Dadelszen P, Lefebvre L, Kobor MS, et al. Human placental-specific epipolymorphism and its association with adverse pregnancy outcomes. PLoS ONE. 2009;4: e7389.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Novakovic B, Yuen RK, Gordon L, Penaherrera MS, Sharkey A, Moffett A, et al. Evidence for widespread changes in promoter methylation profile in human placenta in response to increasing gestational age and environmental/stochastic factors. BMC Genom. 2011;12:529.

    Article  CAS  Google Scholar 

  123. Zdravkovic T, Genbacev O, McMaster MT, Fisher SJ. The adverse effects of maternal smoking on the human placenta: a review. Placenta. 2005;26(Suppl. A):S81–6.

  124. Chandravanshi L, Shiv K, Kumar S. Developmental toxicity of cadmium in infants and children: a review. Environ Anal Health Toxicol. 2021;36: e2021003.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lee S, Hong YC, Park H, Kim Y, Ha M, Ha E. Combined effects of multiple prenatal exposure to pollutants on birth weight: the Mothers and Children’s Environmental Health (MOCEH) study. Environ Res. 2020;181: 108832.

    Article  PubMed  CAS  Google Scholar 

  126. Rolfo A, Nuzzo AM, De Amicis R, Moretti L, Bertoli S, Leone A. Fetal-maternal exposure to endocrine disruptors: correlation with diet intake and pregnancy outcomes. Nutrients. 2020;12:1744.

    Article  PubMed Central  CAS  Google Scholar 

  127. Joubert BR, Håberg SE, Bell DA, Nilsen RM, Vollset SE, Midttun O, et al. Maternal smoking and DNA methylation in newborns: in utero effect or epigenetic inheritance? Cancer Epidemiol Biomark Prev. 2014;23:1007–17.

    Article  CAS  Google Scholar 

  128. Flom JD, Ferris JS, Liao Y, Tehranifar P, Richards CB, Cho YH, et al. Prenatal smoke exposure and genomic DNA methylation in a multiethnic birth cohort. Cancer Epidemiol Biomark Prev. 2011;20:2518–23.

    Article  CAS  Google Scholar 

  129. Joubert BR, Haberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120:1425–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Ghazi T, Naidoo P, Naidoo RN, Chuturgoon AA. Prenatal air pollution exposure and placental DNA methylation changes: implications on fetal development and future disease susceptibility. Cells. 2021;10:3025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Zhao Y, Shi HJ, Xie CM, Chen J, Laue H, Zhang YH. Prenatal phthalate exposure, infant growth, and global DNA methylation of human placenta. Environ Mol Mutagen. 2015;56:286–92.

    Article  PubMed  CAS  Google Scholar 

  132. Zhao Y, Song Q, Ge W, Jin Y, Chen S, Zhao Y, et al Y. Associations between in utero exposure to polybrominated diphenyl ethers, pathophysiological state of fetal growth and placental DNA methylation changes. Environ Int. 2019;133(Pt B):105255.

  133. Li LX, Chen L, Meng XZ, Chen BH, Chen SQ, Zhao Y, et al. Exposure levels of environmental endocrine disruptors in mother-newborn pairs in China and their placental transfer characteristics. PLoS ONE. 2013;8: e62526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Susiarjo M, Sasson I, Mesaros C, Bartolomei MS. Bisphenol a exposure disrupts genomic imprinting in the mouse. PLoS Genet. 2013;9: e1003401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Wang B, Liu JJ, Wang Y, Fu L, Shen R, Yu Z, et al. Maternal fenvalerate exposure induces fetal intrauterine growth restriction through disrupting placental thyroid hormone receptor signaling. Toxicol Sci. 2017;157:377–86.

    Article  PubMed  CAS  Google Scholar 

  136. Yu Z, Han Y, Shen R, Huang K, Xu YY, Wang QN, et al. Gestational di-(2-ethylhexyl) phthalate exposure causes fetal intrauterine growth restriction through disturbing placental thyroid hormone receptor signaling. Toxicol Lett. 2018;294:1–10.

    Article  PubMed  CAS  Google Scholar 

  137. Chen CY, Chen CP, Lin KH. Biological functions of thyroid hormone in placenta. Int J Mol Sci. 2015;16:4161–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. O’Callaghan JL, Clifton VL, Prentis P, Ewing A, Miller YD, Pelzer ES. Modulation of placental gene expression in small-for-gestational-age infants. Genes (Basel). 2020;11:80.

    Article  PubMed Central  Google Scholar 

  139. O’Callaghan JL, Turner R, Dekker Nitert M, Barrett HL, Clifton V, Pelzer ES. Re-assessing microbiomes in the low-biomass reproductive niche. BJOG. 2020;127:147–58.

    Article  PubMed  Google Scholar 

  140. Parnell LA, Briggs CM, Cao B, Delannoy-Bruno O, Schrieffer AE, Mysorekar IU. Microbial communities in placentas from term normal pregnancy exhibit spatially variable profiles. Sci Rep. 2017;7:11200.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Barak S, Oettinger-Barak O, Machtei EE, Sprecher H, Ohel G. Evidence of periopathogenic microorganisms in placentas of women with preeclampsia. J Periodontol. 2007;78:670–6.

    Article  PubMed  Google Scholar 

  142. Doyle RM, Harris K, Kamiza S, Harjunmaa U, Ashorn U, Nkhoma M, et al. Bacterial communities found in placental tissues are associated with severe chorioamnionitis and adverse birth outcomes. PLoS ONE. 2017;12: e0180167.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Zheng J, Xiao X, Zhang Q, Mao L, Yu M, Xu J. The placental microbiome varies in association with low birth weight in full-term neonates. Nutrients. 2015;7:6924–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Viuff AC, Pedersen LH, Kyng K, Staunstrup NH, Børglum A, Henriksen TB. Antidepressant medication during pregnancy and epigenetic changes in umbilical cord blood: a systematic review. Clin Epigenet. 2016;8:94.

    Article  Google Scholar 

  145. Argyraki M, Damdimopoulou P, Chatzimeletiou K, Grimbizis GF, Tarlatzis BC, Syrrou M, et al. In-utero stress and mode of conception: impact on regulation of imprinted genes, fetal development and future health. Hum Reprod Update. 2019;25:777–801.

    Article  PubMed  CAS  Google Scholar 

  146. Rhon-Calderon EA, Vrooman LA, Riesche L, Bartolomei MS. The effects of assisted reproductive technologies on genomic imprinting in the placenta. Placenta. 2019;84:37–43.

    Article  PubMed  Google Scholar 

  147. Lazaraviciute G, Kauser M, Bhattacharya S, Haggarty P, Bhattacharya S. A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. Hum Reprod Update. 2014;20:840–52.

    Article  PubMed  CAS  Google Scholar 

  148. El Hajj N, Haaf T. Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil Steril. 2013;99:632–41.

    Article  PubMed  Google Scholar 

  149. Zhu HL, Shi XT, Xu XF, Zhou GX, Xiong YW, Yi SJ, et al. Melatonin protects against environmental stress-induced fetal growth restriction via suppressing ROS-mediated GCN2/ATF4/BNIP3-dependent mitophagy in placental trophoblasts. Redox Biol. 2021;40: 101854.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Zhang L, Lu Q, Chang C. Epigenetics in health and disease. Adv Exp Med Biol. 2020;1253:3–55.

    Article  PubMed  CAS  Google Scholar 

  151. Chatterjee S, Ouidir M, Tekola-Ayele F. Genetic and in utero environmental contributions to DNA methylation variation in placenta. Hum Mol Genet. 2021;30:1968–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Abdulghani M, Jain A, Tuteja G. Genome-wide identification of enhancer elements in the placenta. Placenta. 2019;79:72–7.

    Article  PubMed  CAS  Google Scholar 

  153. Smith E, Shilatifard A. Enhancer biology and enhanceropathies. Nat Struct Mol Biol. 2014;21:210–9.

    Article  PubMed  CAS  Google Scholar 

  154. Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R. A class I antigen, HLA-G, expressed in human trophoblasts. Science. 1990;248:220–3.

    Article  PubMed  CAS  Google Scholar 

  155. Ferreira LMR, Meissner TB, Tilburgs T, Strominger JL. HLA-G: at the interface of maternal fetal tolerance. Trends Immunol. 2017;38:272–86.

    Article  PubMed  CAS  Google Scholar 

  156. Kikas T, Laan M, Kasak L. Current knowledge on genetic variants shaping placental transcriptome and their link to gestational and postnatal health. Placenta. 2021;116:2–11.

    Article  PubMed  CAS  Google Scholar 

  157. Zanello M, DeSanctis P, Pula G, Zucchini C, Pittalis MC, Rizzo N, et al. Circulating mRNA for epidermal growth factor-like domain 7 (EGFL7) in maternal blood and early intrauterine growth restriction: a preliminary analysis. Prenat Diagn. 2013;33:168–72.

    Article  PubMed  CAS  Google Scholar 

  158. Whitehead CL, Walker SP, Mendis S, Lappas M, Tong S. Quantifying mRNA coding growth genes in the maternal circulation to detect fetal growth restriction. Am J Obstet Gynecol. 2013;209(133):e1-9.

    Google Scholar 

  159. Murthi P. Review: placental homeobox genes and their role in regulating human fetal growth. Placenta. 2014;35(Suppl.):S46–50

  160. Sharma D, Sharma P, Shastri S. Genetic, metabolic and endocrine aspect of intrauterine growth restriction: an update. J Matern Fetal Neonatal Med. 2017;30:2263–75.

    Article  PubMed  CAS  Google Scholar 

  161. Majewska M, Lipka A, Paukszto L, Jastrzebski JP, Szeszko K, Gowkielewicz M, et al. Placenta transcriptome profiling in intrauterine growth restriction (IUGR). Int J Mol Sci. 2019;20(6):1510.

    Article  PubMed Central  CAS  Google Scholar 

  162. Murthi P, Said JM, Doherty VL, Donath S, Nowell CJ, Brennecke SP, et al. Homeobox gene DLX4 expression is increased in idiopathic human fetal growth restriction. Mol Hum Reprod. 2006;12:763–9.

    Article  PubMed  CAS  Google Scholar 

  163. Gascoin-Lachambre G, Buffat C, Rebourcet R, Chelbi ST, Rigourd V, Mondon F, et al. Cullins in human intra-uterine growth restriction: expressional and epigenetic alterations. Placenta. 2010;31:151–7.

    Article  PubMed  CAS  Google Scholar 

  164. Sarikas A, Hartmann T, Pan ZQ. The cullin protein family. Genome Biol. 2011;12:220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Gong S, Gaccioli F, Dopierala J, Sovio U, Cook E, Volders PJ, et al. The RNA landscape of the human placenta in health and disease. Nat Commun. 2021;12:2639.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Jin XX, Ying X, Dong MY. Galectin-1 expression in the serum and placenta of pregnant women with fetal growth restriction and its significance. BMC Pregnancy Childbirth. 2021;21:14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Chabrun F, Huetz N, Dieu X, Rousseau G, Bouzillé G, Chao de la Barca JM, et al. Data-mining approach on transcriptomics and methylomics placental analysis highlights genes in fetal growth restriction. Front Genet. 2020;10:1292.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Farina.

Ethics declarations

Funding

No funding was received for the preparation of this article.

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

Not applicable.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmeri, N., Carbone, I., Cavoretto, P. et al. Epigenetics Beyond Fetal Growth Restriction: A Comprehensive Overview. Mol Diagn Ther 26, 607–626 (2022). https://doi.org/10.1007/s40291-022-00611-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-022-00611-4

Navigation