Skip to main content
Log in

Biomarker Determinants of Early Anthracycline-Induced Left Ventricular Dysfunction in Breast Cancer: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background and Objective

Breast cancer is the leading cause of cancer-related mortality amongst women. One of the most common chemotherapeutic agents used to treat breast cancer, anthracyclines, are associated with anthracycline-induced cardiotoxicity (ACIC). The aim of this meta-analysis was to quantify the predictive performance of biomarkers for early ACIC presentation in the breast cancer population.

Methods

Five databases were searched from inception to 1 January, 2022. Studies reporting the association between worsening left ventricular ejection fraction and biomarker level change were included. Overall, study heterogeneity varied between I2 0 and 78%. The primary outcome was incident left ventricular dysfunction, defined as left ventricular ejection fraction < 50–55% or a 10%-point decrease, in patients with breast cancer with congruent ≥ doubling of biomarker serology levels (growth differentiation factor 15, Galectin-3, pro B-type natriuretic peptide, high-sensitivity cardiac troponin T, placental growth factor, myeloperoxidase, high-sensitivity C-reactive protein, Fms-Related Tyrosine Kinase 1), 3 months after anthracycline exposure, relative to pre-anthracycline exposure levels, expressed as random effects, hazard ratios. The STRING protein interaction database was explored for experimentally validated biomarker interactions.

Results

Of 1458 records screened, four observational studies involving 1167 patients, with a low risk of bias, were included in this systematic review and meta-analysis. Doubling of growth differentiation factor 15 and Galectin-3 levels was associated with an increased risk of early ACIC, hazard ratio 3.74 (95% confidence interval 2.68–5.24) and hazard ratio 4.25 (95% confidence interval 3.1–5.18), respectively. Biomarker interactome analysis identified two putative ACIC biomarkers, neuropilin-1 and complement factor H.

Conclusions

This is the first meta-analysis quantifying the association of biomarkers and early ACIC presentation in the breast cancer population. This may be of clinical relevance in the timely identification of patients at high risk of ACIC, allowing for closer monitoring and chemotherapy adjustments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cancer Research UK. Breast cancer survival statistics. Published 2021. https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer/survival?_gl=1*1p4rtww*_ga*OTEwMDU0OTEyLjE2MzIyNTEzMDk.*_ga_58736Z2GNN*MTYzMjc1MjMyNS4yLjEuMTYzMjc1MjQxNi40NQ..&_ga=2.115066242.482372446.1632752326-910054912.1632251309. Accessed 2 Sep 2021.

  2. Asselain B, Barlow W, Bartlett J, et al. Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. 2018;19(1):27–39. https://doi.org/10.1016/s1470-2045(17)30777-5.

    Article  CAS  Google Scholar 

  3. Henriksen P. Anthracycline cardiotoxicity: an update on mechanisms, monitoring and prevention. Heart. 2017;104(12):971–7. https://doi.org/10.1136/heartjnl-2017-312103.

    Article  CAS  PubMed  Google Scholar 

  4. Hurvitz S, McAndrew N, Bardia A, et al. A careful reassessment of anthracycline use in curable breast cancer. NPJ Breast Cancer. 2021. https://doi.org/10.1038/s41523-021-00342-5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Early Breast Cancer Trialists’ Collaborative Group. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100 000 women in 123 randomised trials. Lancet. 2012;379(9814):432–44. https://doi.org/10.1016/s0140-6736(11)61625-5.

    Article  Google Scholar 

  6. Swain S, Whaley F, Ewer M. Congestive heart failure in patients treated with doxorubicin. Cancer. 2003;97(11):2869–79. https://doi.org/10.1002/cncr.11407.

    Article  CAS  PubMed  Google Scholar 

  7. Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–8. https://doi.org/10.1161/circulationaha.114.013777.

    Article  CAS  PubMed  Google Scholar 

  8. Curigliano G, Cardinale D, Dent S, et al. Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J Clin. 2016;66(4):309–25. https://doi.org/10.3322/caac.21341.

    Article  PubMed  Google Scholar 

  9. Cardinale D, Iacopo F, Cipolla C. Cardiotoxicity of anthracyclines. Front Cardiovasc Med. 2020. https://doi.org/10.3389/fcvm.2020.00026.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–94. https://doi.org/10.1016/j.jclinepi.2010.04.026.

    Article  PubMed  Google Scholar 

  11. Murabito A, Hirsch E, Ghigo A. Mechanisms of anthracycline-induced cardiotoxicity: is mitochondrial dysfunction the answer? Front Cardiovasc Med. 2020. https://doi.org/10.3389/fcvm.2020.00035.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Boutagy N, Wu J, Cai Z, et al. In vivo reactive oxygen species detection with a novel positron emission tomography tracer, 18F-DHMT, allows for early detection of anthracycline-induced cardiotoxicity in rodents. JACC Basic Transl Sci. 2018;3(3):378–90. https://doi.org/10.1016/j.jacbts.2018.02.003.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lown J, Chen H, Plambeck J, Acton E. Further studies on the generation of reactive oxygen species from activated anthracyclines and the relationship to cytotoxic action and cardiotoxic effects. Biochem Pharmacol. 1982;31(4):575–81. https://doi.org/10.1016/0006-2952(82)90162-9.

    Article  CAS  PubMed  Google Scholar 

  14. Tan T, Neilan T, Francis S, Plana J, Scherrer-Crosbie M. Anthracycline-induced cardiomyopathy in adults. Compr Physiol. 2015. https://doi.org/10.1002/cphy.c140059.

    Article  PubMed  Google Scholar 

  15. Ichikawa Y, Ghanefar M, Bayeva M, et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest. 2014;124(2):617–30. https://doi.org/10.1172/jci72931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li D, Wang Z, Ding G, et al. Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification. Circulation. 2016;133(17):1668–87. https://doi.org/10.1161/circulationaha.115.017443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Levi S, Cozzi A, Santambrogio P. Iron pathophysiology in neurodegeneration with brain iron accumulation. Adv Exp Med Biol. 2019. https://doi.org/10.1007/978-981-13-9589-5_9.

    Article  PubMed  Google Scholar 

  18. Michel L, Mincu R, Mrotzek S, et al. Cardiac biomarkers for the detection of cardiotoxicity in childhood cancer: a meta-analysis. ESC Heart Fail. 2020;7(2):423–33. https://doi.org/10.1002/ehf2.12589.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bloom M, Hamo C, Cardinale D, et al. Cancer therapy-related cardiac dysfunction and heart failure. Circ Heart Fail. 2016. https://doi.org/10.1161/circheartfailure.115.002661.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zamorano J, Lancellotti P, Rodriguez Muñoz D, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur Heart J. 2016;37(36):2768–801. https://doi.org/10.1093/eurheartj/ehw211.

    Article  PubMed  Google Scholar 

  21. Moher D, Liberati A, Tetzlaff J, Altman D. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7): e1000097. https://doi.org/10.1371/journal.pmed.1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stang A. Critical evaluation of the Newcastle-Ottawa Scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5. https://doi.org/10.1007/s10654-010-9491-z.

    Article  PubMed  Google Scholar 

  23. Cochrane Training. Chapter 24: Including non-randomized studies on intervention effects. Published 2021. https://training.cochrane.org/handbook/current/chapter-24. Accessed 15 Oct 2021.

  24. Begg C, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088. https://doi.org/10.2307/2533446.

    Article  CAS  PubMed  Google Scholar 

  25. Bindea G, Mlecnik B, Hackl H, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3. https://doi.org/10.1093/bioinformatics/btp101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Putt M, Hahn V, Januzzi J, et al. Longitudinal changes in multiple biomarkers are associated with cardiotoxicity in breast cancer patients treated with doxorubicin, taxanes, and trastuzumab. Clin Chem. 2015;61(9):1164–72. https://doi.org/10.1373/clinchem.2015.241232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sawaya H, Sebag I, Plana J, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107(9):1375–80. https://doi.org/10.1016/j.amjcard.2011.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ky B, Putt M, Sawaya H, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014;63(8):809–16. https://doi.org/10.1016/j.jacc.2013.10.061.

    Article  CAS  PubMed  Google Scholar 

  29. Demissei B, Hubbard R, Zhang L, et al. Changes in cardiovascular biomarkers with breast cancer therapy and associations with cardiac dysfunction. J Am Heart Assoc. 2020. https://doi.org/10.1161/jaha.119.014708.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tromp J, Boerman L, Sama I, et al. Long-term survivors of early breast cancer treated with chemotherapy are characterized by a pro-inflammatory biomarker profile compared to matched controls. Eur J Heart Fail. 2020;22(7):1239–46. https://doi.org/10.1002/ejhf.1758.

    Article  CAS  PubMed  Google Scholar 

  31. Thavendiranathan P, Poulin F, Lim K, Plana J, Woo A, Marwick T. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy. J Am Coll Cardiol. 2014;63(25):2751–68. https://doi.org/10.1016/j.jacc.2014.01.073.

    Article  PubMed  Google Scholar 

  32. Heck S, Mecinaj A, Ree A, et al. Prevention of Cardiac Dysfunction During Adjuvant Breast Cancer Therapy (PRADA): extended follow-up of a 2×2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Circulation. 2021;143(25):2431–40. https://doi.org/10.1161/circulationaha.121.054698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abdel-Qadir H, Ong G, Fazelzad R, et al. Interventions for preventing cardiomyopathy due to anthracyclines: a Bayesian network meta-analysis. Ann Oncol. 2017;28(3):628–33. https://doi.org/10.1093/annonc/mdw671.

    Article  CAS  PubMed  Google Scholar 

  34. Segura A, Radovancevic R, Demirozu Z, Frazier O, Buja L. Anthracycline treatment and ventricular remodeling in left ventricular assist device patients. Tex Heart Inst J. 2015;42(2):124–30. https://doi.org/10.14503/thij-14-4509.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pereira J, Tosatti J, Simões R, Luizon M, Gomes K, Alves M. microRNAs associated to anthracycline-induced cardiotoxicity in women with breast cancer: a systematic review and pathway analysis. Biomed Pharmacother. 2020;131: 110709. https://doi.org/10.1016/j.biopha.2020.110709.

    Article  CAS  PubMed  Google Scholar 

  36. Gioffré S, Chiesa M, Cardinale D, et al. Circulating microRNAs as potential predictors of anthracycline-induced troponin elevation in breast cancer patients: diverging effects of doxorubicin and epirubicin. J Clin Med. 2020;9(5):1418. https://doi.org/10.3390/jcm9051418.

    Article  CAS  PubMed Central  Google Scholar 

  37. Moazeni S, Cadeiras M, Yang E, Deng M, Nguyen K. Anthracycline induced cardiotoxicity: biomarkers and “Omics” technology in the era of patient specific care. Clin Transl Med. 2017. https://doi.org/10.1186/s40169-017-0148-3.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fischer C, Mazzone M, Jonckx B, Carmeliet P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nature Rev Cancer. 2008;8(12):942–56. https://doi.org/10.1038/nrc2524.

    Article  CAS  Google Scholar 

  39. Onitilo A, Engel J, Stankowski R, Liang H, Berg R, Doi S. High-sensitivity C-reactive protein (hs-CRP) as a biomarker for trastuzumab-induced cardiotoxicity in HER2-positive early-stage breast cancer: a pilot study. Breast Cancer Res Treat. 2012;134(1):291–8. https://doi.org/10.1007/s10549-012-2039-z.

    Article  CAS  PubMed  Google Scholar 

  40. Bassuk S, Rifai N, Ridker P. High-sensitivity C-reactive protein. Curr Probl Cardiol. 2004;29(8):439–93. https://doi.org/10.1016/j.cpcardiol.2004.03.004.

    Article  PubMed  Google Scholar 

  41. Ng T, Phey X, Yeo H, et al. Impact of adjuvant anthracycline-based and taxane-based chemotherapy on plasma VEGF levels and cognitive function in breast cancer patients: a longitudinal study. Clin Breast Cancer. 2018;18(5):e927–37. https://doi.org/10.1016/j.clbc.2018.03.016.

    Article  CAS  PubMed  Google Scholar 

  42. Kawasaki T, Kitsukawa T, Bekku Y, et al. A requirement for neuropilin-1 in embryonic vessel formation. Development. 1999;126(21):4895–902. https://doi.org/10.1242/dev.126.21.4895.

    Article  CAS  PubMed  Google Scholar 

  43. Kitsukawa T, Shimizu M, Sanbo M, et al. Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron. 1997;19(5):995–1005. https://doi.org/10.1016/s0896-6273(00)80392-x.

    Article  CAS  PubMed  Google Scholar 

  44. Gu C, Rodriguez E, Reimert D, et al. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell. 2003;5(1):45–57. https://doi.org/10.1016/s1534-5807(03)00169-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ferreira V, Pangburn M, Cortés C. Complement control protein factor H: the good, the bad, and the inadequate. Mol Immunol. 2010;47(13):2187–97. https://doi.org/10.1016/j.molimm.2010.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sala V, Della Sala A, Hirsch E, Ghigo A. Signaling pathways underlying anthracycline cardiotoxicity. Antioxid Redox Signal. 2020;32(15):1098–114. https://doi.org/10.1089/ars.2020.8019.

    Article  CAS  PubMed  Google Scholar 

  47. Min P, Chan S. The biology of circulating microRNAs in cardiovascular disease. Eur J Clin Invest. 2015;45(8):860–74. https://doi.org/10.1111/eci.12475.

    Article  CAS  PubMed  Google Scholar 

  48. Vegter E, van der Meer P, de Windt L, Pinto Y, Voors A. MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail. 2016;18(5):457–68. https://doi.org/10.1002/ejhf.495.

    Article  CAS  PubMed  Google Scholar 

  49. Wang G, Zhu J, Zhang J, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31(6):659–66. https://doi.org/10.1093/eurheartj/ehq013.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavroula L. Kastora.

Ethics declarations

Funding

No funding was received for the preparation of this article.

Conflicts of interest/Competing interests

The authors have no conflicts of interest that are directly relevant to the contents of this article.

Ethics approval

Ethics approval/patient consent was not required for the present study. The study protocol was prospectively registered and accessed under the PROSPERO database (CRD42021278741).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

All associated data with the present article are available as online supplementary material.

Code availability

Not applicable.

Authors’ contributions

SLK: conceptualisation, methodology, critical appraisal, data collection, manuscript drafting and editing. YS: critical appraisal and data collection. TAP: critical appraisal of the manuscript and manuscript editing. PKM: supervision, critical appraisal of the manuscript and final approval of the manuscript. MAM: supervision, critical appraisal of the manuscript and final approval of the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kastora, S.L., Pana, T.A., Sarwar, Y. et al. Biomarker Determinants of Early Anthracycline-Induced Left Ventricular Dysfunction in Breast Cancer: A Systematic Review and Meta-Analysis. Mol Diagn Ther 26, 369–382 (2022). https://doi.org/10.1007/s40291-022-00597-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-022-00597-z

Navigation