Skip to main content
Log in

The Opportunities and Challenges of Molecular Tagging Next-Generation Sequencing in Liquid Biopsy

  • Current Opinion
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Liquid biopsy (LB) is a promising tool that is rapidly evolving as a standard of care in early and advanced stages of cancer settings. Next-generation sequencing (NGS) methods have become essential in molecular diagnostics and clinical laboratories dealing with LB analytes, i.e., cell-free DNA and RNA. The sensitivity and high-throughput capacity of NGS enable us to overcome technical issues that are mainly attributable to low-abundance (below 1% mutated allelic frequency) tumour genetic material circulating within biological fluids. In this context, the introduction of unique molecular identifiers (UMIs), also known as molecular barcodes, applied to various NGS platforms greatly improved the characterization of rare genetic alterations, as they resulted in a drastic reduction in background noise while maintaining high levels of positive predictive value and sensitivity. Different UMI strategies have been developed, such as single (e.g., safe-sequencing system, Safe-SeqS) or double (duplex-sequencing system, Duplex-Seq) strand-based labelling, and, currently, considerable results corroborate their potential implementation in a routine laboratory. Recently, the US Food and Drug Administration approved the clinical use of two comprehensive UMI-based NGS assays (FoundationOne Liquid CDx and Guardant360 CDx) in cfDNA mutational assessment. However, to definitively translate LB into clinical practice, UMI-based NGS protocols should meet certain feasibility requirements in terms of cost-effectiveness, wet laboratory performance and easy access to web-source and bioinformatic tools for downstream molecular data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bardelli A, Pantel K. Liquid biopsies, What we do not know (yet). Cancer Cell. 2017;31(2):172–9.

    Article  CAS  Google Scholar 

  2. Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic—implementation issues and future challenges. Nat Rev Clin Oncol. 2021. https://doi.org/10.1038/s41571-020-00457-x (Epub ahead of print. PMID: 33473219.).

    Article  PubMed  Google Scholar 

  3. Oxnard GR, Thress KS, Alden RS, Lawrance R, Paweletz CP, Cantarini M, et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol. 2016;34:3375–82.

    Article  CAS  Google Scholar 

  4. US Food & Drug Administration. Premarket approval P150044—Cobas EGFR MUTATION TEST V2.FDA. 2016. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P150044.

  5. André F, Ciruelos E, Juric D, Loibl S, Campone M, Mayer IA, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 2019;380:1929–40.

    Article  Google Scholar 

  6. Santini D, Vincenzi B, Addeo R, Garufi C, Masi G, Scartozzi M, et al. Cetuximab rechallenge in metastatic colorectal cancer patients: how to come away from acquired resistance? Ann Oncol. 2012;23(9):2313–8. https://doi.org/10.1093/annonc/mdr623.

    Article  CAS  PubMed  Google Scholar 

  7. Liu X, George GC, Tsimberidou AM, Naing A, Wheler JJ, Kopetz S, et al. Retreatment with anti-EGFR based therapies in metastatic colorectal cancer: impact of intervening time interval and prior anti-EGFR response. BMC Cancer. 2015;15:713.

    Article  CAS  Google Scholar 

  8. Parseghian CM, Loree JM, Morris VK, Liu X, Clifton KK, Napolitano S, et al. Anti-EGFR-resistant clones decay exponentially after progression: implications for anti-EGFR re-challenge. Ann Oncol. 2019;30(2):243–9.

    Article  CAS  Google Scholar 

  9. Luo H, Zhao Q, Wei W, Zheng L, Yi S, Li G, et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci Transl Med. 2020;12(524):533. https://doi.org/10.1126/scitranslmed.aax7533 (Erratum in: Sci Transl Med. 2020;12(540): PMID: 31894106).

    Article  CAS  Google Scholar 

  10. Berger LA, Janning M, Velthaus JL, Ben-Batalla I, Schatz S, Falk M, et al. Identification of a high-level MET amplification in CTCs and cfTNA of an ALK-positive NSCLC patient developing evasive resistance to crizotinib. J Thorac Oncol. 2018;13(12):e243–6. https://doi.org/10.1016/j.jtho.2018.08.2025 (Epub 2018 Sep 8 PMID: 30205165).

    Article  CAS  PubMed  Google Scholar 

  11. Raez L, Danenberg K, Hunis B, Castrellon A, Jaimes Y, Velez M, et al. P203b–039 Cell-Free (cf) DNA and cfRNA levels in plasma of lung cancer patients indicate disease status and predict progression. Topic Biomark J Thorac Oncol. 2017;12(1):959. https://doi.org/10.1016/j.jtho.2016.11.1320.

    Article  Google Scholar 

  12. Ishiba T, Hoffmann AC, Usher J, Elshimali Y, Sturdevant T, Dang M, et al. Frequencies and expression levels of programmed death ligand 1 (PD-L1) in circulating tumor RNA (ctRNA) in various cancer types. Biochem Biophys Res Commun. 2018;500(3):621–5. https://doi.org/10.1016/j.bbrc.2018.04.120 (Epub 2018 Apr 30 PMID: 29679564).

    Article  CAS  PubMed  Google Scholar 

  13. Escors D, Gato-Cañas M, Zuazo M, Arasanz H, García-Granda MJ, Vera R, et al. The intracellular signalosome of PD-L1 in cancer cells. Signal Transduct Target Ther. 2018;3:26. https://doi.org/10.1038/s41392-018-0022-9.PMID:30275987;PMCID:PMC6160488.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bidard FC, Peeters DJ, Fehm T, Nolé F, Gisbert-Criado R, Mavroudis D, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol. 2014;15(4):406–14. https://doi.org/10.1016/S1470-2045(14)70069-5 (Epub 2014 Mar 11 PMID: 24636208).

    Article  PubMed  Google Scholar 

  15. Lorente D, Olmos D, Mateo J, Bianchini D, Seed G, Fleisher M, et al. Decline in circulating tumor cell count and treatment outcome in advanced prostate cancer. Eur Urol. 2016;70(6):985–92. https://doi.org/10.1016/j.eururo.2016.05.023 (Epub 2016 Jun 9. PMID: 27289566; PMCID: PMC5568108).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cristofanilli M, Pierga JY, Reuben J, Rademaker A, Davis AA, Peeters DJ, et al. The clinical use of circulating tumor cells (CTCs) enumeration for staging of metastatic breast cancer (MBC): International expert consensus paper. Crit Rev Oncol Hematol. 2019;134:39–45.

    Article  Google Scholar 

  17. González-Silva L, Quevedo L, Varela I. Tumor functional heterogeneity unraveled by scRNA-seq technologies: (Trends in Cancer). Trends Cancer. 2021;7(3):265. https://doi.org/10.1016/j.trecan.2021.02.001.

    Article  PubMed  Google Scholar 

  18. Tellez-Gabriel M, Heymann MF, Heymann D. Circulating tumor cells as a tool for assessing tumor heterogeneity. Theranostics. 2019;9(16):4580–94. https://doi.org/10.7150/thno.34337.PMID:31367241;PMCID:PMC6643448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miyamoto DT, Zheng Y, Wittner BS, Lee RJ, Zhu H, Broderick KT, et al. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science. 2015;349(6254):1351–6. https://doi.org/10.1126/science.aab0917.PMID:26383955;PMCID:PMC4872391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lang JE, Ring A, Porras T, Kaur P, Forte VA, Mineyev N, et al. RNA-Seq of circulating tumor cells in Stage II–III breast cancer. Ann Surg Oncol. 2018;25(8):2261–70. https://doi.org/10.1245/s10434-018-6540-4 (Epub 2018 Jun 4. PMID: 29868978; PMCID: PMC7065419).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Franses JW, Philipp J, Missios P, Bhan I, Liu A, Yashaswini C, et al. Pancreatic circulating tumor cell profiling identifies LIN28B as a metastasis driver and drug target. Nat Commun. 2020;11(1):3303. https://doi.org/10.1038/s41467-020-17150-3.PMID:32620742;PMCID:PMC7335061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hofman P, Heeke S, Alix-Panabières C, Pantel K. Liquid biopsy in the era of immuno-oncology: is it ready for prime-time use for cancer patients? Ann Oncol. 2019;30(9):1448–59. https://doi.org/10.1093/annonc/mdz196 (PMID: 31228184).

    Article  CAS  PubMed  Google Scholar 

  23. Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, Breakefield XO, Skog JK. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol. 2021;32(4):466–77. https://doi.org/10.1016/j.annonc.2021.01.074 (Epub 2021 Feb 4 PMID: 33548389).

    Article  CAS  PubMed  Google Scholar 

  24. De Rubis G, Rajeev Krishnan S, Bebawy M. Liquid biopsies in cancer diagnosis, monitoring, and prognosis. Trends Pharmacol Sci. 2019;40(3):172–86. https://doi.org/10.1016/j.tips.2019.01.006 (Epub 2019 Feb 5 PMID: 30736982).

    Article  CAS  PubMed  Google Scholar 

  25. Best MG, Sol N, Int Veld SGJG, Vancura A, Muller M, Niemeijer AN, et al. Swarm intelligence-enhanced detection of non-small-cell lung cancer using tumor-educated platelets. Cancer Cell. 2017;32(2):238–2529. https://doi.org/10.1016/j.ccell.2017.07.004.PMID:28810146;PMCID:PMC6381325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kimura H, Suminoe M, Kasahara K, Sone T, Araya T, Tamori S, et al. Evaluation of epidermal growth factor receptor mutation status in serum DNA as a predictor of response to gefitinib (IRESSA). Br J Cancer. 2007;97(6):778–84. https://doi.org/10.1038/sj.bjc.6603949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miyazawa H, Tanaka T, Nagai Y, Matsuoka M, Huqun SA, Udagawa K, et al. Peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp-based detection test for gefitinib-refractory T790M epidermal growth factor receptor mutation. Cancer Sci. 2008;99(3):595–600. https://doi.org/10.1111/j.1349-7006.2007.00706.x.

    Article  CAS  PubMed  Google Scholar 

  28. Lang AH, Drexel H, Geller-Rhomberg S, Stark N, Winder T, Geiger K, et al. Optimized allele-specific real-time PCR assays for the detection of common mutations in KRAS and BRAF. J Mol Diagn. 2011;13(1):23–8.

    Article  CAS  Google Scholar 

  29. Vogelstein B, Kinzler KW. PCR digital. Proc Natl Acad Sci USA. 1999;96:9236–41.

    Article  CAS  Google Scholar 

  30. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.

    Article  CAS  Google Scholar 

  31. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011;83:8604–10.

    Article  CAS  Google Scholar 

  32. Steensma DP, Ebert BL. Clonal hematopoiesis as a model for premalignant changes during aging. Exp Hematol. 2020;83:48–56. https://doi.org/10.1016/j.exphem.2019.12.001.

    Article  PubMed  Google Scholar 

  33. Acuna-Hidalgo R, Sengul H, Steehouwer M, van de Vorst M, Vermeulen SH, Kiemeney LALM, Veltman JA, Gilissen C, Hoischen A. Ultra-sensitive sequencing identifies high prevalence of clonal hematopoiesis-associated mutations throughout adult life. Am J Hum Genet. 2017;101(1):50–64. https://doi.org/10.1016/j.ajhg.2017.05.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu Y, Ulrich BC, Supplee J, Kuang Y, Lizotte PH, Feeney NB, Guibert NM, Awad MM, Wong KK, Jänne PA, Paweletz CP, Oxnard GR. False-positive plasma genotyping due to clonal hematopoiesis. Clin Cancer Res. 2018;24(18):4437–43. https://doi.org/10.1158/1078-0432.CCR-18-0143 (Epub 2018 Mar 22. PMID: 29567812).

    Article  CAS  PubMed  Google Scholar 

  35. Swanton C, Venn O, Aravanis A, Hubbell E, Maddala T, Beausang JF, et al. Prevalence of clonal hematopoiesis of indeterminate potential (CHIP) measured by an ultra-sensitive sequencing assay: exploratory analysis of the Circulating Cancer Genome Atlas (CCGA) study. J Clin Oncol. 2018;36:12003.

    Article  Google Scholar 

  36. Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun. 2016;22(7):12484.

    Article  Google Scholar 

  37. Chan HT, Chin YM, Nakamura Y, Low S-K. Clonal hematopoiesis in liquid biopsy: from biological noise to valuable clinical implications. Cancers. 2020;12(8):2277. https://doi.org/10.3390/cancers12082277.

    Article  CAS  PubMed Central  Google Scholar 

  38. Chan HT, Nagayama S, Chin YM, Otaki M, Hayashi R, Kiyotani K, et al. Clinical significance of clonal hematopoiesis in the interpretation of blood liquid biopsy. Mol Oncol. 2020;14(8):1719–30. https://doi.org/10.1002/1878-0261.12727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mehrotra M, Singh RR, Chen W, Huang RSP, Almohammedsalim AA, Barkoh BA, et al. Study of preanalytic and analytic variables for clinical next-generation sequencing of circulating cell-free nucleic acid. J Mol Diagn. 2017;19(4):514–24.

    Article  CAS  Google Scholar 

  40. Demuth C, Winther-Larsen A, Madsen AT, Meldgaard P, Sorensen BS. A method for treatment monitoring using circulating tumour DNA in cancer patients without targetable mutations. Oncotarget. 2018;9(57):31066–76.

    Article  Google Scholar 

  41. Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014;11:163–6.

    Article  CAS  Google Scholar 

  42. Best K, Oakes T, Heather JM, Shawe-Taylor J, Chain B. Computational analysis of stochastic heterogeneity in PCR amplification efficiency revealed by single molecule barcoding. Sci Rep. 2015;5:14629.

    Article  CAS  Google Scholar 

  43. Kou R, Lam H, Duan H, Ye L, Jongkam N, Chen W, et al. Benefits and challenges with applying unique molecular identifiers in next generation sequencing to detect low frequency mutations. PLoS ONE. 2016;11(1):e0146638.

    Article  Google Scholar 

  44. Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 2016;17:77. https://doi.org/10.1186/s13059-016-0938-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat Rev Genet. 2018;19(5):269–85. https://doi.org/10.1038/nrg.2017.117 (Epub 2018 Mar 26. PMID: 29576615; PMCID: PMC6485430).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Laird CD, Pleasant ND, Clark AD, Sneeden JL, Hassan KM, Manley NC, et al. Hairpin-bisulfite PCR: assessing epigenetic methylation patterns on complementary strands of individual DNA molecules. Proc Natl Acad Sci USA. 2004;101(1):204–9.

    Article  CAS  Google Scholar 

  47. Miner BE, Stöger RJ, Burden AF, Laird CD, Hansen RS. Molecular barcodes detect redundancy and contamination in hairpin-bisulfite PCR. Nucleic Acids Res. 2004;32(17):e135.

    Article  Google Scholar 

  48. McCloskey ML, Stöger R, Hansen RS, Laird CD. Encoding PCR products with batch-stamps and barcodes. Biochem Genet. 2007;45(11–12):761–7.

    Article  CAS  Google Scholar 

  49. Hiatt JB, Patwardhan RP, Turner EH, Lee C, Shendure J. Parallel, tag-directed assembly of locally derived short sequence reads. Nat Methods. 2010;7(2):119–22. https://doi.org/10.1038/nmeth.1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Casbon JA, Osborne RJ, Brenner S, Lichtenstein CP. A method for counting PCR template molecules with application to next-generation sequencing. Nucleic Acids Res. 2011;39(12): e81. https://doi.org/10.1093/nar/gkr217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fu GK, Hu J, Wang PH, Fodor SP. Counting individual DNA molecules by the stochastic attachment of diverse labels. Proc Natl Acad Sci USA. 2011;108(22):9026–31. https://doi.org/10.1073/pnas.1017621108.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jabara CB, Jones CD, Roach J, Anderson JA, Swanstrom R. Accurate sampling and deep sequencing of the HIV-1 protease gene using a Primer ID. Proc Natl Acad Sci USA. 2011;108:20166–71. https://doi.org/10.1073/pnas.1110064108.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci USA. 2011;108:9530–5.

    Article  Google Scholar 

  54. Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods. 2011;9(1):72–4. https://doi.org/10.1038/nmeth.1778.

    Article  CAS  PubMed  Google Scholar 

  55. Shiroguchi K, Jia TZ, Sims PA, Xie XS. Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes. Proc Natl Acad Sci USA. 2012;109(4):1347–52. https://doi.org/10.1073/pnas.1118018109.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24. https://doi.org/10.1126/scitranslmed.3007094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545(7655):446–51.

    Article  CAS  Google Scholar 

  58. Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci USA. 2012;109(36):14508–13. https://doi.org/10.1073/pnas.1208715109.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20(5):548–54. https://doi.org/10.1038/nm.3519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med. 2017;9(403):2415. https://doi.org/10.1126/scitranslmed.aan2415.

    Article  CAS  Google Scholar 

  61. Chaudhuri AA, Chabon JJ, Lovejoy AF, Newman AM, Stehr H, Azad TD, et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov. 2017;7(12):1394–403. https://doi.org/10.1158/2159-8290.CD-17-0716 (Epub 2017 Sep 24. PMID: 28899864; PMCID: PMC5895851).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chabon JJ, Hamilton EG, Kurtz DM, Esfahani MS, Moding EJ, Stehr H, et al. Integrating genomic features for non-invasive early lung cancer detection. Nature. 2020;580(7802):245–51. https://doi.org/10.1038/s41586-020-2140-0 (Epub 2020 Mar 25 PMID: 32269342).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. MacConaill LE, Burns RT, Nag A, Coleman HA, Slevin MK, Giorda K, et al. Unique, dual-indexed sequencing adapters with UMIs effectively eliminate index cross-talk and significantly improve sensitivity of massively parallel sequencing. BMC Genomics. 2018;19:30. https://doi.org/10.1186/s12864-017-4428-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dunwell TL, Dailey SC, Yu J, Becker PW, Scaife S, Richman SD, et al. Adaptor template oligo-mediated sequencing (ATOM-Seq): a versatile and ultra-sensitive UMI-based NGS library preparation technology, for use with cfDNA and cfRNA. bioRxiv. 2020. https://doi.org/10.1101/2020.07.10.152405.

    Article  Google Scholar 

  65. Zheng Z, Liebers M, Zhelyazkova B, Cao Y, Panditi D, Lynch KD, et al. Anchored multiplex PCR for targeted next-generation sequencing. Nat Med. 2014;20(12):1479–84. https://doi.org/10.1038/nm.3729.

    Article  CAS  PubMed  Google Scholar 

  66. Xu C, Nezami Ranjbar M, Wu Z, Di Carlo J, Wany Y. Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller. BMC Genomics. 2017;18:5. https://doi.org/10.1186/s12864-016-3425-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. US Food and Drug Administration. FoundationOne® Liquid CDx (F1 Liquid CDx). FDA (2020). https://www.accessdata.fda.gov/cdrh_docs/pdf20/P200016A.pdf.

  68. US Food and Drug Administration. Guardant360® CDx. FDA (2020). https://www.accessdata.fda.gov/cdrh_docs/pdf20/P200010A.pdf.

  69. Woodhouse R, Li M, Hughes J, Delfosse D, Skoletsky J, Ma P, et al. Clinical and analytical validation of FoundationOne Liquid CDx, a novel 324-Gene cfDNA-based comprehensive genomic profiling assay for cancers of solid tumor origin. PLoS ONE. 2020;15(9):e0237802. https://doi.org/10.1371/journal.pone.0237802.PMID:32976510;PMCID:PMC7518588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lanman RB, Mortimer SA, Zill OA, Sebisanovic D, Lopez R, Blau S, et al. Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS ONE. 2015;10(10):e0140712. https://doi.org/10.1371/journal.pone.0140712.PMID:26474073;PMCID:PMC4608804.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Odegaard JI, Vincent JJ, Mortimer S, Vowles JV, Ulrich BC, Banks KC, et al. Validation of a plasma-based comprehensive cancer genotyping assay utilizing orthogonal tissue- and plasma-based methodologies. Clin Cancer Res. 2018;24(15):3539–49. https://doi.org/10.1158/1078-0432.CCR-17-3831 (Epub 2018 Apr 24 PMID: 29691297).

    Article  CAS  PubMed  Google Scholar 

  72. Zill OA, Banks KC, Fairclough SR, Mortimer SA, Vowles JV, Mokhtari R, et al. The landscape of actionable genomic alterations in cell-free circulating tumor DNA from 21,807 advanced cancer patients. Clin Cancer Res. 2018;24(15):3528–38. https://doi.org/10.1158/1078-0432.CCR-17-3837 (Epub 2018 May 18 PMID: 29776953).

    Article  CAS  PubMed  Google Scholar 

  73. Leighl NB, Page RD, Raymond VM, Daniel DB, Divers SG, Reckamp KL, et al. Clinical utility of comprehensive cell-free DNA analysis to identify genomic biomarkers in patients with newly diagnosed metastatic non-small cell lung cancer. Clin Cancer Res. 2019;25(15):4691–700. https://doi.org/10.1158/1078-0432.CCR-19-0624 (Epub 2019 Apr 15 PMID: 30988079).

    Article  CAS  PubMed  Google Scholar 

  74. Illumina 2018. Detection of low-frequency variants in cfDNA using TruSight Tumor 170 with the TruSight UMI Toolkit. https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/trusight-umi-trusight-tumor-170-app-note-1000000050427.pdf.

  75. De Luca G, Lastraioli S, Conte R, Mora M, Genova C, Rossi G, et al. Performance of the oncomineTM lung cfDNA assay for liquid biopsy by NGS of NSCLC patients in routine laboratory practice. Appl Sci. 2020;10:2895.

    Article  Google Scholar 

  76. Dono M, De Luca G, Lastraioli S, Anselmi G, Dal Bello MG, Coco S, et al. Tag-based next generation sequencing: a feasible and reliable assay for EGFR T790M mutation detection in circulating tumor DNA of non small cell lung cancer patients. Mol Med. 2019;25(1):15. https://doi.org/10.1186/s10020-019-0082-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Papadopoulou E, Tsoulos N, Tsantikidi K, Metaxa-Mariatou V, Stamou PE, Kladi-Skandali A, et al. Clinical feasibility of NGS liquid biopsy analysis in NSCLC patients. PLoS ONE. 2019;14(12):e0226853. https://doi.org/10.1371/journal.pone.0226853.PMID:31860648;PMCID:PMC6924668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vollbrecht C, Lehmann A, Lenze D, Hummel M. Validation and comparison of two NGS assays for the detection of EGFR T790M resistance mutation in liquid biopsies of NSCLC patients. Oncotarget. 2018;9:18529–39.

    Article  Google Scholar 

  79. Weber S, Spiegl B, Perakis SO, Ulz CM, Abuja PM, Kashofer K, et al. Technical evaluation of commercial mutation analysis platforms and reference materials for liquid biopsy profiling. Cancers (Basel). 2020;12(6):1588. https://doi.org/10.3390/cancers12061588.PMID:32560092;PMCID:PMC7352370.

    Article  CAS  Google Scholar 

  80. Vessies DC, Linders TC, Ramkisoensing KL, Nederlof PM, Meijer GA, Monkhorst K, et al. Technical validation of Roche AVENIO sequencing platform for liquid biopsies [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29–Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 1381.

  81. Alix-Panabieres C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem. 2013;59:110–8.

    Article  CAS  Google Scholar 

  82. Huang X, Gao P, Song Y, Sun J, Chen X, Zhao J, et al. Meta-analysis of the prognostic value of circulating tumor cells detected with the cell search system in colorectal cancer. BMC Cancer. 2015;15:202. https://doi.org/10.1186/s12885-015-1218-9.PMID:25880692;PMCID:PMC4389311.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tol J, Koopman M, Miller MC, Tibbe A, Cats A, Creemers GJ, et al. Circulating tumour cells early predict progression-free and overall survival in advanced colorectal cancer patients treated with chemotherapy and targeted agents. Ann Oncol. 2010;21(5):1006–12. https://doi.org/10.1093/annonc/mdp463 (Epub 2009 Oct 27 PMID: 19861577).

    Article  CAS  PubMed  Google Scholar 

  84. Krebs MG, Sloane R, Priest L, Lancashire L, Hou JM, Greystoke A, et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J Clin Oncol. 2011;29(12):1556–63. https://doi.org/10.1200/JCO.2010.28.7045 (Epub 2011 Mar 21 PMID: 21422424).

    Article  PubMed  Google Scholar 

  85. Sparano J, O’Neill A, Alpaugh K, Wolff AC, Northfelt DW, Dang CT, et al. Association of circulating tumor cells with late recurrence of estrogen receptor-positive breast cancer: a secondary analysis of a randomized clinical trial. JAMA Oncol. 2018;4(12):1700–6. https://doi.org/10.1001/jamaoncol.2018.2574.PMID:30054636;PMCID:PMC6385891.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Alix-Panabières C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 2016;6:479–91.

    Article  Google Scholar 

  87. Lianidou E, Pantel K. Liquid Biopsies. Genes Chromosomes Cancer. 2019;58:219–32.

    Article  CAS  Google Scholar 

  88. Ma N, Jeffrey SS. Deciphering cancer clues from blood. Science. 2020;367(6485):1424–5. https://doi.org/10.1126/science.abb0736 (PMID: 32217712).

    Article  CAS  PubMed  Google Scholar 

  89. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351:781–91.

    Article  CAS  Google Scholar 

  90. Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC, et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res. 2006;12:4218–24.

    Article  CAS  Google Scholar 

  91. Kanwar N, Hu P, Bedard P, Clemons M, McCready D, Done SJ. Identification of genomic signatures in circulating tumor cells from breast cancer. Int J Cancer. 2015;137:332–44.

    Article  CAS  Google Scholar 

  92. Lasken RS, Egholm M. Whole genome amplification: abundant supplies of DNA from precious samples or clinical specimens. Trends Biotechnol. 2003;21:531–5.

    Article  CAS  Google Scholar 

  93. Hughes S, Arneson N, Done S, Squire J. The use of whole genome amplification in the study of human disease. Prog Biophys Mol Biol. 2005;88:173–89.

    Article  CAS  Google Scholar 

  94. Pinard R, deWinter A, Sarkis G, Gerstein MB, Tartaro KR, Plant RN, et al. Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing. BMC Genom. 2006;7:216.

    Article  Google Scholar 

  95. Huang L, Ma F, Chapman A, Lu S, Xie XS. Single-cell whole-genome amplification and sequencing: Methodology and applications. Annu Rev Genom Hum Genet. 2015;16:79–102.

    Article  CAS  Google Scholar 

  96. Zhu Z, Qiu S, Shao K, Hou Y. Progress and challenges of sequencing and analyzing circulating tumor cells. Cell Biol Toxicol. 2018;34:405–15.

    Article  CAS  Google Scholar 

  97. De Luca G, Cardinali B, Del Mastro L, Lastraioli S, Carli F, Ferrarini M, et al. Optimization of a WGA-free molecular tagging-based NGS protocol for CTCs mutational profiling. Int J Mol Sci. 2020;21:4364.

    Article  Google Scholar 

  98. Vander Heiden JA, Yaari G, Uduman M, Stern JN, O’Connor KC, Hafler DA, et al. pRESTO: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires. Bioinformatics. 2014;30(13):1930–2. https://doi.org/10.1093/bioinformatics/btu138 (Epub 2014 Mar 10. PMID: 24618469; PMCID: PMC4071206).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shugay M, Zaretsky AR, Shagin DA, Shagina IA, Volchenkov IA, Shelenkov AA, et al. MAGERI: Computational pipeline for molecular-barcoded targeted resequencing. PLoS Comput Biol. 2017;13(5): e1005480. https://doi.org/10.1371/journal.pcbi.1005480.PMID:28475621;PMCID:PMC5419444.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Clement K, Farouni R, Bauer DE, Pinello L. AmpUMI: design and analysis of unique molecular identifiers for deep amplicon sequencing. Bioinformatics. 2018;34(13):i202–10. https://doi.org/10.1093/bioinformatics/bty264.PMID:29949956;PMCID:PMC6022702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariella Dono.

Ethics declarations

Funding

Not applicable.

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Luca, G., Dono, M. The Opportunities and Challenges of Molecular Tagging Next-Generation Sequencing in Liquid Biopsy. Mol Diagn Ther 25, 537–547 (2021). https://doi.org/10.1007/s40291-021-00542-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-021-00542-6

Navigation