Skip to main content
Log in

Genetic Determinants of Childhood Obesity

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Obesity represents a major health burden to both developed and developing countries. Furthermore, the incidence of obesity is increasing in children. Obesity contributes substantially to mortality in the United States by increasing the risk for type 2 diabetes, cardiovascular-related diseases, and other comorbidities. Despite environmental changes over past decades, including increases in high-calorie foods and sedentary lifestyles, there is very clear evidence of a genetic predisposition to obesity risk. Childhood obesity cases can be categorized in one of two ways: syndromic or non-syndromic. Syndromic obesity includes disorders such as Prader-Willi syndrome, Bardet-Biedl syndrome, and Alström syndrome. Non-syndromic cases of obesity can be further separated into rarer instances of monogenic obesity and much more common forms of polygenic obesity. The advent of genome-wide association studies (GWAS) and next-generation sequencing has driven significant advances in our understanding of the genetic contribution to childhood obesity. Many rare and common genetic variants have been shown to contribute to the heritability in obesity, although the molecular mechanisms underlying most of these variants remain unclear. An important caveat of GWAS efforts is that they do not strictly represent gene target discoveries, rather simply the uncovering of robust genetic signals. One clear example of this is with progress in understanding the key obesity signal harbored within an intronic region of the FTO gene. It has been shown that the non-coding region in which the variant actually resides in fact influences the expression of genes distal to FTO instead, specifically IRX3 and IRX5. Such discoveries suggest that associated non-coding variants can be embedded within or next to one gene, but commonly influence the expression of other, more distal effector genes. Advances in genetics and genomics are therefore contributing to a deeper understanding of childhood obesity, allowing for development of clinical tools and therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skinner AC, Perrin EM, Skelton JA. Prevalence of obesity and severe obesity in US children, 1999–2014. Obes (Silver Spring). 2016;24(5):1116–23. https://doi.org/10.1002/oby.21497.

    Article  Google Scholar 

  2. Weihrauch-Bluher S, Wiegand S. Risk factors and implications of childhood obesity. Curr Obes Rep. 2018;7(4):254–9. https://doi.org/10.1007/s13679-018-0320-0.

    Article  PubMed  Google Scholar 

  3. Bradfield JP, Vogelezang S, Felix JF, Chesi A, Helgeland O, Horikoshi M, et al. A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity. Hum Mol Genet. 2019;28(19):3327–38. https://doi.org/10.1093/hmg/ddz161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Flodmark CE, Lissau I, Moreno LA, Pietrobelli A, Widhalm K. New insights into the field of children and adolescents’ obesity: the European perspective. Int J Obes Relat Metab Disord. 2004;28(10):1189–96.

    PubMed  Google Scholar 

  5. Flegal KM, Wei R, Ogden C. Weight-for-stature compared with body mass index-for-age growth charts for the United States from the Centers for Disease Control and Prevention. Am J Clin Nutr. 2002;75(4):761–6.

    CAS  PubMed  Google Scholar 

  6. Himes JH, Dietz WH. Guidelines for overweight in adolescent preventive services: recommendations from an expert committee. The Expert Committee on Clinical Guidelines for Overweight in Adolescent Preventive Services. Am J Clin Nutr. 1994;59(2):307–16.

  7. Koplan JP, Liverman CT, Kraak VI. Preventing childhood obesity: health in the balance: executive summary. J Am Diet Assoc. 2005;105(1):131–8.

    PubMed  Google Scholar 

  8. Gulati AK, Kaplan DW, Daniels SR. Clinical tracking of severely obese children: a new growth chart. Pediatrics. 2012;130(6):1136–40. https://doi.org/10.1542/peds.2012-0596.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ryder JR, Fox CK, Kelly AS. Treatment options for severe obesity in the pediatric population: current limitations and future opportunities. Obes (Silver Spring). 2018;26(6):951–60. https://doi.org/10.1002/oby.22196.

    Article  Google Scholar 

  10. Daniels SR, Arnett DK, Eckel RH, Gidding SS, Hayman LL, Kumanyika S, et al. Overweight in children and adolescents: pathophysiology, consequences, prevention, and treatment. Circulation. 2005;111(15):1999–2012.

    PubMed  Google Scholar 

  11. Kumar S, Kelly AS. Review of childhood obesity: from epidemiology, etiology, and comorbidities to clinical assessment and treatment. Mayo Clin Proc. 2017;92(2):251–65. https://doi.org/10.1016/j.mayocp.2016.09.017.

    Article  PubMed  Google Scholar 

  12. Parks EP, Zemel B, Moore RH, Berkowitz RI. Change in body composition during a weight loss trial in obese adolescents. Pediatr Obes. 2014;9(1):26–35. https://doi.org/10.1111/j.2047-6310.2012.00139.x.

    Article  CAS  PubMed  Google Scholar 

  13. van Dis I, Kromhout D, Geleijnse JM, Boer JM, Verschuren WM. Body mass index and waist circumference predict both 10-year nonfatal and fatal cardiovascular disease risk: study conducted in 20,000 Dutch men and women aged 20–65 years. Eur J Cardiovasc Prev Rehabil. 2009;16(6):729–34. https://doi.org/10.1097/HJR.0b013e328331dfc0.

    Article  PubMed  Google Scholar 

  14. Kumar S, Kaufman T. Childhood obesity. Panminerva Med. 2018;60(4):200–12. https://doi.org/10.23736/S0031-0808.18.03557-7.

    Article  PubMed  Google Scholar 

  15. Knowler WC, Pettitt DJ, Saad MF, Bennett PH. Diabetes mellitus in the Pima Indians: incidence, risk factors and pathogenesis. Diabetes Metab Rev. 1990;6(1):1–27.

    CAS  PubMed  Google Scholar 

  16. Hebebrand J, Friedel S, Schauble N, Geller F, Hinney A. Perspectives: molecular genetic research in human obesity. Obes Rev. 2003;4(3):139–46.

    CAS  PubMed  Google Scholar 

  17. Farooqi IS, O’Rahilly S. New advances in the genetics of early onset obesity. Int J Obes (Lond). 2005;29(10):1149–52. https://doi.org/10.1038/sj.ijo.0803056.

    Article  CAS  Google Scholar 

  18. Bell CG, Walley AJ, Froguel P. The genetics of human obesity. Nat Rev Genet. 2005;6(3):221–34. https://doi.org/10.1038/nrg1556.

    Article  CAS  PubMed  Google Scholar 

  19. Silventoinen K, Jelenkovic A, Sund R, Hur YM, Yokoyama Y, Honda C, et al. Genetic and environmental effects on body mass index from infancy to the onset of adulthood: an individual-based pooled analysis of 45 twin cohorts participating in the Collaborative project of Development of Anthropometrical measures in Twins (CODATwins) study. Am J Clin Nutr. 2016;104(2):371–9. https://doi.org/10.3945/ajcn.116.130252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Herrera BM, Lindgren CM. The genetics of obesity. Curr Diab Rep. 2010;10(6):498–505. https://doi.org/10.1007/s11892-010-0153-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hsu FC, Lenchik L, Nicklas BJ, Lohman K, Register TC, Mychaleckyj J, et al. Heritability of body composition measured by DXA in the diabetes heart study. Obes Res. 2005;13(2):312–9. https://doi.org/10.1038/oby.2005.42.

    Article  PubMed  Google Scholar 

  22. Rose KM, Newman B, Mayer-Davis EJ, Selby JV. Genetic and behavioral determinants of waist-hip ratio and waist circumference in women twins. Obes Res. 1998;6(6):383–92. https://doi.org/10.1002/j.1550-8528.1998.tb00369.x.

    Article  CAS  PubMed  Google Scholar 

  23. Farooqi IS. Genetics of Obesity. In: Wadden TA, Bray GA, editors. Handbook of obesity treatment. 2nd ed. New York: The Guilford Press; 2018. p. 64–74.

    Google Scholar 

  24. Greenfield JR, Miller JW, Keogh JM, Henning E, Satterwhite JH, Cameron GS, et al. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med. 2009;360(1):44–52. https://doi.org/10.1056/NEJMoa0803085.

    Article  CAS  PubMed  Google Scholar 

  25. Wardle J, Llewellyn C, Sanderson S, Plomin R. The FTO gene and measured food intake in children. Int J Obes (Lond). 2009;33(1):42–5. https://doi.org/10.1038/ijo.2008.174.

    Article  CAS  Google Scholar 

  26. Wardle J, Carnell S, Haworth CM, Farooqi IS, O’Rahilly S, Plomin R. Obesity associated genetic variation in FTO is associated with diminished satiety. J Clin Endocrinol Metab. 2008;93(9):3640–3. https://doi.org/10.1210/jc.2008-0472.

    Article  CAS  PubMed  Google Scholar 

  27. Geets E, Meuwissen MEC, Van Hul W. Clinical, molecular genetics and therapeutic aspects of syndromic obesity. Clin Genet. 2019;95(1):23–40. https://doi.org/10.1111/cge.13367.

    Article  CAS  PubMed  Google Scholar 

  28. Ichihara S, Yamada Y. Genetic factors for human obesity. Cell Mol Life Sci. 2008;65(7–8):1086–98. https://doi.org/10.1007/s00018-007-7453-8.

    Article  CAS  PubMed  Google Scholar 

  29. Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader-Willi syndrome. Genet Med. 2012;14(1):10–26. https://doi.org/10.1038/gim.0b013e31822bead0.

    Article  CAS  PubMed  Google Scholar 

  30. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–3. https://doi.org/10.1101/gad.1787609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Butler MG, Kimonis V, Dykens E, Gold JA, Miller J, Tamura R, et al. Prader-Willi syndrome and early-onset morbid obesity NIH rare disease consortium: a review of natural history study. Am J Med Genet A. 2018;176(2):368–75. https://doi.org/10.1002/ajmg.a.38582.

    Article  CAS  PubMed  Google Scholar 

  32. Passone CBG, Pasqualucci PL, Franco RR, Ito SS, Mattar LBF, Koiffmann CP, et al. Prader-Willi syndrome: what is the general pediatrician supposed to do? A review. Rev Paul Pediatr. 2018;36(3):345–52. https://doi.org/10.1590/1984-0462/;2018;36;3;00003.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Suspitsin EN, Imyanitov EN. Bardet-Biedl syndrome. Mol Syndromol. 2016;7(2):62–71. https://doi.org/10.1159/000445491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tayeh MK, Yen HJ, Beck JS, Searby CC, Westfall TA, Griesbach H, et al. Genetic interaction between Bardet-Biedl syndrome genes and implications for limb patterning. Hum Mol Genet. 2008;17(13):1956–67. https://doi.org/10.1093/hmg/ddn093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Forsythe E, Beales PL. Bardet-Biedl syndrome. Eur J Hum Genet. 2013;21(1):8–13. https://doi.org/10.1038/ejhg.2012.115.

    Article  CAS  PubMed  Google Scholar 

  36. Muller J, Stoetzel C, Vincent MC, Leitch CC, Laurier V, Danse JM, et al. Identification of 28 novel mutations in the Bardet-Biedl syndrome genes: the burden of private mutations in an extensively heterogeneous disease. Hum Genet. 2010;127(5):583–93. https://doi.org/10.1007/s00439-010-0804-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alvarez-Satta M, Castro-Sanchez S, Pereiro I, Pineiro-Gallego T, Baiget M, Ayuso C, et al. Overview of Bardet-Biedl syndrome in Spain: identification of novel mutations in BBS1, BBS10 and BBS12 genes. Clin Genet. 2014;86(6):601–2. https://doi.org/10.1111/cge.12334.

    Article  CAS  PubMed  Google Scholar 

  38. Pereiro I, Valverde D, Pineiro-Gallego T, Baiget M, Borrego S, Ayuso C, et al. New mutations in BBS genes in small consanguineous families with Bardet-Biedl syndrome: detection of candidate regions by homozygosity mapping. Mol Vis. 2010;16:137–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Deveault C, Billingsley G, Duncan JL, Bin J, Theal R, Vincent A, et al. BBS genotype-phenotype assessment of a multiethnic patient cohort calls for a revision of the disease definition. Hum Mutat. 2011;32(6):610–9. https://doi.org/10.1002/humu.21480.

    Article  CAS  PubMed  Google Scholar 

  40. Lindstrand A, Davis EE, Carvalho CM, Pehlivan D, Willer JR, Tsai IC, et al. Recurrent CNVs and SNVs at the NPHP1 locus contribute pathogenic alleles to Bardet-Biedl syndrome. Am J Hum Genet. 2014;94(5):745–54. https://doi.org/10.1016/j.ajhg.2014.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ozanturk A, Marshall JD, Collin GB, Duzenli S, Marshall RP, Candan S, et al. The phenotypic and molecular genetic spectrum of Alstrom syndrome in 44 Turkish kindreds and a literature review of Alstrom syndrome in Turkey. J Hum Genet. 2015;60(1):51. https://doi.org/10.1038/jhg.2014.101.

    Article  PubMed  Google Scholar 

  42. Marshall JD, Muller J, Collin GB, Milan G, Kingsmore SF, Dinwiddie D, et al. Alstrom syndrome: mutation spectrum of ALMS1. Hum Mutat. 2015;36(7):660–8. https://doi.org/10.1002/humu.22796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alvarez-Satta M, Castro-Sanchez S, Valverde D. Alstrom syndrome: current perspectives. Appl Clin Genet. 2015;8:171–9. https://doi.org/10.2147/TACG.S56612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Walters RG, Jacquemont S, Valsesia A, de Smith AJ, Martinet D, Andersson J et al. A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. Nature. 2010;463(7281):671–5.

  45. Jacquemont S, Reymond A, Zufferey F, Harewood L, Walters RG, Kutalik Z, et al. Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature. 2011;478(7367):97–102. https://doi.org/10.1038/nature10406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kelly AS, Barlow SE, Rao G, Inge TH, Hayman LL, Steinberger J, et al. Severe obesity in children and adolescents: identification, associated health risks, and treatment approaches: a scientific statement from the American Heart Association. Circulation. 2013;128(15):1689–712. https://doi.org/10.1161/CIR.0b013e3182a5cfb3.

    Article  PubMed  Google Scholar 

  47. Serra-Juhe C, Martos-Moreno GA, de Pieri FB, Flores R, Chowen JA, Perez-Jurado LA, et al. Heterozygous rare genetic variants in non-syndromic early-onset obesity. Int J Obes (Lond). 2019. https://doi.org/10.1038/s41366-019-0357-5.

    Article  PubMed Central  Google Scholar 

  48. Koves IH, Roth C. Genetic and syndromic causes of obesity and its management. Indian J Pediatr. 2018;85(6):478–85. https://doi.org/10.1007/s12098-017-2502-2.

    Article  PubMed  Google Scholar 

  49. Pigeyre M, Meyre D. Monogenic Obesity. In: Freemark MS, editor. Pediatric obesity: etiology, pathogenesis and treatment. Cham: Springer International Publishing; 2018. p. 135–52.

    Google Scholar 

  50. Chung WK. An overview of mongenic and syndromic obesities in humans. Pediatr Blood Cancer. 2012;58(1):122–8. https://doi.org/10.1002/pbc.23372.

    Article  PubMed  Google Scholar 

  51. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. 2003;348(12):1085–95. https://doi.org/10.1056/NEJMoa022050.

    Article  CAS  PubMed  Google Scholar 

  52. Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Froguel P. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest. 2000;106(2):253–62. https://doi.org/10.1172/JCI9238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Farooqi IS, Yeo GS, Keogh JM, Aminian S, Jebb SA, Butler G, et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest. 2000;106(2):271–9. https://doi.org/10.1172/JCI9397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hinney A, Schmidt A, Nottebom K, Heibult O, Becker I, Ziegler A, et al. Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J Clin Endocrinol Metab. 1999;84(4):1483–6. https://doi.org/10.1210/jcem.84.4.5728.

    Article  CAS  PubMed  Google Scholar 

  55. Lubrano-Berthelier C, Cavazos M, Dubern B, Shapiro A, Stunff CL, Zhang S, et al. Molecular genetics of human obesity-associated MC4R mutations. Ann N Y Acad Sci. 2003;994:49–57. https://doi.org/10.1111/j.1749-6632.2003.tb03161.x.

    Article  CAS  PubMed  Google Scholar 

  56. Lotta LA, Mokrosinski J, de Oliveira EM, Li C, Sharp SJ, Luan J, et al. Human gain-of-function MC4R variants show signaling bias and protect against obesity. Cell. 2019;177(3):597–607. https://doi.org/10.1016/j.cell.2019.03.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19(2):155–7. https://doi.org/10.1038/509.

    Article  CAS  PubMed  Google Scholar 

  58. Kleinendorst L, van Haelst MM, van den Akker ELT. Genetics of obesity. Exp Suppl. 2019;111:419–41. https://doi.org/10.1007/978-3-030-25905-1_19.

    Article  CAS  PubMed  Google Scholar 

  59. Nead KT, Li A, Wehner MR, Neupane B, Gustafsson S, Butterworth A, et al. Contribution of common non-synonymous variants in PCSK1 to body mass index variation and risk of obesity: a systematic review and meta-analysis with evidence from up to 331 175 individuals. Hum Mol Genet. 2015;24(12):3582–94. https://doi.org/10.1093/hmg/ddv097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huvenne H, Dubern B, Clement K, Poitou C. Rare genetic forms of obesity: clinical approach and current treatments in 2016. Obes Facts. 2016;9(3):158–73. https://doi.org/10.1159/000445061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Loos RJF, Janssens A. Predicting polygenic obesity using genetic information. Cell Metab. 2017;25(3):535–43. https://doi.org/10.1016/j.cmet.2017.02.013.

    Article  CAS  PubMed  Google Scholar 

  62. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in approximately 700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641–9. https://doi.org/10.1093/hmg/ddy271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T, et al. A common genetic variant is associated with adult and childhood obesity. Science. 2006;312(5771):279–83.

    CAS  PubMed  Google Scholar 

  64. Loos RJ, Barroso I, O’Rahilly S, Wareham NJ. Comment on “A common genetic variant is associated with adult and childhood obesity”. Science. 2007;315(5809):187; author reply

  65. Dina C, Meyre D, Samson C, Tichet J, Marre M, Jouret B et al. Comment on “A common genetic variant is associated with adult and childhood obesity”. Science. 2007;315(5809):187; author reply

  66. Rosskopf D, Bornhorst A, Rimmbach C, Schwahn C, Kayser A, Kruger A et al. Comment on “A common genetic variant is associated with adult and childhood obesity”. Science. 2007;315(5809):187; author reply

  67. Lyon HN, Emilsson V, Hinney A, Heid IM, Lasky-Su J, Zhu X, et al. The association of a SNP upstream of INSIG2 with body mass index is reproduced in several but not all cohorts. PLoS Genetics. 2007;3(4):e61.

    PubMed  PubMed Central  Google Scholar 

  68. Hotta K, Nakamura M, Nakata Y, Matsuo T, Kamohara S, Kotani K, et al. INSIG2 gene rs7566605 polymorphism is associated with severe obesity in Japanese. J Hum Genetics. 2008;53(9):857–62.

    CAS  Google Scholar 

  69. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94. https://doi.org/10.1126/science.1141634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hinney A, Nguyen TT, Scherag A, Friedel S, Bronner G, Muller TD, et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One. 2007;2(12):e1361.

    PubMed  PubMed Central  Google Scholar 

  71. Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nature Genetics. 2007;39(6):724–6.

    CAS  PubMed  Google Scholar 

  72. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genetics. 2007;3(7):e115.

    PubMed  PubMed Central  Google Scholar 

  73. Fawcett KA, Barroso I. The genetics of obesity: FTO leads the way. Trends Genet. 2010;26(6):266–74. https://doi.org/10.1016/j.tig.2010.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Grant SF, Li M, Bradfield JP, Kim CE, Annaiah K, Santa E, et al. Association analysis of the FTO gene with obesity in children of Caucasian and African ancestry reveals a common tagging SNP. PLoS One. 2008;3(3):e1746.

    PubMed  PubMed Central  Google Scholar 

  75. Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nature Genetics. 2008;40(6):768–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Grant SF, Bradfield JP, Zhang H, Wang K, Kim CE, Annaiah K, et al. Investigation of the locus near MC4R with childhood obesity in Americans of European and African Ancestry. Obesity. 2009;17(7):1461–5. https://doi.org/10.1038/oby.2009.53.

    Article  PubMed  Google Scholar 

  77. Zhao J, Bradfield JP, Li M, Wang K, Zhang H, Kim CE et al. The role of obesity-associated loci identified in genome-wide association studies in the determination of pediatric BMI. Obesity (Silver Spring, Md). 2009;17(12):2254–7.

  78. Zhao J, Bradfield JP, Zhang H, Sleiman PM, Kim CE, Glessner JT, et al. Role of BMI-associated loci identified in GWAS meta-analyses in the context of common childhood obesity in European Americans. Obesity (Silver Spring, Md). 2011;19(12):2436–9. https://doi.org/10.1038/oby.2011.237.

    Article  CAS  Google Scholar 

  79. Mitchell JA, Hakonarson H, Rebbeck TR, Grant SF. Obesity-susceptibility loci and the tails of the pediatric BMI distribution. Obesity (Silver Spring, Md). 2013;21(6):1256–60. https://doi.org/10.1002/oby.20319.

    Article  CAS  PubMed Central  Google Scholar 

  80. Deliard S, Panossian S, Mentch FD, Kim CE, Hou C, Frackelton EC, et al. The missense variation landscape of FTO, MC4R, and TMEM18 in obese children of African Ancestry. Obesity (Silver Spring, Md). 2013;21(1):159–63. https://doi.org/10.1002/oby.20147.

    Article  CAS  PubMed Central  Google Scholar 

  81. Glessner JT, Bradfield JP, Wang K, Takahashi N, Zhang H, Sleiman PM, et al. A genome-wide study reveals copy number variants exclusive to childhood obesity cases. Am J Hum Genetics. 2010;87(5):661–6. https://doi.org/10.1016/j.ajhg.2010.09.014.

    Article  CAS  Google Scholar 

  82. Bradfield JP, Taal HR, Timpson NJ, Scherag A, Lecoeur C, Warrington NM, et al. A genome-wide association meta-analysis identifies new childhood obesity loci. Nat Genet. 2012;44(5):526–31. https://doi.org/10.1038/ng.2247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Felix JF, Bradfield JP, Monnereau C, van der Valk RJ, Stergiakouli E, Chesi A, et al. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Hum Mol Genet. 2016;25(2):389–403. https://doi.org/10.1093/hmg/ddv472.

    Article  CAS  PubMed  Google Scholar 

  84. Warrington NM, Howe LD, Paternoster L, Kaakinen M, Herrala S, Huikari V, et al. A genome-wide association study of body mass index across early life and childhood. Int J Epidemiol. 2015;44(2):700–12. https://doi.org/10.1093/ije/dyv077.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Couto-Alves A, De Silva NMG, Karhunen V, Sovio U, Das S, Taal HR, et al. GWAS on longitudinal growth traits reveals different genetic factors influencing infant, child, and adult BMI. Sci Adv. 2019;5(9):3095. https://doi.org/10.1126/sciadv.aaw3095.

    Article  CAS  Google Scholar 

  86. Li G, Yin J, Fu J, Li L, Grant SFA, Li C, et al. FGF21 deficiency is associated with childhood obesity, insulin resistance and hypoadiponectinaemia: The BCAMS Study. Diabetes Metab. 2017;43(3):253–60. https://doi.org/10.1016/j.diabet.2016.12.003.

    Article  CAS  PubMed  Google Scholar 

  87. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206. https://doi.org/10.1038/nature14177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. 2009;41(1):25–34. https://doi.org/10.1038/ng.287.

    Article  CAS  PubMed  Google Scholar 

  89. Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015;373(10):895–907. https://doi.org/10.1056/NEJMoa1502214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang J, Loos RJ, Powell JE, Medland SE, Speliotes EK, Chasman DI, et al. FTO genotype is associated with phenotypic variability of body mass index. Nature. 2012;490(7419):267–72. https://doi.org/10.1038/nature11401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318(5855):1469–72. https://doi.org/10.1126/science.1151710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Bruning JC, et al. Inactivation of the Fto gene protects from obesity. Nature. 2009;458(7240):894–8.

    CAS  PubMed  Google Scholar 

  93. Stratigopoulos G, Martin Carli JF, O’Day DR, Wang L, Leduc CA, Lanzano P, et al. Hypomorphism for RPGRIP1L, a ciliary gene vicinal to the FTO locus, causes increased adiposity in mice. Cell Metab. 2014;19(5):767–79. https://doi.org/10.1016/j.cmet.2014.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gomez-Marin C, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507(7492):371–5. https://doi.org/10.1038/nature13138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nat Rev Genet. 2018;19(9):581–90. https://doi.org/10.1038/s41576-018-0018-x.

    Article  CAS  PubMed  Google Scholar 

  96. Khera AV, Chaffin M, Wade KH, Zahid S, Brancale J, Xia R, et al. Polygenic prediction of weight and obesity trajectories from birth to adulthood. Cell. 2019;177(3):587–96. https://doi.org/10.1016/j.cell.2019.03.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Torkamani A, Topol E. Polygenic risk scores expand to obesity. Cell. 2019;177(3):518–20. https://doi.org/10.1016/j.cell.2019.03.051.

    Article  CAS  PubMed  Google Scholar 

  98. Butler EM, Derraik JGB, Taylor RW, Cutfield WS. Prediction models for early childhood obesity: applicability and existing issues. Horm Res Paediatr. 2018;90(6):358–67. https://doi.org/10.1159/000496563.

    Article  CAS  PubMed  Google Scholar 

  99. Wang DX, Kaur Y, Alyass A, Meyre D. A candidate-gene approach identifies novel associations between common variants in/near syndromic obesity genes and BMI in pediatric and adult European populations. Diabetes. 2019;68(4):724–32. https://doi.org/10.2337/db18-0986.

    Article  CAS  PubMed  Google Scholar 

  100. Pigeyre M, Yazdi FT, Kaur Y, Meyre D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci (Lond). 2016;130(12):943–86. https://doi.org/10.1042/CS20160136.

    Article  CAS  PubMed  Google Scholar 

  101. Srivastava G, Apovian C. Future pharmacotherapy for obesity: new anti-obesity drugs on the horizon. Curr Obes Rep. 2018;7(2):147–61. https://doi.org/10.1007/s13679-018-0300-4.

    Article  PubMed  Google Scholar 

  102. Kumar KG, Sutton GM, Dong JZ, Roubert P, Plas P, Halem HA, et al. Analysis of the therapeutic functions of novel melanocortin receptor agonists in MC3R- and MC4R-deficient C57BL/6J mice. Peptides. 2009;30(10):1892–900. https://doi.org/10.1016/j.peptides.2009.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Low MJ. Neuroendocrinology: new hormone treatment for obesity caused by POMC-deficiency. Nat Rev Endocrinol. 2016;12(11):627–8. https://doi.org/10.1038/nrendo.2016.156.

    Article  CAS  PubMed  Google Scholar 

  104. Kuhnen P, Clement K, Wiegand S, Blankenstein O, Gottesdiener K, Martini LL, et al. Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. N Engl J Med. 2016;375(3):240–6. https://doi.org/10.1056/NEJMoa1512693.

    Article  CAS  PubMed  Google Scholar 

  105. Rhythm Pharmaceuticals I. Product pipeline: peptide therapeutics for rare genetic deficiencies resulting in life-threatening metabolic disorders. 2017. http://www.rhythmtx.com/pipeline/product-pipeline/. Accessed 22 Mar 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Struan F. A. Grant.

Ethics declarations

Funding

This work was supported by a grant from the National Institute of Child Health and Human Development (R01HD056465).

Conflicts of interest

The authors SHL and SFAG declare that they have no conflicts of interest. RIB has received funding from research grants provided to Children’s Hospital of Philadelphia from Eisai Inc. and NovoNordisk.

Author contributions

SHL contributed the design of the manuscript. All authors drafted, revised, and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Littleton, S.H., Berkowitz, R.I. & Grant, S.F.A. Genetic Determinants of Childhood Obesity. Mol Diagn Ther 24, 653–663 (2020). https://doi.org/10.1007/s40291-020-00496-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-020-00496-1

Navigation