Skip to main content
Log in

Analytical and Potential Clinical Performance of Oncomine Myeloid Research Assay for Myeloid Neoplasms

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Introduction

Next-generation sequencing (NGS) panels have recently been introduced to efficiently detect genetic variations in hematologic malignancies.

Objectives

Our aim was to evaluate the performance of the commercialized Oncomine™ myeloid research assay (OMA) for myeloid neoplasms.

Methods

Certified reference materials and clinical research samples were used, including 60 genomic DNA and 56 RNA samples. NGS was performed using OMA, which enables the interrogation of 40 target genes, 29 gene fusions, and five expression target genes with five expression control genes by the Ion S5 XL Sequencer. The analyzed data were compared with clinical data using karyotyping, reverse transcription polymerase chain reaction (PCR), fluorescence in situ hybridization, Sanger sequencing, customized NGS panel, and fragment analysis.

Results

All targets of reference materials were detected except three (two ASXL1 and one CEBPA) mutations, which we had not expected OMA to detect. In clinical search samples, OMA satisfactorily identified DNA variants, including 90 single nucleotide variants (SNVs), 48 small insertions and deletions (indels), and eight FLT3 internal tandem duplications (ITDs) (Kappa agreement 0.938). The variant allele frequencies of SNVs and indels measured by OMA correlated well with clinical data, whereas those of FLT3-ITDs were significantly lower than with fragment analysis (P = 0.008). Together, OMA showed strong ability to identify RNA gene fusions (Kappa agreement 0.961), except one RUNX1-MECOM. The MECOM gene was highly expressed in all five samples with MECOM-associated rearrangements, including inv(3), t(3;3), and t(3;21).

Conclusion

OMA revealed excellent analytical and potential clinical performance and could be a good replacement for conventional molecular tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Luthra R, Patel KP, Reddy NG, Haghshenas V, Routbort MJ, Harmon MA, et al. Next-generation sequencing-based multigene mutational screening for acute myeloid leukemia using MiSeq: applicability for diagnostics and disease monitoring. Haematologica. 2014;99(3):465–73. https://doi.org/10.3324/haematol.2013.093765.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Shumilov E, Flach J, Kohlmann A, Banz Y, Bonadies N, Fiedler M, et al. Current status and trends in the diagnostics of AML and MDS. Blood Rev. 2018;32(6):508–19. https://doi.org/10.1016/j.blre.2018.04.008.

    Article  PubMed  Google Scholar 

  3. Bacher U, Shumilov E, Flach J, Porret N, Joncourt R, Wiedemann G, et al. Challenges in the introduction of next-generation sequencing (NGS) for diagnostics of myeloid malignancies into clinical routine use. Blood Cancer J. 2018;8(11):113. https://doi.org/10.1038/s41408-018-0148-6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alonso CM, Llop M, Sargas C, Pedrola L, Panadero J, Hervas D, et al. Clinical utility of a next-generation sequencing panel for acute myeloid leukemia diagnostics. J Mol Diagn. 2019;21(2):228–40. https://doi.org/10.1016/j.jmoldx.2018.09.009.

    Article  PubMed  CAS  Google Scholar 

  5. Kim B, Lee H, Jang J, Kim SJ, Lee ST, Cheong JW, et al. Targeted next generation sequencing can serve as an alternative to conventional tests in myeloid neoplasms. PLoS ONE. 2019;14(3):e0212228. https://doi.org/10.1371/journal.pone.0212228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Carbonell D, Suarez-Gonzalez J, Chicano M, Andres-Zayas C, Trivino JC, Rodriguez-Macias G, et al. Next-generation sequencing improves diagnosis, prognosis and clinical management of myeloid neoplasms. Cancers. 2019;11(9):1. https://doi.org/10.3390/cancers11091364.

    Article  CAS  Google Scholar 

  7. Leisch M, Jansko B, Zaborsky N, Greil R, Pleyer L. Next generation sequencing in AML-on the way to becoming a new standard for treatment initiation and/or modulation? Cancers. 2019;11(2):1. https://doi.org/10.3390/cancers11020252.

    Article  CAS  Google Scholar 

  8. Reinig E, Yang F, Traer E, Arora R, Brown S, Rattray R, et al. Targeted next-generation sequencing in myelodysplastic syndrome and chronic myelomonocytic leukemia aids diagnosis in challenging cases and identifies frequent spliceosome mutations in transformed acute myeloid leukemia. Am J Clin Pathol. 2016;145(4):497–506. https://doi.org/10.1093/ajcp/aqw016.

    Article  PubMed  CAS  Google Scholar 

  9. Malmberg EB, Stahlman S, Rehammar A, Samuelsson T, Alm SJ, Kristiansson E, et al. Patient-tailored analysis of minimal residual disease in acute myeloid leukemia using next-generation sequencing. Eur J Haematol. 2017;98(1):26–37. https://doi.org/10.1111/ejh.12780.

    Article  PubMed  CAS  Google Scholar 

  10. Hussaini MO, Mirza AS, Komrokji R, Lancet J, Padron E, Song J. Genetic landscape of acute myeloid leukemia interrogated by next-generation sequencing: a large cancer center experience. Cancer Genomics Proteomics. 2018;15(2):121–6. https://doi.org/10.21873/cgp.20070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Shahsiah R, DeKoning J, Samie S, Latifzadeh SZ, Kashi ZM. Validation of a next generation sequencing panel for detection of hotspot cancer mutations in a clinical laboratory. Pathol Res Pract. 2017;213(2):98–105. https://doi.org/10.1016/j.prp.2016.11.016.

    Article  PubMed  CAS  Google Scholar 

  12. Williams HL, Walsh K, Diamond A, Oniscu A, Deans ZC. Validation of the OncomineTM focus panel for next-generation sequencing of clinical tumour samples. Virchows Archiv Int J Pathol. 2018;473(4):489–503. https://doi.org/10.1007/s00428-018-2411-4.

    Article  CAS  Google Scholar 

  13. Haslam K, Catherwood MA, Dobbin E, Sproul A, Langabeer SE, Mills KI. Inter-laboratory evaluation of a next-generation sequencing panel for acute myeloid leukemia. Mol Diagn Ther. 2016;20(5):457–61. https://doi.org/10.1007/s40291-016-0222-3.

    Article  PubMed  CAS  Google Scholar 

  14. Deans ZC, Costa JL, Cree I, Dequeker E, Edsjo A, Henderson S, et al. Integration of next-generation sequencing in clinical diagnostic molecular pathology laboratories for analysis of solid tumours; an expert opinion on behalf of IQN Path ASBL. Virchows Archiv Int J Pathol. 2017;470(1):5–20. https://doi.org/10.1007/s00428-016-2025-7.

    Article  CAS  Google Scholar 

  15. Roy S, Coldren C, Karunamurthy A, Kip NS, Klee EW, Lincoln SE, et al. Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: a joint recommendation of the association for molecular pathology and the College of American Pathologists. J Mol Diagn. 2018;20(1):4–27. https://doi.org/10.1016/j.jmoldx.2017.11.003.

    Article  PubMed  CAS  Google Scholar 

  16. Kim HS, Han E, Jang W, Kim M, Kim Y, Han K, et al. Germline CEBPA mutations in Korean patients with acute myeloid leukemia. Leuk Res. 2019;76:84–6. https://doi.org/10.1016/j.leukres.2018.12.003.

    Article  PubMed  CAS  Google Scholar 

  17. Jung J, Cho BS, Kim HJ, Han E, Jang W, Han K, et al. Reclassification of acute myeloid leukemia according to the 2016 WHO classification. Ann Lab Med. 2019;39(3):311–6. https://doi.org/10.3343/alm.2019.39.3.311.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim Y, Lee GD, Park J, Yoon JH, Kim HJ, Min WS, et al. Quantitative fragment analysis of FLT3-ITD efficiently identifying poor prognostic group with high mutant allele burden or long ITD length. Blood Cancer J. 2015;5:e336. https://doi.org/10.1038/bcj.2015.61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kim Y, Park J, Jo I, Lee GD, Kim J, Kwon A, et al. Genetic-pathologic characterization of myeloproliferative neoplasms. Exp Mol Med. 2016;48(7):e247. https://doi.org/10.1038/emm.2016.55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Jang W, Park J, Kwon A, Choi H, Kim J, Lee GD, et al. CDKN2B downregulation and other genetic characteristics in T-acute lymphoblastic leukemia. Exp Mol Med. 2019;51(1):4. https://doi.org/10.1038/s12276-018-0195-x.

    Article  PubMed Central  CAS  Google Scholar 

  21. Estey EH. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am J Hematol. 2018;93(10):1267–91. https://doi.org/10.1002/ajh.25214.

    Article  PubMed  Google Scholar 

  22. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the association for molecular pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19(1):4–23. https://doi.org/10.1016/j.jmoldx.2016.10.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. https://doi.org/10.1182/blood-2016-08-733196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Izevbaye I, Liang LY, Mather C, El-Hallani S, Maglantay R Jr, Saini L. Clinical validation of a myeloid next-generation sequencing panel for single-nucleotide variants, insertions/deletions, and fusion genes. J Mol Diagn. 2020;22(2):208–19. https://doi.org/10.1016/j.jmoldx.2019.10.002.

    Article  PubMed  CAS  Google Scholar 

  25. Atlas of Genetics and Cytogenetics in Oncology and Haematology. URL https://AtlasGeneticsOncology.org.

  26. Yang JJ, Cho SY, Suh JT, Lee HJ, Lee WI, Yoon HJ, et al. Detection of RUNX1-MECOM fusion gene and t(3;21) in a very elderly patient having acute myeloid leukemia with myelodysplasia-related changes. Ann Lab Med. 2012;32(5):362–5. https://doi.org/10.3343/alm.2012.32.5.362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hinai AA, Valk PJ. Review: Aberrant EVI1 expression in acute myeloid leukaemia. Br J Haematol. 2016;172(6):870–8. https://doi.org/10.1111/bjh.13898.

    Article  PubMed  CAS  Google Scholar 

  28. Larrosa-Garcia M, Baer MR. FLT3 Inhibitors in Acute Myeloid Leukemia: Current Status and Future Directions. Mol Cancer Ther. 2017;16(6):991–1001. https://doi.org/10.1158/1535-7163.Mct-16-0876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Golub TR, Barker GF, Lovett M, Gilliland DG. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell. 1994;77(2):307–16. https://doi.org/10.1016/0092-8674(94)90322-0.

    Article  PubMed  CAS  Google Scholar 

  30. Zhao M, Wang Q, Wang Q, Jia P, Zhao Z. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. BMC Bioinformatics. 2013;14(Suppl 11):S1. https://doi.org/10.1186/1471-2105-14-s11-s1.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Levy MA, Santos S, Kerkhof J, Stuart A, Aref-Eshghi E, Guo F, et al. Implementation of an NGS-based sequencing and gene fusion panel for clinical screening of patients with suspected hematologic malignancies. Eur J Haematol. 2019;103(3):178–89. https://doi.org/10.1111/ejh.13272.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thermo Fisher Scientific (Waltham, MA, USA) provided technical support for Ion Torrent sequencing in this study but was not involved in data collection or manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonggoo Kim or Myungshin Kim.

Ethics declarations

Funding

This research was supported by a Grant (18172MFDS182) from the Korean Ministry of Food and Drug Safety in 2020.

Conflict of interest

HZ, NAK, JC, and J-WJ are employed at Thermo Fisher, which provided only technical support for this research. JP, HSK, J-ML, JJ, DK, HC, GDL, JS, SP, B-SC, H-JK, SK, JWL, N-GC, BC, YK, and MK have no conflicts of interest that are directly relevant to the content of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 542 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Kim, H.S., Lee, JM. et al. Analytical and Potential Clinical Performance of Oncomine Myeloid Research Assay for Myeloid Neoplasms. Mol Diagn Ther 24, 579–592 (2020). https://doi.org/10.1007/s40291-020-00484-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-020-00484-5

Navigation