Skip to main content
Log in

Modeling the Outcome of Systematic TPMT Genotyping or Phenotyping Before Azathioprine Prescription: A Cost-Effectiveness Analysis

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

Thiopurine S-methyltransferase (TPMT) testing, either by genotyping or phenotyping, can reduce the incidence of adverse severe myelotoxicity episodes induced by azathioprine. The comparative cost-effectiveness of TPMT genotyping and phenotyping are not known.

Objective

Our aim was to assess the cost-effectiveness of phenotyping-based dosing of TPMT activity, genotyping-based screening and no screening (reference) for patients treated with azathioprine.

Methods

A decision tree was built to compare the conventional weight-based dosing strategy with phenotyping and with genotyping using a micro-simulation model of patients with inflammatory bowel disease from the perspective of the French health care system. The time horizon was set up as 1 year. Only direct medical costs were used. Data used were obtained from previous reports, except for screening test and admission costs, which were from real cases. The main outcome was the cost-effectiveness ratios, with an effectiveness criterion of one averted severe myelotoxicity episode.

Results

The total expected cost of the no screening strategy was €409/patient, the total expected cost of the phenotyping strategy was €427/patient, and the total expected cost of the genotyping strategy was €476/patient. The incremental cost-effectiveness ratio was €2602/severe myelotoxicity averted in using the phenotyping strategy, and €11,244/severe myelotoxicity averted in the genotyping strategy compared to the no screening strategy. At prevalence rates of severe myelotoxicity > 1%, phenotyping dominated genotyping and conventional strategies.

Conclusion

The phenotype-based strategy to screen for TPMT deficiency dominates (cheaper and more effective) the genotype-based screening strategy in France. Phenotype-based screening dominates no screening in populations with a prevalence of severe myelosuppression due to azathioprine of > 1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chouchana L, Narjoz C, Beaune P, Loriot M-A, Roblin X. Review article: the benefits of pharmacogenetics for improving thiopurine therapy in inflammatory bowel disease. Aliment Pharmacol Ther. 2012;35:15–36.

    Article  CAS  PubMed  Google Scholar 

  2. Allison AC. Immunosuppressive drugs: the first 50 years and a glance forward. Immunopharmacology. 2000;47:63–83.

    Article  CAS  PubMed  Google Scholar 

  3. Halloran PF. Immunosuppressive drugs for kidney transplantation. NEJM. 2004;351:2715–29.

    Article  CAS  PubMed  Google Scholar 

  4. Petit E, Langouet S, Akhdar H, Nicolas-Nicolaz C, Guillouzo A, Morel F. Differential toxic effects of azathioprine, 6-mercaptopurine and 6-thioguanine on human hepatocytes. Toxicol In Vitro. 2007;22:632–42.

    Article  CAS  Google Scholar 

  5. Karran P, Attard N. Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer. 2008;8:24–36.

    Article  CAS  PubMed  Google Scholar 

  6. Taylor AL, Watson CJ, Bradley JA. Immunosuppressive agents in solid organ transplantation: mechanisms of action and therapeutic efficacy. Crit Rev Oncol Hematol. 2005;56:23–46.

    Article  PubMed  Google Scholar 

  7. Stet EH, Abreu RAD, Janssen YP, Bökkerink JP, Trijbels FJ. A biochemical basis for synergism of 6-mercaptopurine and mycophenolic acid in Molt F4, a human malignant T-lymphoblastic cell line. Biochem Biophys Acta. 1993;1180:277–82.

    CAS  PubMed  Google Scholar 

  8. Huang H-Y, Chang H-F, Tsai M-J, Chen J-S, Wang M-J. 6-mercaptopurine attenuates tumor necrosis factor-α production in microglia through Nur77-mediated transrepression and PI3K/Akt/mTOR signaling-mediated translational regulation. J Neuroinflamm. 2016;13(78):1–20.

    Google Scholar 

  9. Zochowska D, Zegarska J, Hryniewiecka E, Samborowska E, Jazwiec R, Tszyrsznic W, et al. Determination of concentrations of azathioprine metabolites 6-thioguanine and 6-methylmercaptopurine in whole blood with the use of liquid chromatography combined with mass spectrometry. Transplant Proc. 2016;48:1836–9.

    Article  CAS  PubMed  Google Scholar 

  10. Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann F-A, Zhao X, et al. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet. 2016;48:367–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ansari A, Hassan C, Duley J, Marinaki A, Shobowale-Bakre EM, Seed P, et al. Thiopurine methyltransferase activity and the use of azathioprine in inflammatory bowel disease. Aliment Pharmacol Ther. 2002;16(10):1743–50.

    Article  CAS  PubMed  Google Scholar 

  12. Gardiner SJ, Begg EJ. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev. 2006;58(3):521–90.

    Article  CAS  PubMed  Google Scholar 

  13. Gardiner SJ, Gearry RB, Barclay ML, Begg EJ. Two cases of thiopurine methyltransferase (TPMT) deficiency—a lucky save and a near miss with azathioprine. Br J Clin Pharmacol. 2006;62(4):473–6.

    Article  CAS  PubMed  Google Scholar 

  14. Priest VL, Begg EJ, Gardiner SJ, Frampton CM, Gearry RB, Barclay ML, et al. Pharmacoeconomic analyses of azathioprine, methotrexate and prospective pharmacogenetic testing for the management of inflammatory bowel disease. Pharmacoeconomics. 2006;24(8):767–81.

    Article  PubMed  Google Scholar 

  15. Gisbert JP, Gomollon F. Thiopurine-induced myelotoxicity in patients with inflammatory bowel disease: a review. Am J Gastroenterol. 2008;103(7):1783–800.

    Article  PubMed  Google Scholar 

  16. Krynetski EY, Evans WE. Genetic polymorphism of thiopurine S-methyltransferase: molecular mechanisms and clinical importance. Pharmacology. 2000;61(3):136–46.

    Article  CAS  PubMed  Google Scholar 

  17. McLeod HL, Krynetski EY, Relling MV, Evans WE. Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia. 2000;14(4):567–72.

    Article  CAS  PubMed  Google Scholar 

  18. Connell WR, Kamm MA, Ritchie JK, Lennard-Jones JE. Bone marrow toxicity caused by azathioprine in inflammatory bowel disease: 27 years of experience. Gut. 1993;34(8):1081–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bergan S, Bentdal O, Sodal G, Brun A, Rugstad HE, Stokke O. Patterns of azathioprine metabolites in neutrophils, lymphocytes, reticulocytes, and erythrocytes: relevance to toxicity and monitoring in recipients of renal allografts. Ther Drug Monit. 1997;19(5):502–9.

    Article  CAS  PubMed  Google Scholar 

  20. Schwab M, Schaffeler E, Marx C, Fischer C, Lang T, Behrens C, et al. Azathioprine therapy and adverse drug reactions in patients with inflammatory bowel disease: impact of thiopurine S-methyltransferase polymorphism. Pharmacogenetics. 2002;12(6):429–36.

    Article  CAS  PubMed  Google Scholar 

  21. Jeurissen ME, Boerbooms AM, van de Putte LB. Pancytopenia related to azathioprine in rheumatoid arthritis. Ann Rheum Dis. 1988;47(6):503–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zelinkova Z, Derijks LJ, Stokkers PC, Vogels EW, van Kampen AH, Curvers WL, et al. Inosine triphosphate pyrophosphatase and thiopurine S-methyltransferase genotypes relationship to azathioprine-induced myelosuppression. Clin Gastroenterol Hepatol. 2006;4(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  23. Hartford C, Vasquez E, Schwab M, Edick MJ, Rehg JE, Grosveld G, et al. Differential effects of targeted disruption of thiopurine methyltransferase on mercaptopurine and thioguanine pharmacodynamics. Cancer Res. 2007;67(10):4965–72.

    Article  CAS  PubMed  Google Scholar 

  24. Dewit O, Moreels T, Baert F, Peeters H, Reenaers C, de Vos M, et al. Limitations of extensive TPMT genotyping in the management of azathioprine-induced myelosuppression in IBD patients. Clin Biochem. 2011;44(13):1062–6.

    Article  CAS  PubMed  Google Scholar 

  25. Colombel JF, Ferrari N, Debuysere H, Marteau P, Gendre JP, Bonaz B, et al. Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology. 2000;118(6):1025–30.

    Article  CAS  PubMed  Google Scholar 

  26. Chouchana L, Narjoz C, Roche D, Golmard JL, Pineau B, Chatellier G, et al. Interindividual variability in TPMT enzyme activity: 10 years of experience with thiopurine pharmacogenetics and therapeutic drug monitoring. Pharmacogenomics. 2014;15(6):745–57.

    Article  CAS  PubMed  Google Scholar 

  27. Szumlanski CL, Honchel R, Scott MC, Weinshilboum RM. Human liver thiopurine methyltransferase pharmacogenetics: biochemical properties, liver-erythrocyte correlation and presence of isozymes. Pharmacogenetics. 1992;2(4):148–59.

    Article  CAS  PubMed  Google Scholar 

  28. Ganiere-Monteil C, Medard Y, Lejus C, Bruneau B, Pineau A, Fenneteau O, et al. Phenotype and genotype for thiopurine methyltransferase activity in the French Caucasian population: impact of age. Eur J Clin Pharmacol. 2004;60(2):89–96.

    Article  CAS  PubMed  Google Scholar 

  29. Hindorf U, Peterson C, Almer S. Assessment of thiopurine methyltransferase and metabolite formation during thiopurine therapy: results from a large Swedish patient population. Ther Drug Monit. 2004;26(6):673–8.

    Article  CAS  PubMed  Google Scholar 

  30. Krijkamp EM, Alarid-Escudero F, Enns EA, Jalal HJ, Hunink MGM, Pechlivanoglou P. Microsimulation modeling for health decision sciences using R: a tutorial. Med Decis Mak. 2018;38(3):400–22.

    Article  Google Scholar 

  31. Serpe L, Calvo PL, Muntoni E, D’Antico S, Giaccone M, Avagnina A, et al. Thiopurine S-methyltransferase pharmacogenetics in a large-scale healthy Italian-Caucasian population: differences in enzyme activity. Pharmacogenomics. 2009;10(11):1753–65.

    Article  CAS  PubMed  Google Scholar 

  32. Lennard L, Cartwright CS, Wade R, Richards SM, Vora A. Thiopurine methyltransferase genotype-phenotype discordance and thiopurine active metabolite formation in childhood acute lymphoblastic leukaemia. Br J Clin Pharmacol. 2013;76(1):125–36.

    Article  CAS  PubMed  Google Scholar 

  33. Milek M, Karas Kuzelicki N, Smid A, Mlinaric-Rascan I. S-adenosylmethionine regulates thiopurine methyltransferase activity and decreases 6-mercaptopurine cytotoxicity in MOLT lymphoblasts. Biochem Pharmacol. 2009;77(12):1845–53.

    Article  CAS  PubMed  Google Scholar 

  34. Mircheva J, Legendre C, Soria-Royer C, Thervet E, Beaune P, Kreis H. Monitoring of azathioprine-induced immunosuppression with thiopurine methyltransferase activity in kidney transplant recipients. Transplantation. 1995;60(7):639–42.

    Article  CAS  PubMed  Google Scholar 

  35. Schaeffeler E, Fischer C, Brockmeier D, Wernet D, Moerike K, Eichelbaum M, et al. Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics. 2004;14(7):407–17.

    Article  CAS  PubMed  Google Scholar 

  36. Kirchgesner J, Lemaitre M, Rudnichi A, Racine A, Zureik M, Carbonnel F, et al. Therapeutic management of inflammatory bowel disease in real-life practice in the current era of anti-TNF agents: analysis of the French administrative health databases 2009–2014. Aliment Pharmacol Ther. 2017;45(1):37–49.

    Article  CAS  PubMed  Google Scholar 

  37. Roblin X, Oussalah A, Chevaux JB, Sparrow M, Peyrin-Biroulet L. Use of thiopurine testing in the management of inflammatory bowel diseases in clinical practice: a worldwide survey of experts. Inflamm Bowel Dis. 2011;17(12):2480–7.

    Article  PubMed  Google Scholar 

  38. Oh KT, Anis AH, Bae SC. Pharmacoeconomic analysis of thiopurine methyltransferase polymorphism screening by polymerase chain reaction for treatment with azathioprine in Korea. Rheumatology (Oxford). 2004;43(2):156–63.

    Article  CAS  Google Scholar 

  39. Winter J, Walker A, Shapiro D, Gaffney D, Spooner RJ, Mills PR. Cost-effectiveness of thiopurine methyltransferase genotype screening in patients about to commence azathioprine therapy for treatment of inflammatory bowel disease. Aliment Pharmacol Ther. 2004;20(6):593–9.

    Article  CAS  PubMed  Google Scholar 

  40. Dubinsky MC, Reyes E, Ofman J, Chiou CF, Wade S, Sandborn WJ. A cost-effectiveness analysis of alternative disease management strategies in patients with Crohn’s disease treated with azathioprine or 6-mercaptopurine. Am J Gastroenterol. 2005;100(10):2239–47.

    Article  CAS  PubMed  Google Scholar 

  41. van den Akker-van Marle ME, Gurwitz D, Detmar SB, Enzing CM, Hopkins MM, Gutierrez de Mesa E, et al. Cost-effectiveness of pharmacogenomics in clinical practice: a case study of thiopurine methyltransferase genotyping in acute lymphoblastic leukemia in Europe. Pharmacogenomics. 2006;7(5):783–92.

    Article  PubMed  Google Scholar 

  42. Hagaman JT, Kinder BW, Eckman MH. Thiopurine S-methyltransferase [corrected] testing in idiopathic pulmonary fibrosis: a pharmacogenetic cost-effectiveness analysis. Lung. 2010;188(2):125–32.

    Article  PubMed  Google Scholar 

  43. Thompson AJ, Newman WG, Elliott RA, Roberts SA, Tricker K, Payne K. The cost-effectiveness of a pharmacogenetic test: a trial-based evaluation of TPMT genotyping for azathioprine. Value Health. 2014;17(1):22–33.

    Article  PubMed  Google Scholar 

  44. Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, et al. Consolidated health economic evaluation reporting standards (CHEERS) statement. BMJ. 2013;346:f1049.

    Article  PubMed  Google Scholar 

  45. Newman WG, Payne K, Tricker K, Roberts SA, Fargher E, Pushpakom S, et al. A pragmatic randomized controlled trial of thiopurine methyltransferase genotyping prior to azathioprine treatment: the TARGET study. Pharmacogenomics. 2011;12(6):815–26.

    Article  CAS  PubMed  Google Scholar 

  46. Anglicheau D, Sanquer S, Loriot MA, Beaune P, Thervet E. Thiopurine methyltransferase activity: new conditions for reversed-phase high-performance liquid chromatographic assay without extraction and genotypic-phenotypic correlation. J Chromatogr B. 2002;773(2):119–27.

    Article  CAS  Google Scholar 

  47. Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC, Krynetski EY, et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst. 1999;91(23):2001–8.

    Article  CAS  PubMed  Google Scholar 

  48. Naughton MA, Battaglia E, O’Brien S, Walport MJ, Botto M. Identification of thiopurine methyltransferase (TPMT) polymorphisms cannot predict myelosuppression in systemic lupus erythematosus patients taking azathioprine. Rheumatology (Oxford). 1999;38(7):640–4.

    Article  CAS  Google Scholar 

  49. Ishioka S, Hiyama K, Sato H, Yamanishi Y, McLeod HL, Kumagai K, et al. Thiopurine methyltransferase genotype and the toxicity of azathioprine in Japanese. Intern Med. 1999;38(12):944–7.

    Article  CAS  PubMed  Google Scholar 

  50. Gisbert JP, Luna M, Mate J, Gonzalez-Guijarro L, Cara C, Pajares JM. Choice of azathioprine or 6-mercaptopurine dose based on thiopurine methyltransferase (TPMT) activity to avoid myelosuppression. A prospective study. Hepatogastroenterology. 2006;53(69):399–404.

    CAS  PubMed  Google Scholar 

  51. Briggs A, Sculpher M, Claxton K. Decision modelling for health economic evaluation. Oxford: Oxford University Press; 2006.

    Google Scholar 

  52. Verbelen M, Weale ME, Lewis CM. Cost-effectiveness of pharmacogenetic-guided treatment: are we there yet? Pharmacogenomics J. 2017;17(5):395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lennard L. Implementation of TPMT testing. Br J Clin Pharmacol. 2014;77(4):704–14.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Pallet.

Ethics declarations

Funding

No funding to declare.

Conflict of interest

The authors (KV, IDZ, MAL, GC and NP) declare that they have no competing interests.

Ethical approval and informed consent

This study did not involve human subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarca, K., Durand-Zaleski, I., Loriot, MA. et al. Modeling the Outcome of Systematic TPMT Genotyping or Phenotyping Before Azathioprine Prescription: A Cost-Effectiveness Analysis. Mol Diagn Ther 23, 429–438 (2019). https://doi.org/10.1007/s40291-019-00398-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-019-00398-x

Navigation