Skip to main content
Log in

Identification of Candidate Biomarkers for Transplant Rejection from Transcriptome Data: A Systematic Review

  • Systematic Review
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

Traditional methods for rejection control in transplanted patients are considered invasive, risky, and prone to sampling errors. Using molecular biomarkers as an alternative protocol to biopsies, for monitoring rejection may help to mitigate some of these problems, increasing the survival rates and well-being of patients. Recent advances in omics technologies provide an opportunity for screening new molecular biomarkers to identify those with clinical utility.

Objective

This systematic literature review (SLR) aimed to summarize existing evidence derived from large-scale expression profiling regarding differentially expressed mRNA and miRNA in graft rejection, highlighting potential molecular biomarkers in transplantation.

Methods

The study was conducted following PRISMA methodology and the BiSLR guide for performing SLR in bioinformatics. PubMed, ScienceDirect, and EMBASE were searched for publications from January 2001 to January 2018, and studies (i) aiming at the identification of transplant rejection biomarkers, (ii) including human subjects, and (iii) applying methodologies for differential expression analysis from large-scale expression profiling were considered eligible. Differential expression patterns reported for genes and miRNAs in rejection were summarized from both cross-organ and organ-specific perspectives, and pathways enrichment analysis was performed for candidate biomarkers to interrogate their functional role in transplant rejection.

Results

A total of 821 references were collected, resulting in 604 studies after removal of duplicates. After application of inclusion and exclusion criteria, 33 studies were included in our analysis. Among the 1517 genes and 174 miRNAs identifed, CXCL9, CXCL10, STAT1, hsa-miR-142-3p, and hsa-miR-155 appeared to be particularly promising as biomarkers in transplantation, with an increased expression associated with transplant rejection in multiple organs. In addition, hsa-miR-28-5p was consistently decreased in samples taken from rejected organs.

Conclusion

Despite the need for further research to fill existing knowledge gaps, transcriptomic technologies have a relevant role in the discovery of accurate biomarkers for transplant rejection diagnostics. Studies have reported consistent evidence of differential expression associated with transplant rejection, although issues such as experimental heterogeneity hinder a more systematic characterization of observed molecular changes. Special attention has been giving to large-scale mRNA expression profiling in rejection, whereas there is still room for improvements in the characterization of miRnome in this condition.

PROSPERO Registration Number

CRD42018083321.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khatri P, Roedder S, Kimura N, et al. A common rejection module (CRM) for acute rejection across multiple organs identifies novel therapeutics for organ transplantation. J Exp Med. 2013;210:2205–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rana A, Ackah RL, Webb GJ, et al. No gains in long-term survival after liver transplantation over the past three decades. Ann Surg. 2019;269:20–7.

    Article  PubMed  Google Scholar 

  3. Wang A, Sarwal MM. Computational models for transplant biomarker discovery. Front Immunol. 2015;6:458.

    PubMed  PubMed Central  Google Scholar 

  4. Wilhelm MJ. Long-term outcome following heart transplantation: current perspective. J Thorac Dis. 2015;7:549–51.

    PubMed  PubMed Central  Google Scholar 

  5. Ettenger R, Albrecht R, Alloway R. Meeting report: FDA public meeting on patient-focused drug development and medication adherence in solid organ transplant patients. Am J Transplant. 2018;18(3):564–73.

    Article  PubMed  Google Scholar 

  6. Baron D, Ramstein G, Chesneau M, et al. A common gene signature across multiple studies relate biomarkers and functional regulation in tolerance to renal allograft. Kidney Int. 2015;87:984–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Loftheim H, Midtvedt K, Hartmann A, et al. Urinary proteomic shotgun approach for identification of potential acute rejection biomarkers in renal transplant recipients. Transplant Res. 2012;1:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Einecke G, Reeve J, Sis B, et al. A molecular classifier for predicting future graft loss in late kidney transplant biopsies. J Clin Invest. 2010;120:1862–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burke HB. Predicting clinical outcomes using molecular biomarkers. Biomark Cancer. 2016;8:89–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mas VR, Dumur CI, Scian MJ, et al. MicroRNAs as biomarkers in solid organ transplantation. Am J Transplant. 2013;13:11–9.

    Article  CAS  PubMed  Google Scholar 

  11. Sirota M, Sarwal MM. Transplantomics: toward precision medicine in transplantation research. Transplantation. 2017;101:1777–82.

    Article  PubMed  Google Scholar 

  12. Naesens M, Sarwal MM. Molecular diagnostics in transplantation. Nat Rev Nephrol. 2010;6:614–28.

    Article  CAS  PubMed  Google Scholar 

  13. Ritchie MD, Holzinger ER, Li R, et al. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet. 2015;16:85–97.

    Article  CAS  PubMed  Google Scholar 

  14. Mariano DCB, Leite C, Santos LHS, et al. A guide to performing systematicQuery literature reviews in bioinformatics. 2017. Technical report—RT.DCC.002/2017. arXiv [q-bio.QM]. 2017. https://arxiv.org/abs/1707.05813. Accessed 25 Mar 2019.

  15. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wain HM, Bruford EA, Lovering RC, et al. Guidelines for human gene nomenclature. Genomics. 2002;79:464–70.

    Article  CAS  PubMed  Google Scholar 

  17. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  Google Scholar 

  18. Kanehisa M, Furumichi M, Tanabe M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–61.

    Article  CAS  PubMed  Google Scholar 

  19. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998;52:377–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Flechner SM, Kurian SM, Head SR, et al. Kidney transplant rejection and tissue injury by gene profiling of biopsies and peripheral blood lymphocytes. Am J Transplant. 2004;4:1475–89.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen R, Sigdel TK, Li L, et al. Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions. PLoS Comput Biol. 2010;6(9):e1000940. https://doi.org/10.1371/journal.pcbi.1000940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gregson AL, Hoji A, Injean P, et al. Altered exosomal RNA profiles in bronchoalveolar lavage from lung transplants with acute rejection. Am J Respir Crit Care Med. 2015;192:1490–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gimino VJ, Lande JD, Berryman TR, et al. Gene expression profiling of bronchoalveolar lavage cells in acute lung rejection. Am J Respir Crit Care Med. 2003;168:1237–42.

    Article  PubMed  Google Scholar 

  24. Lu BS, Yu AD, Zhu X, et al. Sequential gene expression profiling in lung transplant recipients with chronic rejection. Chest. 2006;130:847–54.

    Article  CAS  PubMed  Google Scholar 

  25. Chen Y, Zhang H, Xiao X, et al. Peripheral blood transcriptome sequencing reveals rejection-relevant genes in long-term heart transplantation. Int J Cardiol. 2013;168:2726–33.

    Article  PubMed  Google Scholar 

  26. Lin D, Hollander Z, Ng RT, et al. Whole blood genomic biomarkers of acute cardiac allograft rejection. J Heart Lung Transplant. 2009;28:927–35.

    Article  PubMed  Google Scholar 

  27. Alakulppi N, Seikku P, Jaatinen T, et al. Feasibility of diagnosing subclinical renal allograft rejection in children by whole blood gene expression analysis. Transplantation. 2008;86:1222–8.

    Article  PubMed  Google Scholar 

  28. Hollander Z, Lin D, Chen V, et al. Whole blood biomarkers of acute cardiac allograft rejection: double-crossing the biopsy. Transplantation. 2010;90:1388–93.

    Article  CAS  PubMed  Google Scholar 

  29. Karason K, Jernås M, Hägg DA, Svensson P-A. Evaluation of CXCL9 and CXCL10 as circulating biomarkers of human cardiac allograft rejection. BMC Cardiovasc Disord. 2006;6:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vitalone MJ, Sigdel TK, Salomonis N, et al. Transcriptional perturbations in graft rejection. Transplantation. 2015;99:1882–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilflingseder J, Regele H, Perco P, et al. miRNA profiling discriminates types of rejection and injury in human renal allografts. Transplantation. 2013;95:835–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scherer A, Krause A, Walker JR, et al. Early prognosis of the development of renal chronic allograft rejection by gene expression profiling of human protocol biopsies. Transplantation. 2003;75:1323–30.

    Article  CAS  PubMed  Google Scholar 

  33. Rascio F, Pontrelli P, Accetturo M, et al. A type I interferon signature characterizes chronic antibody-mediated rejection in kidney transplantation. J Pathol. 2015;237:72–84.

    Article  CAS  PubMed  Google Scholar 

  34. Horwitz PA, Tsai EJ, Putt ME, et al. Detection of cardiac allograft rejection and response to immunosuppressive therapy with peripheral blood gene expression. Circulation. 2004;110:3815–21.

    Article  CAS  PubMed  Google Scholar 

  35. Loupy A, Duong Van Huyen JP, Hidalgo L, et al. Gene expression profiling for the identification and classification of antibody-mediated heart rejection. Circulation. 2017;135:917–35.

    Article  CAS  PubMed  Google Scholar 

  36. Shen Z, Gong W. Identification of candidate biomarkers in peripheral blood for cardiac allograft rejection based on bioinformatics analysis. Ann Transplant. 2015;20:312–9.

    Article  PubMed  Google Scholar 

  37. Venner JM, Hidalgo LG, Famulski KS, et al. The molecular landscape of antibody-mediated kidney transplant rejection: evidence for NK involvement through CD16a Fc receptors. Am J Transplant. 2015;15:1336–48.

    Article  CAS  PubMed  Google Scholar 

  38. Talayero P, Alonso-Guirado L, Padilla G, et al. 5-Gene differential expression predicts stability of human intestinal allografts. Exp Mol Pathol. 2017;103:163–71.

    Article  CAS  PubMed  Google Scholar 

  39. Chen W, Peng W, Huang J, et al. Microarray analysis of long non-coding RNA expression in human acute rejection biopsy samples following renal transplantation. Mol Med Rep. 2014;10:2210–6.

    Article  CAS  PubMed  Google Scholar 

  40. Günther OP, Balshaw RF, Scherer A, et al. Functional genomic analysis of peripheral blood during early acute renal allograft rejection. Transplantation. 2009;88:942–51.

    Article  CAS  PubMed  Google Scholar 

  41. Sotolongo B, Asaoka T, Island E, et al. Gene expression profiling of microRNAs in small-bowel transplantation paraffin-embedded mucosal biopsy tissue. Transplant Proc. 2010;42:62–5.

    Article  CAS  PubMed  Google Scholar 

  42. Bodez D, Hocini H, Tchitchek N, et al. Myocardial gene expression profiling to predict and identify cardiac allograft acute cellular rejection: the GET-Study. PLoS One. 2016;11:e0167213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shannon CP, Hollander Z, Wilson-McManus J, et al. White blood cell differentials enrich whole blood expression data in the context of acute cardiac allograft rejection. Bioinform Biol Insights. 2012;6:49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anglicheau D, Sharma VK, Ding R, et al. MicroRNA expression profiles predictive of human renal allograft status. Proc Natl Acad Sci USA. 2009;106:5330–5.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Matz M, Fabritius K, Lorkowski C, et al. Identification of T cell–mediated vascular rejection after kidney transplantation by the combined measurement of 5 specific microRNAs in blood. Transplantation. 2016;100:898–907.

    Article  CAS  PubMed  Google Scholar 

  46. Asaoka T, Sotolongo B, Island ER, et al. MicroRNA signature of intestinal acute cellular rejection in formalin-fixed paraffin-embedded mucosal biopsies. Am J Transplant. 2012;12:458–68.

    Article  CAS  PubMed  Google Scholar 

  47. Liu X, Dong C, Jiang Z, et al. MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11. Exp Cell Res. 2015;333:155–63.

    Article  CAS  PubMed  Google Scholar 

  48. Halloran PF, Famulski KS, Reeve J. Molecular assessment of disease states in kidney transplant biopsy samples. Nat Rev Nephrol. 2016;12:534–48.

    Article  CAS  PubMed  Google Scholar 

  49. Wu Z, Huang X, Han X, et al. The chemokine CXCL9 expression is associated with better prognosis for colorectal carcinoma patients. Biomed Pharmacother. 2016;78:8–13.

    Article  CAS  PubMed  Google Scholar 

  50. Lo DJ, Weaver TA, Kleiner DE, et al. Chemokines and their receptors in human renal allotransplantation. Transplantation. 2011;91:70–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kumar S, Mohapatra N, Borle DP, et al. Non invasive diagnosis of acute cellular rejection after liver transplantation—current opinion. Transpl Immunol. 2018;47:1–9.

    Article  PubMed  Google Scholar 

  52. Chmielewski S, Piaszyk-Borychowska A, Wesoly J, Bluyssen HAR. STAT1 and IRF8 in vascular inflammation and cardiovascular disease: diagnostic and therapeutic potential. Int Rev Immunol. 2016;35:434–54.

    Article  CAS  PubMed  Google Scholar 

  53. Alegre M-L, Lakkis FG, Morelli AE. Antigen presentation in transplantation. Trends Immunol. 2016;37:831–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461. https://doi.org/10.3389/fimmu.2014.00461.

    Article  CAS  PubMed  Google Scholar 

  55. Freue GVC, Cohen Freue GV, Sasaki M, et al. Proteomic signatures in plasma during early acute renal allograft rejection. Mol Cell Proteomics. 2010;9:1954–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sukma Dewi I, Hollander Z, Lam KK, et al. Association of serum MiR-142-3p and MiR-101-3p levels with acute cellular rejection after heart transplantation. PLoS One. 2017;12:e0170842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Seddiki N, Brezar V, Ruffin N, et al. Role of miR-155 in the regulation of lymphocyte immune function and disease. Immunology. 2014;142:32–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Duong Van Huyen J-P, Tible M, Gay A, et al. MicroRNAs as non-invasive biomarkers of heart transplant rejection. Eur Heart J. 2014;35:3194–202.

    Article  CAS  PubMed  Google Scholar 

  59. Danger R, Pallier A, Giral M, et al. Upregulation of miR-142-3p in peripheral blood mononuclear cells of operationally tolerant patients with a renal transplant. J Am Soc Nephrol. 2012;23:597–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Domenico TD, Joelsons G, Montenegro RM, Manfro RC. Upregulation of microRNA 142-3p in the peripheral blood and urinary cells of kidney transplant recipients with post-transplant graft dysfunction. Braz J Med Biol Res. 2017;50:e5533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Anglicheau D, Naesens M, Essig M, et al. Establishing biomarkers in transplant medicine: a critical review of current approaches. Transplantation. 2016;100:2024–38.

    Article  CAS  PubMed  Google Scholar 

  62. Heidt S, San Segundo D, Shankar S, et al. Peripheral blood sampling for the detection of allograft rejection: biomarker identification and validation. Transplantation. 2011;92:1–9.

    Article  CAS  PubMed  Google Scholar 

  63. Paczesny S. Biomarkers for posttransplantation outcomes. Blood. 2018;131:2193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Khush K, Zarafshar S. Molecular diagnostic testing in cardiac transplantation. Curr Cardiol Rep. 2017;19:118.

    Article  PubMed  Google Scholar 

  65. Nissaisorakarn V, Lee JR, Lubetzky M, Suthanthiran M. Urine biomarkers informative of human kidney allograft rejection and tolerance. Hum Immunol. 2018;79:343–55.

    Article  CAS  PubMed  Google Scholar 

  66. Asaoka T, Island ER, Tryphonopoulos P, et al. Characteristic immune, apoptosis and inflammatory gene profiles associated with intestinal acute cellular rejection in formalin-fixed paraffin-embedded mucosal biopsies. Transpl Int. 2011;24:697–707.

    Article  CAS  PubMed  Google Scholar 

  67. Deng MC, Eisen HJ, Mehra MR, et al. Noninvasive discrimination of rejection in cardiac allograft recipients using gene expression profiling. Am J Transplant. 2006;6:150–60.

    Article  CAS  PubMed  Google Scholar 

  68. Huang M-C, Tullo AB, Hillarby MC. Increased Rac2 mRNA expression in peripheral blood during human corneal graft rejection. Eye. 2009;23:461–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

SVP and RHB acknowledge scholarships from CNPq (Brazilian National Council for Scientific and Technological Development).

Author information

Authors and Affiliations

Authors

Contributions

SVP and MR-M conceived and designed the study; SVP collected data; SVP, GHP, RHB, RC, and MR-M analyzed data; SVP and MR-M wrote the manuscript; GHP and RC critically reviewed the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Mariana Recamonde-Mendoza.

Ethics declarations

Funding

No sources of funding were received for this systematic review.

Conflict of interest

SVP, GHP, RHB, RC, and MR-M declare that they have no conflicts of interest relevant to this systematic review.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paladini, S.V., Pinto, G.H., Bueno, R.H. et al. Identification of Candidate Biomarkers for Transplant Rejection from Transcriptome Data: A Systematic Review. Mol Diagn Ther 23, 439–458 (2019). https://doi.org/10.1007/s40291-019-00397-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-019-00397-y

Navigation