Skip to main content

Advertisement

Log in

Enhancement of PCR Detection Limit by Single-Tube Restriction Endonuclease-PCR (RE-PCR)

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

Polymerase chain reaction (PCR) is widely used in biological research and diagnostics because of its high sensitivity and specificity. However, the sensitivity of PCR is strongly influenced by topological characteristics of the template. Supercoiled templates are known to inhibit PCR, whereas linearized forms of the same supercoiled templates facilitate PCR.

Objectives

This study was conducted to compare the PCR efficiency of circular supercoiled DNA templates to their restriction endonuclease (RE)-mediated linearized forms. Additionally, we also evaluated the possibility of RE digestion of the circular supercoiled templates within the complete PCR buffer.

Methods

Following a systematic approach, we demonstrated that circular supercoiled templates could be efficiently linearized by RE in the complete PCR buffer itself. This allowed linearization of circular supercoiled templates and their subsequent amplification in the PCR buffer in a single-tube format.

Results

Using this extremely simple RE-PCR approach, we documented up to tenfold increases in detection efficiency of PCR with two different circular supercoiled templates of clinical origin, including an international calibration standard.

Conclusions

This inexpensive and easy approach to increasing PCR sensitivity can be easily adapted to any standard PCR protocol aimed at amplifying circular supercoiled genomes. Apart from its application in the development of sensitive clinical diagnostic PCR assays for a large number of organisms, this method could also prove to be very useful in simplifying the existing protocols for other applications where pre-PCR restriction digestion is required, such as mutation detection, genotyping, and selective template amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kuhns MC, Busch MP. New strategies for blood donor screening for hepatitis B virus. Mol Diagn Ther. 2006;10:77–91.

    Article  CAS  PubMed  Google Scholar 

  2. Read SJ, Burnett D, Fink CG. Molecular techniques for clinical diagnostic virology. J Clin Pathol. 2000;53:502–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vernet G. Molecular diagnostics in virology. J Clin Virol. 2004;31:239–47.

    Article  CAS  PubMed  Google Scholar 

  4. Yang S, Rothman RE. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis. 2004;4:337–48.

    Article  CAS  PubMed  Google Scholar 

  5. Broussard LA. Biological agents: weapons of warfare and bioterrorism. Mol Diagn. 2001;6:323–33.

    Article  CAS  PubMed  Google Scholar 

  6. PCR Applications Manual (Roche), 3rd ed. Roche Diagnostics, GmBH, Manheim; 2006. http://www.gene-quantification.com/ras-pcr-application-manual-3rd-ed.pdf. Accessed 8 Feb 2015.

  7. Chen J, Kadlubar FF, Chen JZ. DNA supercoiling suppresses real-time PCR: a new approach to the quantification of mitochondrial DNA damage and repair. Nucleic Acids Res. 2007;35:1377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Laghi L, Randolph AE, Malesci A, Boland CR. Constraints imposed by supercoiling on in vitro amplification of polyomavirus DNA. J Gen Virol. 2004;85:3383–8.

    Article  CAS  PubMed  Google Scholar 

  9. Ruiz-Opazo N, Chakraborty PR, Shafritz DA. Evidence for supercoiled hepatitis B virus DNA in chimpanzee liver and serum Dane particles: possible implications in persistent HBV infection. Cell. 1982;29:129–36.

    Article  CAS  PubMed  Google Scholar 

  10. Baylis SA, Heath AB, Chudy M, Pisani G, Klotz A, Kerby S, Gerlich W. An international collaborative study to establish the 2nd World Health Organization International Standard for hepatitis B virus DNA nucleic acid amplification technology-based assays. Vox Sang. 2008;94:358–62.

    Article  CAS  PubMed  Google Scholar 

  11. Weber B. Recent developments in the diagnosis and monitoring of HBV infection and role of the genetic variability of the S gene. Expert Rev Mol Diagn. 2005;5:75–91.

    Article  CAS  PubMed  Google Scholar 

  12. Datta S, Banerjee A, Chandra PK, Biswas A, Panigrahi R, Mahapatra PK, Panda CK, Chakrabarti S, Bhattacharya SK, Chakravarty R. Analysis of hepatitis B virus X gene phylogeny, genetic variability and its impact on pathogenesis: implications in Eastern Indian HBV carriers. Virology. 2008;382:190–8.

    Article  CAS  PubMed  Google Scholar 

  13. Huy TT, Ushijima H, Quang VX, Win KM, Luengrojanakul P, Kikuchi K, Sata T, Abe K. Genotype C of hepatitis B virus can be classified into at least two subgroups. J Gen Virol. 2004;85:283–92.

    Article  CAS  PubMed  Google Scholar 

  14. Kox LF, Rhienthong D, Miranda AM, Udomsantisuk N, Ellis K, van Leeuwen J, van Heusden S, Kuijper S, Kolk AH. A more reliable PCR for detection of Mycobacterium tuberculosis in clinical samples. J Clin Microbiol. 1994;32:672–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Klein D, Grody WW, Tabor DE, Cederbaum SD. Pitfalls of restriction endonuclease digestion for direct detection of point mutations. Clin Chem. 1992;38:1392–4.

    CAS  PubMed  Google Scholar 

  16. Alam SI, Dixit A, Reddy GS, Dube S, Palit M, Shivaji S, Singh L. Clostridium schirmacherense sp. nov., an obligately anaerobic, proteolytic, psychrophilic bacterium isolated from lake sediment of Schirmacher Oasis, Antarctica. Int J Syst Evol Microbiol. 2006;56:715–20.

    Article  CAS  PubMed  Google Scholar 

  17. Lin CH, Chen YC, Pan TM. Quantification bias caused by plasmid DNA conformation in quantitative real-time PCR assay. PLoS One. 2011;6(12):e29101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matos A, Duque V, Luxo C. Topoisomerase I improve JC virus DNA detection. Mol Biol. 2016;5:155.

    Google Scholar 

  19. Ruano G, Brash DE, Kidd KK. PCR: The first few cycles. amplifications: a forum for PCR users. 1991;7 [online]. http://tools.medicine.yale.edu/kidd/www/270.pdf. Accessed 10 Jan 2016.

  20. Nogva HK, Rudi K. Potential influence of the first PCR cycles in real-time comparative gene quantifications. Biotechniques. 2004;37(246–8):250–3.

    Google Scholar 

  21. Hou Y, Zhang H, Miranda L, Lin S. Serious Overestimation in quantitative PCR by circular (supercoiled) plasmid standard: microalgal pcna as the model gene. PLoS One. 2010;5:e9545.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chan SW, Chen JZ. Measuring mtDNA damage using a supercoiling-sensitive qPCR approach. In: Stuart JA, editor. Mitochondrial DNA, methods and protocols. Humana Press, New York, USA; 2009. p. 183–197.

  23. Sharma JK, Gopalkrishna V, Das BC. A simple method for elimination of unspecific amplifications in polymerase chain reaction. Nucleic Acids Res. 1992;20:6117–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bar A, Kabakçioglu A, Mukamel D. Denaturation of circular DNA: supercoils and overtwist. Phys Rev E. 2012;86:061904.

    Article  Google Scholar 

  25. Bar A, Kabakçioglu A, Mukamel D. Constrained thermal denaturation of DNA under fixed linking number. Cent Eur J Phys. 2012;10:582–6.

    CAS  Google Scholar 

  26. Keller W, Wendel I. Stepwise relaxation of supercoiled SV40 DNA. Cold Spring Harb Symp Quant Biol. 1975;39:199–208.

    Article  PubMed  Google Scholar 

  27. Vinograd J, Lebowitz J, Watson R. Early and late helixcoil transitions in closed circular DNA. The number of superhelical turns in polyoma DNA. J Mol Biol. 1968;33:173–97.

    Article  CAS  PubMed  Google Scholar 

  28. Vinograd J, Lebowitz J, Radloff R, Watson R, Laipis P. The twisted circular form of polyoma viral DNA. Proc Natl Acad Sci USA. 1965;53:1104–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Champoux JJ. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem. 2001;70:369–413.

    Article  CAS  PubMed  Google Scholar 

  30. Dekker NH, Rybenkov VV, Duguet M, Crisona NJ, Cozzarelli NR, Bensimon D, Croquette V. The mechanism of type IA topoisomerases. Proc Natl Acad Sci USA. 2002;99:12126–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Z, Mondragon AA, DiGate RJ. The Mechanism of type IA topoisomerase-mediated DNA topological transformations. Mol Cell. 2001;7:301–7.

    Article  CAS  PubMed  Google Scholar 

  32. Agostini HT, Stoner GL. Amplification of the complete polyomavirus JC genome from brain, cerebrospinal fluid and urine using pre-PCR restriction enzyme digestion. J Neurovirol. 1995;1:316–20.

    Article  CAS  PubMed  Google Scholar 

  33. Stewart ACM, Gravitt PE, Cheng S, Wheeler CM. Generation of entire human papillomavirus genomes by long PCR: frequency of errors produced during amplification. Genome Res. 1995;5:79–88.

    Article  CAS  PubMed  Google Scholar 

  34. Mohammadi T, Reesink HW, Vandenbroucke-Grauls CMJE, Savelkoul PHM. Optimization of real-time PCR assay for rapid and sensitive detection of eubacterial 16S ribosomal DNA in platelet concentrates. J Clin Microbiol. 2003;41:4796–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carroll NM, Adamson P, Okhravi N. Elimination of bacterial DNA from Taq DNA polymerases by restriction endonuclease digestion. J Clin Microbiol. 1999;37:3402–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Her C, Weinshilboum RM. Long PCR: selective suppression by restriction endonuclease digestion. Biotechniques. 1999;21:764–6.

    Google Scholar 

  37. DeFilippes FM. Decontaminating the polymerase chain reaction. Biotechniques. 1991;10:26, 28, 30.

  38. Blanck A, Gluck B, Wartbichler R, Bender S, Poll M, Brandl A. Activity of restriction enzymes in a PCR mix. Biochemica. 1995;2:14.

    Google Scholar 

  39. Xue-dong L, Dong Z, Yan-na Z, Wei-wei M, Jian-zhang M. Restriction endonucleases digesting DNA in PCR buffer. J Forest Res. 2005;16:58–60.

    Article  Google Scholar 

  40. von Kanel T, Gerber D, Schaller A, Baumer A, Wey E, Jackson CB, Gisler FM, Heinimann K, Gallati S. Quantitative 1-step DNA methylation analysis with native genomic DNA as template. Clin Chem. 2010;56:1098–106.

    Article  Google Scholar 

  41. Heermann KH, Gerlich WH, Chudy M, Schaefer S, Thomssen R, The Eurohep Pathobiology Group. Quantitative detection of hepatitis B virus DNA in two international reference plasma preparations. J Clin Microbiol. 1999;37:68–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Beck BN, Ho SN. Increased specificity of PCR-amplified products by size-fractionation of restriction enzyme-digested template genomic DNA. Nucleic Acids Res. 1998;16:9051.

    Article  Google Scholar 

  43. He Q, Marjamäki M, Soini H, Mertsola J, Viljanen MK. Primers are decisive for sensitivity of PCR. Biotechniques. 1994;17:82, 84, 86, 87.

  44. Zwerling A, White RG, Vassall A, Cohen T, Dowdy DW, Houben RM. Modeling of novel diagnostic strategies for active Tuberculosis—a systematic review: current practices and recommendations. PLoS One. 2014;9:e110558.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yan L, Xiao H, Zhang Q. Systematic review: comparison of Xpert MTB/RIF, LAMP and SAT methods for the diagnosis of pulmonary tuberculosis. Tuberculosis (Edinb). 2016;96:75–86.

    Article  CAS  PubMed  Google Scholar 

  46. Ng BYC, Wee EJH, West NP, Traub M. Rapid DNA detection of Mycobacterium tuberculosis-towards single cell sensitivity in point-of-care diagnosis. Sci Rep. 2015;5:15027.

    Article  CAS  PubMed Central  Google Scholar 

  47. Fournier PE, Dubourg G, Raoult D. Clinical detection and characterization of bacterial pathogens in the genomics era. Genome Med. 2014;6:114.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sankar S, Ramamurthy M, Nandagopal B, Sridharan G. An appraisal of PCR-based technology in the detection of Mycobacterium tuberculosis. Mol Diagn Ther. 2011;15:1–11.

    Article  PubMed  Google Scholar 

  49. Sanjuan-Jimenez R, Toro-Peinado I, Bermudez P, Colmenero JD, Morata P. Comparative study of a Real-time PCR assay targeting senX3-regX3 versus other molecular strategies commonly used in the diagnosis of tuberculosis. PLoS One. 2015;10:e0143025.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chen JH, She KK, Kwong TC, Wong OY, Siu GK, Leung CC, Chang KC, Tam CM, Ho PL, Cheng VC, Yuen KY, Yam WC. Performance of the new automated Abbott Real Time MTB assay for rapid detection of Mycobacterium tuberculosis complex in respiratory specimens. Eur J Clin Microbiol Infect Dis. 2015;34:1827–32.

    Article  CAS  PubMed  Google Scholar 

  51. García-Basteiro AL, Ismail MR, Carrilho C, Ussene E, Castillo P, Chitsungo D, Rodríguez C, Lovane L, Vergara A, López-Varela E, Mandomando I, Lorenzoni C, Ordi J, Menéndez C, Bassat Q, Martínez MJ. The role of Xpert MTB/RIF in diagnosing pulmonary tuberculosis in post-mortem tissues. Sci Rep. 2016;6:20703.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nikam C, Jagannath M, Narayanan MM, Ramanabhiraman V, Kazi M, Shetty A, Rodrigues C. Rapid diagnosis of Mycobacterium tuberculosis with Truenat MTB: a near-care approach. PLoS One. 2013;8:e51121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pang Y, Lu J, Yang J, Wang Y, Cohen C, Ni X, Zhao Y. A novel method for diagnosis of smear negative tuberculosis patients by combining a random unbiased Phi29 amplification with a specific realtime PCR. Tuberculosis. 2015;95:411–4.

    Article  CAS  PubMed  Google Scholar 

  54. Datta S, Chatterjee S, Veer V. Recent advances in molecular diagnostics of hepatitis B virus. World J Gastroenterol. 2014;20:14615–25.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gullett JC, Nolte FS. Quantitative nucleic acid amplification methods for viral infections. Clin Chem. 2015;61:72–8.

    Article  CAS  PubMed  Google Scholar 

  56. Boonham N, Kreuze J, Winter S, van der Vlugt R, Bergervoet J, Tomlinson J, Mumford R. Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res. 2014;186:20–31.

    Article  CAS  PubMed  Google Scholar 

  57. Daniel HD, Fletcher JG, Chandy GM, Abraham P. Quantitation of hepatitis B virus DNA in plasma using a sensitive cost-effective “in-house” real-time PCR assay. Ind J Med Microbiol. 2009;27:111–5.

    Article  Google Scholar 

  58. Chevaliez S, Bouvier-Alias M, Laperche S, Hézode C, Pawlotsky JM. Performance of version 2.0 of the Cobas AmpliPrep/Cobas TaqMan real-time PCR assay for hepatitis B virus DNA quantification. J Clin Microbiol. 2010;48:3641–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Caliendo AM, Valsamakis A, Bremer JW, Ferreira-Gonzalez A, Granger S, Sabatini L, Tsongalis GJ, Wang YF, Yen-Lieberman B, Young S, Lurain NS. Multilaboratory evaluation of real-time PCR tests for hepatitis B virus DNA quantification. J Clin Microbiol. 2011;49:2854–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors graciously thank Dr. Prerna Guleria, for her help at different points of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibnarayan Datta.

Ethics declarations

Conflict of interest

SD, RB, SC, VM, VV, and RC have no conflicts of interest that are directly relevant to the content of this manuscript.

Funding

This work was supported by funds from the Defence Research and Development Organization (DRDO), Indian Council of Medical Research (ICMR), and the University Grants Commission (UGC), Government of India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, S., Budhauliya, R., Chatterjee, S. et al. Enhancement of PCR Detection Limit by Single-Tube Restriction Endonuclease-PCR (RE-PCR). Mol Diagn Ther 20, 297–305 (2016). https://doi.org/10.1007/s40291-016-0195-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-016-0195-2

Keywords

Navigation