Skip to main content

Advertisement

Log in

High-Intensity Interval Training and Cardiometabolic Health in the General Population: A Systematic Review and Meta-Analysis of Randomised Controlled Trials

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

High-intensity interval training (HIIT) remains a promising exercise mode in managing cardiometabolic health. Large-scale analyses are necessary to understand its magnitude of effect on important cardiometabolic risk factors and inform guideline recommendations.

Objective

We aimed to perform a novel large-scale meta-analysis on the effects of HIIT on cardiometabolic health in the general population.

Methods

PubMed (MEDLINE), the Cochrane library and Web of Science were systematically searched. Randomised controlled trials (RCTs) published between 1990 and March 2023 were eligible. Research trials reporting the effects of a HIIT intervention on at least one cardiometabolic health parameter with a non-intervention control group were considered.

Results

This meta-analysis included 97 RCTs with a pooled sample size of 3399 participants. HIIT produced significant improvements in 14 clinically relevant cardiometabolic health parameters, including peak aerobic capacity (VO2) [weighted mean difference (WMD): 3.895 ml min−1 kg−1, P < 0.001), left ventricular ejection fraction (WMD: 3.505%, P < 0.001), systolic (WMD: − 3.203 mmHg, P < 0.001) and diastolic (WMD: − 2.409 mmHg, P < 0.001) blood pressure, resting heart rate (WMD: − 3.902 bpm, P < 0.001) and stroke volume (WMD: 9.516 mL, P < 0.001). Body composition also significantly improved through reductions in body mass index (WMD: − 0.565 kg m−2, P < 0.001), waist circumference (WMD: − 2.843 cm, P < 0.001) and percentage body fat (WMD: − 0.972%, P < 0.001). Furthermore, there were significant reductions in fasting insulin (WMD: − 13.684 pmol L−1, P = 0.004), high-sensitivity C-reactive protein (WMD: − 0.445 mg dL−1, P = 0.043), triglycerides (WMD: − 0.090 mmol L−1, P = 0.011) and low-density lipoprotein (WMD: − 0.063 mmol L−1, P = 0.050), concurrent to a significant increase in high-density lipoprotein (WMD: 0.036 mmol L−1, P = 0.046).

Conclusion

These results provide further support for HIIT in the clinical management of important cardiometabolic health risk factors, which may have implications for physical activity guideline recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Scribbans TD, Vecsey S, Hankinson PB, Foster WS, Gurd BJ. The effect of training intensity on VO2max in young healthy adults: a meta-regression and meta-analysis. Int J Exerc Sci. 2016;9:230–47.

    PubMed  PubMed Central  Google Scholar 

  2. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2:e04473.

    Article  Google Scholar 

  3. Bellicha A, van Baak MA, Battista F, Beaulieu K, Blundell JE, Busetto L, et al. Effect of exercise training on weight loss, body composition changes, and weight maintenance in adults with overweight or obesity: An overview of 12 systematic reviews and 149 studies. Obesity Rev. 2021;22:e13256.

    Article  Google Scholar 

  4. Zhao M, Veeranki SP, Magnussen CG, Xi B. Recommended physical activity and all cause and cause specific mortality in US adults: prospective cohort study. BMJ. 2020;370:2031.

    Article  Google Scholar 

  5. Leitzmann MF, Park Y, Blair A, Ballard-Barbash R, Mouw T, Hollenbeck AR, et al. Physical activity recommendations and decreased risk of mortality. Arch Intern Med. 2007;167:2453–60.

    Article  PubMed  Google Scholar 

  6. Lear SA, Hu W, Rangarajan S, Gasevic D, Leong D, Iqbal R, et al. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. Lancet. 2017;390:2643–54.

    Article  PubMed  Google Scholar 

  7. Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54:1451–62.

    Article  PubMed  Google Scholar 

  8. Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob Health. 2018;6:e1077–86.

    Article  PubMed  Google Scholar 

  9. Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, Mcdowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40:181–8.

    Article  PubMed  Google Scholar 

  10. Campbell WW, Kraus WE, Powell KE, Haskell WL, Janz KF, Jakicic JM, et al. High-intensity interval training for cardiometabolic disease prevention. Med Sci Sports Exerc. 2019;51:1220.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Reljic D, Frenk F, Herrmann HJ, Neurath MF, Zopf Y. Low-volume high-intensity interval training improves cardiometabolic health, work ability and well-being in severely obese individuals: a randomized-controlled trial sub-study. J Transl Med. 2020;18:419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Edwards J, De Caux A, Donaldson J, Wiles J, O’Driscoll J. Isometric exercise versus high-intensity interval training for the management of blood pressure: a systematic review and meta-analysis. Br J Sports Med. 2022;56:506–14.

    Article  PubMed  Google Scholar 

  13. Costa EC, Hay JL, Kehler DS, Boreskie KF, Arora RC, Umpierre D, et al. Effects of high-intensity interval training versus moderate-intensity continuous training on blood pressure in adults with pre- to established hypertension: a systematic review and meta-analysis of randomized trials. Sports Med. 2018;48:2127.

    Article  PubMed  Google Scholar 

  14. Batacan RB, Duncan MJ, Dalbo VJ, Tucker PS, Fenning AS. Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med. 2017;51:494.

    Article  PubMed  Google Scholar 

  15. Takeshima N, Sozu T, Tajika A, Ogawa Y, Hayasaka Y, Furukawa TA. Which is more generalizable, powerful and interpretable in meta-analyses, mean difference or standardized mean difference? BMC Med Res Methodol. 2014;14:1–7.

    Article  Google Scholar 

  16. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, The PRISMA, et al. Statement: an updated guideline for reporting systematic reviews. BMJ. 2020;2021:372.

    Google Scholar 

  17. Hansen D, Dendale P, Coninx K, Vanhees L, Piepoli MF, Niebauer J, et al. The European Association of Preventive Cardiology Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool: a digital training and decision support system for optimized exercise prescription in cardiovascular disease. Concept, definitions and construction methodology. Eur J Prev Cardiol. 2017;24:1017–31.

    Article  PubMed  Google Scholar 

  18. Smart NA, Waldron M, Ismail H, Giallauria F, Vigorito C, Cornelissen V, et al. Validation of a new tool for the assessment of study quality and reporting in exercise training studies: TESTEX. Int J Evid Based Healthc. 2015;13:9–18.

    Article  PubMed  Google Scholar 

  19. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301:2024–35.

    Article  CAS  PubMed  Google Scholar 

  20. Milanović Z, Sporiš G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med. 2015;45:1469.

    Article  PubMed  Google Scholar 

  21. Mallol M, Norton L, Bentley DJ, Mejuto G, Norton K, Yanci J. Physiological response differences between run and cycle high intensity interval training program in recreational middle age female runners. J Sports Sci Med. 2020;19:508.

    PubMed  PubMed Central  Google Scholar 

  22. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136:493–503.

    Article  PubMed  Google Scholar 

  23. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.

    Article  PubMed  PubMed Central  Google Scholar 

  24. O’Driscoll JM, Edwards JJ, Wiles JD, Taylor KA, Leeson P, Sharma R. Myocardial work and left ventricular mechanical adaptations following isometric exercise training in hypertensive patients. Eur J Appl Physiol. 2022;122:727–34.

    Article  PubMed  Google Scholar 

  25. O’Driscoll JM, Wright SM, Taylor KA, Coleman DA, Sharma R, Wiles JD. Cardiac autonomic and left ventricular mechanics following high intensity interval training: a randomized crossover controlled study. J Appl Physiol. 2018;125:1030–40.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nyangasa MA, Buck C, Kelm S, Sheikh MA, Brackmann KL, Hebestreit A. Association between cardiometabolic risk factors and body mass index, waist circumferences and body fat in a Zanzibari cross-sectional study. BMJ Open. 2019;9: e025397.

    Article  PubMed  PubMed Central  Google Scholar 

  27. LaForgia J, Dollman J, Dale MJ, Withers RT, Hill AM. Validation of DXA body composition estimates in obese men and women. Obesity. 2009;17:821–6.

    Article  PubMed  Google Scholar 

  28. Shafer KJ, Siders WA, Johnson LAK, Lukaski HC. Validity of segmental multiple-frequency bioelectrical impedance analysis to estimate body composition of adults across a range of body mass indexes. Nutrition. 2009;25:25–32.

    Article  PubMed  Google Scholar 

  29. Lee DH, Keum NN, Hu FB, Orav EJ, Rimm EB, Willett WC, et al. Predicted lean body mass, fat mass, and all cause and cause specific mortality in men: prospective US cohort study. BMJ. 2018;362: k2575.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jacobs EJ, Newton CC, Wang Y, Patel AV, McCullough ML, Campbell PT, et al. Waist circumference and all-cause mortality in a large US cohort. Arch Intern Med. 2010;170:1293–301.

    Article  PubMed  Google Scholar 

  31. Wewege M, van den Berg R, Ward RE, Keech A. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obesity Rev. 2017;18:635–46.

    Article  CAS  Google Scholar 

  32. Ross R, Neeland IJ, Yamashita S, Shai I, Seidell J, Magni P, et al. Waist circumference as a vital sign in clinical practice: a consensus statement from the IAS and ICCR Working Group on Visceral Obesity. Nat Rev Endocrinol. 2020;16:177–89.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hu G. Plasma insulin and cardiovascular mortality in non-diabetic European men and women: a meta-analysis of data from eleven prospective studies. Diabetologia. 2004;47:1245–56.

    Article  Google Scholar 

  34. Collaboration ERF. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364:829–41.

    Article  Google Scholar 

  35. Liu J, Zeng FF, Liu ZM, Zhang CX, Ling WH, Chen YM. Effects of blood triglycerides on cardiovascular and all-cause mortality: a systematic review and meta-analysis of 61 prospective studies. Lipids Health Dis. 2013;12:159.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li Y, Zhong X, Cheng G, Zhao C, Zhang L, Hong Y, et al. Hs-CRP and all-cause, cardiovascular, and cancer mortality risk: a meta-analysis. Atherosclerosis. 2017;259:75–82.

    Article  CAS  PubMed  Google Scholar 

  37. Stensvold D, Viken H, Steinshamn SL, Dalen H, Støylen A, Loennechen JP, et al. Effect of exercise training for five years on all cause mortality in older adults—the generation 100 study: randomised controlled trial. BMJ. 2020;371:3485.

    Article  Google Scholar 

  38. Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48:1227–34.

    Article  PubMed  Google Scholar 

  39. Abdelbasset WK, Tantawy SA, Kamel DM, Alqahtani BA, Soliman GS. A randomized controlled trial on the effectiveness of 8-week high-intensity interval exercise on intrahepatic triglycerides, visceral lipids, and health-related quality of life in diabetic obese patients with nonalcoholic fatty liver disease. Medicine. 2019;98:14918.

    Article  Google Scholar 

  40. Abderrahman A, Zouhal H, Chamari K, Thevenet D, De Mullenheim PY, Gastinger S, et al. Effects of recovery mode (active vs. passive) on performance during a short high-intensity interval training program: a longitudinal study. Eur J Appl Physiol. 2013;113:1373–83.

    Article  PubMed  Google Scholar 

  41. Alarcón-Gómez J, Calatayud J, Chulvi-Medrano I, Martín-Rivera F. Effects of a HIIT protocol on cardiovascular risk factors in a type 1 diabetes mellitus population. Int J Environ Res Public Health. 2021;18:1–12.

    Article  Google Scholar 

  42. Allen NG, Higham SM, Mendham AE, Kastelein TE, Larsen PS, Duffield R. The effect of high-intensity aerobic interval training on markers of systemic inflammation in sedentary populations. Eur J Appl Physiol. 2017;117:1249.

    Article  PubMed  Google Scholar 

  43. Arad AD, DiMenna FJ, Thomas N, Tamis-Holland J, Weil R, Geliebter A, et al. High-intensity interval training without weight loss improves exercise but not basal or insulin-induced metabolism in overweight/obese African American women. J Appl Physiol. 2015;119:352–62.

    Article  PubMed  Google Scholar 

  44. Astorino TA, Allen RP, Roberson DW, Jurancich M. Effect of high-intensity interval training on cardiovascular function, O2max, and muscular force. J Strength Cond Res. 2012;26:138–45.

    Article  PubMed  Google Scholar 

  45. Atan T, Karavelioğlu Y. Effectiveness of high-intensity interval training vs moderate-intensity continuous training in patients with fibromyalgia: a pilot randomized controlled trial. Arch Phys Med Rehabil. 2020;101:1865–76.

    Article  PubMed  Google Scholar 

  46. Bayati M, Farzad B, Gharakhanlou R, Agha-Alinejad H. A practical model of low-volume high-intensity interval training induces performance and metabolic adaptations that resemble ‘all-out’ sprint interval training. J Sports Sci. 2011;10:571.

    Google Scholar 

  47. Blackwell JEM, Doleman B, Boereboom CL, Morton A, Williams S, Atherton P, et al. High-intensity interval training produces a significant improvement in fitness in less than 31 days before surgery for urological cancer: a randomised control trial. Prostate Cancer. 2020;23:696–704.

    Article  CAS  Google Scholar 

  48. Burn NL, Weston M, Atkinson G, Graham M, Weston KL. Brief exercise at work (BE@Work): a mixed-methods pilot trial of a workplace high-intensity interval training intervention. Front Sports Act Living. 2021;3: 699608.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chidnok W, Wadthaisong M, Iamsongkham P, Mheonprayoon W, Wirajalarbha W, Thitiwuthikiat P, et al. Effects of high-intensity interval training on vascular function and maximum oxygen uptake in young sedentary females. Int J Health Sci. 2020;14:3.

    Google Scholar 

  50. Chin EC, Yu AP, Lai CW, Fong DY, Chan DK, Wong SH, et al. Low-frequency HIIT improves body composition and aerobic capacity in overweight men. Med Sci Sports Exerc. 2019;52:56–66.

    Article  Google Scholar 

  51. Coletta AM, Brewster AM, Chen M, Li Y, Bevers TB, Basen-Engquist K, et al. High-intensity interval training is feasible in women at high risk for breast cancer. Med Sci Sports Exerc. 2019;51:2193–200.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Connolly LJ, Bailey SJ, Krustrup P, Fulford J, Smietanka C, Jones AM. Effects of self-paced interval and continuous training on health markers in women. Eur J Appl Physiol. 2017;117:2281–93.

    Article  PubMed  PubMed Central  Google Scholar 

  53. García-Suárez PC, Rentería I, Wong-Avilés PG, Franco-Redona F, Gómez-Miranda LM, Aburto-Corona JA, et al. Hemodynamic adaptations induced by short-term run interval training in college students. Int J Environ Res Public Health. 2020;17:1–11.

    Article  Google Scholar 

  54. Gjellesvik TI, Becker F, Tjønna AE, Indredavik B, Nilsen H, Brurok B, et al. Effects of high-intensity interval training after stroke (the HIIT-Stroke Study): a multicenter randomized controlled trial. Arch Phys Med Rehabil. 2020;101:939–47.

    Article  PubMed  Google Scholar 

  55. Hanssen H, Minghetti A, Magon S, Rossmeissl A, Papadopoulou A, Klenk C, et al. Superior effects of high-intensity interval training vs. moderate continuous training on arterial stiffness in episodic migraine: a randomized controlled trial. Front Physiol. 2017;8:1086.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Heydari M, Boutcher YN, Boutcher SH. The effects of high-intensity intermittent exercise training on cardiovascular response to mental and physical challenge. Int J Psychophysiol. 2013;87:141–6.

    Article  PubMed  Google Scholar 

  57. Heydari M, Boutcher YN, Boutcher SH. High-intensity intermittent exercise and cardiovascular and autonomic function. Clin Auton Res. 2013;23:57–65.

    Article  PubMed  Google Scholar 

  58. Huang YC, Tsai HH, Fu TC, Hsu CC, Wang JS. High-intensity interval training improves left ventricular contractile function. Med Sci Sports Exerc. 2019;51:1420–8.

    Article  PubMed  Google Scholar 

  59. Hwang CL, Yoo JK, Kim HK, Hwang MH, Handberg EM, Petersen JW, et al. Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults. Exp Gerontol. 2016;82:112–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Karstoft K, Winding K, Knudsen SH, Nielsen JS, Thomsen C, Pedersen BK, et al. The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: a randomized, controlled trial. Diabetes Care. 2013;36:228–36.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kiel IA, Lundgren KM, Mørkved S, Kjøtrød SB, Salvesen Ø, Romundstad LB, et al. Women undergoing assisted fertilisation and high-intensity interval training: a pilot randomised controlled trial. BMJ Open Sport Exerc Med. 2018;4: e000387.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kiel IDAA, Lionett S, Parr EB, Jones H, Røset MAH, Salvesen Ø, et al. High-intensity interval training in polycystic ovary syndrome: a two-center, three-armed randomized controlled trial. Med Sci Sports Exerc. 2022;54:717–27.

    Article  CAS  PubMed  Google Scholar 

  63. Lee AS, Johnson NA, McGill MJ, Overland J, Luo C, Baker CJ, et al. Effect of high-intensity interval training on glycemic control in adults with type 1 diabetes and overweight or obesity: a randomized controlled trial with partial crossover. Diabetes Care. 2020;43:2281–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Madssen E, Arbo I, Granøien I, Walderhaug L, Moholdt T. Peak oxygen uptake after cardiac rehabilitation: a randomized controlled trial of a 12-month maintenance program versus usual care. PLoS ONE. 2014;9:107924.

    Article  Google Scholar 

  65. May RW, Seibert GS, Sanchez-Gonzalez MA, Fincham FD. Self-regulatory biofeedback training: an intervention to reduce school burnout and improve cardiac functioning in college students. Stress. 2019;22:1–8.

    Article  PubMed  Google Scholar 

  66. Metcalfe RS, Babraj JA, Fawkner SG, Vollaard NBJ. Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. Eur J Appl Physiol. 2012;112:2767–75.

    Article  PubMed  Google Scholar 

  67. Molmen-Hansen HE, Stolen T, Tjonna AE, Aamot IL, Ekeberg IS, Tyldum GA, et al. Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. Eur J Prev Cardiol. 2012;19:151–60.

    Article  PubMed  Google Scholar 

  68. Murawska-Cialowicz E, Wolanski P, Zuwala-Jagiello J, Feito Y, Petr M, Kokstejn J, et al. Effect of HIIT with tabata protocol on serum irisin, physical performance, and body composition in men. Int J Environ Res Public Health. 2020;17:3589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nytrøen K, Rustad LA, Aukrust P, Ueland T, Hallén J, Holm I, et al. High-intensity interval training improves peak oxygen uptake and muscular exercise capacity in heart transplant recipients. Am J Transplant. 2012;12:3134–42.

    Article  PubMed  Google Scholar 

  70. Nytrøen K, Annette Rustad L, Erikstad I, Aukrust P, Ueland T, Lekva T, et al. Effect of high-intensity interval training on progression of cardiac allograft vasculopathy. J Heart Lung Transplant. 2013;32:1073–80.

    Article  PubMed  Google Scholar 

  71. Ochi E, Tsuji K, Narisawa T, Shimizu Y, Kuchiba A, Suto A, et al. Cardiorespiratory fitness in breast cancer survivors: a randomised controlled trial of home-based smartphone supported high intensity interval training. BMJ Support Palliat Care. 2022;12:33–7.

    Article  PubMed  Google Scholar 

  72. Park SY, Klotzbier TJ, Schott N. The effects of the combination of high-intensity interval training with 3D-multiple object tracking task on perceptual-cognitive performance: a randomized controlled intervention trial. Int J Environ Res Public Health. 2021;18:4862.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Philbois SV, Ribeiro VB, Tank J, dos Reis RM, Gerlach DA, Souza HCD. Cardiovascular autonomic modulation differences between moderate-intensity continuous and high-intensity interval aerobic training in women with PCOS: a randomized trial. Front Endocrinol. 2022;13:1084244.

    Article  Google Scholar 

  74. Rustad LA, Nytrøen K, Amundsen BH, Gullestad L, Aakhus S. One year of high-intensity interval training improves exercise capacity, but not left ventricular function in stable heart transplant recipients: a randomised controlled trial. Eur J Prev Cardiol. 2014;21:181–91.

    Article  PubMed  Google Scholar 

  75. Saadatnia A, Ebrahim K, Rashidlamir A. Echocardiographic evaluation of the effects of high-intensity interval training on cardiac morphology and function. Arch Cardiovasc Imaging. 2016;4.

  76. Samhan AF, Ahmed AS, Mahmoud WS, Abdelhalim NM. Effects of high-intensity interval training on cardiorespiratory fitness, body composition, and quality of life in overweight and obese survivors of breast cancer. Rehabil Oncol. 2021;39:168–74.

    Article  Google Scholar 

  77. Schubert MM, Clarke HE, Seay RF, Spain KK. Impact of 4 weeks of interval training on resting metabolic rate, fitness, and health-related outcomes. Appl Physiol Nutr Metab. 2017;42:1073–81.

    Article  CAS  PubMed  Google Scholar 

  78. Shandu NM, Mathunjwa ML, Shaw BS, Shaw I. Effects of high-intensity interval training and continuous aerobic training on health-fitness, health related quality of life, and psychological measures in college-aged smokers. Int J Environ Res Public Health. 2022;20:653.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Smith-Ryan AE, Trexler ET, Wingfield HL, Blue MNM. Effects of high-intensity interval training on cardiometabolic risk factors in overweight/obese women. J Sports Sci. 2016;34:2038–46.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Stavrinou PS, Bogdanis GC, Giannaki CD, Terzis G, Hadjicharalambous M. High-intensity interval training frequency: cardiometabolic effects and quality of life. Int J Sports Med. 2018;39:210–7.

    Article  PubMed  Google Scholar 

  81. Stensvold D, Tjønna AE, Skaug EA, Aspenes S, Stølen T, Wisløff U, et al. Strength training versus aerobic interval training to modify risk factors of metabolic syndrome. J Appl Physiol. 2010;108:804–10.

    Article  PubMed  Google Scholar 

  82. Streese L, Kotliar K, Deiseroth A, Infanger D, Gugleta K, Schmaderer C, et al. Retinal endothelial function in cardiovascular risk patients: a randomized controlled exercise trial. Scand J Med Sci Sports. 2020;30:272–80.

    Article  PubMed  Google Scholar 

  83. Tamburus NY, Verlengia R, Kunz VC, César MC, Silva E. Apolipoprotein B and angiotensin-converting enzyme polymorphisms and aerobic interval training: randomized controlled trial in coronary artery disease patients. Braz J Med Biol Res. 2018;51:8.

    Article  Google Scholar 

  84. Tew GA, Leighton D, Carpenter R, Anderson S, Langmead L, Ramage J, et al. High-intensity interval training and moderate-intensity continuous training in adults with Crohn’s disease: a pilot randomised controlled trial. BMC Gastroenterol. 2019;19.

  85. Thomsen RS, Nilsen TIL, Haugeberg G, Bye A, Kavanaugh A, Hoff M. Effect of high-intensity interval training on cardiovascular disease risk factors and body composition in psoriatic arthritis: a randomised controlled trial. RMD Open. 2018;4:2.

    Article  Google Scholar 

  86. Tjønna AE, Lee SJ, Rognmo Ø, Stølen TO, Bye A, Haram PM, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008;118:346–54.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Trapp EG, Chisholm DJ, Freund J, Boutcher SH. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int J Obes. 2008;32:684–91.

    Article  CAS  Google Scholar 

  88. Trilk JL, Singhal A, Bigelman KA, Cureton KJ. Effect of sprint interval training on circulatory function during exercise in sedentary, overweight/obese women. Eur J Appl Physiol. 2011;111:1591–7.

    Article  PubMed  Google Scholar 

  89. Tsekouras YE, Magkos F, Kellas Y, Basioukas KN, Kavouras SA, Sidossis LS. High-intensity interval aerobic training reduces hepatic very low-density lipoprotein-triglyceride secretion rate in men. Am J Physiol Endocrinol Metab. 2008;4:295.

    Google Scholar 

  90. Vesterbekkmo EK, Madssen E, Aksetøy ILA, Follestad T, Nilsen HO, Hegbom K, et al. CENIT (impact of cardiac exercise training on lipid content in coronary atheromatous plaques evaluated by near-infrared spectroscopy): a randomized trial. J Am Heart Assoc. 2022;11:10.

    Article  Google Scholar 

  91. Warburton DER, Haykowsky MJ, Quinney HA, Blackmore D, Teo KK, Taylor DA, et al. Blood volume expansion and cardiorespiratory function: effects of training modality. Med Sci Sports Exerc. 2004;36:991–1000.

    Article  PubMed  Google Scholar 

  92. Wilson GA, Wilkins GT, Cotter JD, Lamberts RR, Lal S, Baldi JC. HIIT improves left ventricular exercise response in adults with type 2 diabetes. Med Sci Sports Exerc. 2019;51:1099–105.

    Article  PubMed  Google Scholar 

  93. Ziemann E, Grzywacz T, Luszczyk M, Laskowski R, Olek RA, Gibson AL. Aerobic and anaerobic changes with high-intensity interval training in active college-aged men. J Strength Cond Res. 2011;25:1104–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie M. O’Driscoll.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Author contributions

JE and JO’D contributed to the conception and design of the study. JE and JO’D contributed to the development of the search strategy. JE and JO’D conducted the systematic review. JE, MG, AD and JO’D completed the acquisition of data. JE, MG, AD and JO’D performed the data analysis. All authors assisted with the interpretation. JE and JO’D were the principal writers of the manuscript. All authors contributed to the drafting and revision of the final article. All authors approved the final submitted version of the manuscript.

Consent for publication

Not applicable.

Availability of data and materials

Data may be available on request to the corresponding author.

Competing interests

The authors declare that they have no conflicts of interest relevant to the content of this review.

Funding

No sources of funding were used to assist in the preparation of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 349 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edwards, J.J., Griffiths, M., Deenmamode, A.H.P. et al. High-Intensity Interval Training and Cardiometabolic Health in the General Population: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Sports Med 53, 1753–1763 (2023). https://doi.org/10.1007/s40279-023-01863-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-023-01863-8

Navigation