Skip to main content
Log in

How Advancement in Bone Science Should Inform the Examination and Treatment of Femoral Shaft Bone Stress Injuries in Running Athletes

  • Current Opinion
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Stress fractures likely have a 1–2% incidence in athletes in general. In runners, a more vulnerable population, incidence rates likely range between 3.2 and 21% with female runners having greater susceptibility. The incidence of femoral shaft stress fractures is less well known. New basic and translational science research may impact the way clinicians diagnose and treat femoral stress fractures. By using a fictitious case study, this paper applies bone science to suggest new approaches to evaluating and treating femoral shaft stress fractures in the running population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arendt E, Agel J, Heikes C, Griffiths H. Stress injuries to bone in college athletes: a retrospective review of experience at a single institution. Am J Sports Med. 2003;31(6):959–68.

    Article  PubMed  Google Scholar 

  2. Goldberg B, Pecora C. Stress fractures. Phys Sportsmed. 1994;22(3):68–78.

    Article  CAS  PubMed  Google Scholar 

  3. Bennell KL, Malcolm SA, Thomas SA, Reid SJ, Brukner PD, Ebeling PR, et al. Risk factors for stress fractures in track and field athletes: a twelve-month prospective study. Am J Sports Med. 1996;24(6):810–8.

    Article  CAS  PubMed  Google Scholar 

  4. Hollander K, Rahlf AL, Wilke J, Edler C, Steib S, Junge A, et al. Sex-specific differences in running injuries: a systematic review with meta-analysis and meta-regression. Sports Med. 2021;51(5):1011–39.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Johnson AW, Weiss CB Jr, Wheeler DL. Stress fractures of the femoral shaft in athletes—more common than expected A new clinical test. Am J Sports Med. 1994;22(2):248–56.

    Article  CAS  PubMed  Google Scholar 

  6. Orejel Bustos A, Belluscio V, Camomilla V, Lucangeli L, Rizzo F, Sciarra T, et al. Overuse-related injuries of the musculoskeletal system: systematic review and quantitative synthesis of injuries, locations, risk factors and assessment techniques. Sensors (Basel). 2021;21(7):2438.

    Article  PubMed  Google Scholar 

  7. Stoggl TL, Sperlich B. The training intensity distribution among well-trained and elite endurance athletes. Front Physiol. 2015;6:295.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Casado A, Hanley B, Santos-Concejero J, Ruiz-Perez LM. World-class long-distance running performances are best predicted by volume of easy runs and deliberate practice of short-interval and tempo runs. J Strength Cond Res. 2021;35(9):2525–31.

    Article  PubMed  Google Scholar 

  9. Edwards WB, Gillette JC, Thomas JM, Derrick TR. Internal femoral forces and moments during running: implications for stress fracture development. Clin Biomech (Bristol, Avon). 2008;23(10):1269–78.

    Article  PubMed  Google Scholar 

  10. Mountjoy M, Sundgot-Borgen JK, Burke LM, Ackerman KE, Blauwet C, Constantini N, et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br J Sports Med. 2018;52(11):687–97.

    Article  PubMed  Google Scholar 

  11. Fredericson M, Kussman A, Misra M, Barrack MT, De Souza MJ, Kraus E, et al. The male athlete triad: a consensus statement from the female and male athlete triad coalition part II: diagnosis, treatment, and return-to-play. Clin J Sport Med. 2021;31(4):349–66.

    Article  PubMed  Google Scholar 

  12. Nattiv A, De Souza MJ, Koltun KJ, Misra M, Kussman A, Williams NI, et al. The Male athlete triad: a consensus statement from the female and male athlete triad coalition part 1: definition and scientific basis. Clin J Sport Med. 2021;31(4):345–53.

    PubMed  Google Scholar 

  13. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(Suppl. 3):S131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tenforde AS, Kraus E, Fredericson M. Bone stress injuries in runners. Phys Med Rehabil Clin N Am. 2016;27(1):139–49.

    Article  PubMed  Google Scholar 

  15. Hoenig T, Tenforde AS, Strahl A, Rolvien T, Hollander K. Does magnetic resonance imaging grading correlate with return to sports after bone stress injuries? A systematic review and meta-analysis. Am J Sports Med. 2022;50(3):834–44.

    Article  PubMed  Google Scholar 

  16. Velazquez-Ameijide J, Garcia-Vilana S, Sanchez-Molina D, Lluma J, Martinez-Gonzalez E, Rebollo-Soria MC, et al. Prediction of mechanical properties of human rib cortical bone using fractal dimension. Comput Methods Biomech Biomed Eng. 2021;24(5):506–16.

    Article  Google Scholar 

  17. Hoenig T, Ackerman KE, Beck BR, Bouxsein ML, Burr DB, Hollander K, et al. Bone stress injuries. Nat Rev Dis Primers. 2022;8(1):26.

    Article  PubMed  Google Scholar 

  18. Sabet FA, Raeisi Najafi A, Hamed E, Jasiuk I. Modelling of bone fracture and strength at different length scales: a review. Interface Focus. 2016;6(1):20150055.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tang T, Ebacher V, Cripton P, Guy P, McKay H, Wang R. Shear deformation and fracture of human cortical bone. Bone. 2015;71:25–35.

    Article  PubMed  Google Scholar 

  20. Hart NH, Newton RU, Tan J, Rantalainen T, Chivers P, Siafarikas A, et al. Biological basis of bone strength: anatomy, physiology and measurement. J Musculoskelet Neuronal Interact. 2020;20(3):347–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ebacher V, Guy P, Oxland TR, Wang R. Sub-lamellar microcracking and roles of canaliculi in human cortical bone. Acta Biomater. 2012;8(3):1093–100.

    Article  PubMed  Google Scholar 

  22. Zimmermann EA, Ritchie RO. Bone as a structural material. Adv Healthc Mater. 2015;4(9):1287–304.

    Article  CAS  PubMed  Google Scholar 

  23. Hart NH, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton RU. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact. 2017;17(3):114–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Havaldar R, Pilli SC, Putti BB. Insights into the effects of tensile and compressive loadings on human femur bone. Adv Biomed Res. 2014;3:101.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zioupos P, Hansen U, Currey JD. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure. J Biomech. 2008;41(14):2932–9.

    Article  PubMed  Google Scholar 

  26. Sharma NK, Sarker MD, Naghieh S, Chen DXB. Studies on Ramberg–Osgood equation parameters of cortical bone. J Biomech Eng. 2019;141: 044507.

    Article  PubMed  Google Scholar 

  27. Zioupos P, Currey JD. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone. 1998;22(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  28. Warden SJ, Edwards WB, Willy RW. Preventing bone stress injuries in runners with optimal workload. Curr Osteoporos Rep. 2021;19(3):298–307.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Barrow GW, Saha S. Menstrual irregularity and stress fractures in collegiate female distance runners. Am J Sports Med. 1988;16(3):209–16.

    Article  CAS  PubMed  Google Scholar 

  30. Bennell KL, Malcolm SA, Thomas SA, Wark JD, Brukner PD. The incidence and distribution of stress fractures in competitive track and field athletes: a twelve-month prospective study. Am J Sports Med. 1996;24(2):211–7.

    Article  CAS  PubMed  Google Scholar 

  31. Brunet ME, Cook SD, Brinker MR, Dickinson JA. A survey of running injuries in 1505 competitive and recreational runners. J Sports Med Phys Fit. 1990;30(3):307–15.

    CAS  Google Scholar 

  32. Rizzone KH, Ackerman KE, Roos KG, Dompier TP, Kerr ZY. The epidemiology of stress fractures in collegiate student-athletes, 2004–2005 through 2013–2014 academic years. J Athl Train. 2017;52(10):966–75.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Changstrom BG, Brou L, Khodaee M, Braund C, Comstock RD. Epidemiology of stress fracture injuries among US high school athletes, 2005–2006 through 2012–2013. Am J Sports Med. 2015;43(1):26–33.

    Article  PubMed  Google Scholar 

  34. Provencher MT, Baldwin AJ, Gorman JD, Gould MT, Shin AY. Atypical tensile-sided femoral neck stress fractures: the value of magnetic resonance imaging. Am J Sports Med. 2004;32(6):1528–34.

    Article  PubMed  Google Scholar 

  35. Wright AA, Hegedus EJ, Lenchik L, Kuhn KJ, Santiago L, Smoliga JM. Diagnostic accuracy of various imaging modalities for suspected lower extremity stress fractures: a systematic review with evidence-based recommendations for clinical practice. Am J Sports Med. 2016;44(1):255–63.

    Article  PubMed  Google Scholar 

  36. Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, et al. RED-S CAT: Relative Energy Deficiency in Sport (RED-S) Clinical Assessment Tool (CAT). Br J Sports Med. 2015;49(7):421–3.

    Article  PubMed  Google Scholar 

  37. Ackerman KE, Nazem T, Chapko D, Russell M, Mendes N, Taylor AP, et al. Bone microarchitecture is impaired in adolescent amenorrheic athletes compared with eumenorrheic athletes and nonathletic controls. J Clin Endocrinol Metab. 2011;96(10):3123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oh Y, Fujita K, Wakabayashi Y, Kurosa Y, Okawa A. Location of atypical femoral fracture can be determined by tensile stress distribution influenced by femoral bowing and neck-shaft angle: a CT-based nonlinear finite element analysis model for the assessment of femoral shaft loading stress. Injury. 2017;48(12):2736–43.

    Article  PubMed  Google Scholar 

  39. Clement DB, Ammann W, Taunton JE, Lloyd-Smith R, Jesperson D, McKay H, et al. Exercise-induced stress injuries to the femur. Int J Sports Med. 1993;14(6):347–52.

    Article  CAS  PubMed  Google Scholar 

  40. Qin L, Liu W, Cao H, Xiao G. Molecular mechanosensors in osteocytes. Bone Res. 2020;8:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rupp M, Merboth F, Daghma DE, Biehl C, El Khassawna T, Heiss C. Osteocytes. Z Orthop Unfall. 2019;157(2):154–63.

    Article  PubMed  Google Scholar 

  42. Hegedus EJ, Hegedus SR, Wright A, Dickson T, Stern BD. Individualized exercise prescription for athletes using a construct-based model. Sports Med. 2022;52(10):2315–20.

    Article  PubMed  Google Scholar 

  43. Hegedus EJ, Ickes L, Jakobs F, Ford KR, Smoliga JM. Comprehensive return to competitive distance running: a clinical commentary. Sports Med. 2021;51(12):2507–23.

    Article  PubMed  Google Scholar 

  44. Yavropoulou MP, Yovos JG. The molecular basis of bone mechanotransduction. J Musculoskelet Neuronal Interact. 2016;16(3):221–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Agostinete RR, Fernandes RA, Narciso PH, Maillane-Vanegas S, Werneck AO, Vlachopoulos D. Categorizing 10 sports according to bone and soft tissue profiles in adolescents. Med Sci Sports Exerc. 2020;52(12):2673–81.

    Article  CAS  PubMed  Google Scholar 

  46. Ashrafi M, Gubaua JE, Pereira JT, Gahlichi F, Doblare M. A mechano-chemo-biological model for bone remodeling with a new mechano-chemo-transduction approach. Biomech Model Mechanobiol. 2020;19(6):2499–523.

    Article  PubMed  Google Scholar 

  47. Greene DA, Naughton GA, Bradshaw E, Moresi M, Ducher G. Mechanical loading with or without weight-bearing activity: influence on bone strength index in elite female adolescent athletes engaged in water polo, gymnastics, and track-and-field. J Bone Miner Metab. 2012;30(5):580–7.

    Article  PubMed  Google Scholar 

  48. Tenforde AS, Watanabe LM, Moreno TJ, Fredericson M. Use of an antigravity treadmill for rehabilitation of a pelvic stress injury. PM R. 2012;4(8):629–31.

    Article  PubMed  Google Scholar 

  49. Vincent HK, Madsen A, Vincent KR. Role of antigravity training in rehabilitation and return to sport after running injuries. Arthrosc Sports Med Rehabil. 2022;4(1):e141–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Hegedus.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Eric Hegedus, Edward Mulligan, Bradley Beer, Angela Gisselman, Liana Wooten, and Benjamin Stern have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

EH: initial idea for the paper and writing of the first draft. EM: initial idea for the paper and draft edits. BB: initial idea for the paper and draft edits. AG: draft edits and creation of original Fig. 1. LW: draft edits. BS: draft edits. All authors read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegedus, E.J., Mulligan, E.P., Beer, B.A. et al. How Advancement in Bone Science Should Inform the Examination and Treatment of Femoral Shaft Bone Stress Injuries in Running Athletes. Sports Med 53, 1117–1124 (2023). https://doi.org/10.1007/s40279-022-01802-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-022-01802-z

Navigation