Skip to main content
Log in

Effects of Follicular and Luteal Phase-Based Menstrual Cycle Resistance Training on Muscle Strength and Mass

  • Current Opinion
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

There is an increasing interest in female athletic performance—especially concerning the impact of the female menstrual cycle on training response. Indeed, fluctuations in female sex hormones, estrogen and progesterone, during the menstrual cycle regulate protein metabolism and recovery processes in skeletal muscle and may thus impact exercise training-related outcomes. Studies demonstrate that anaerobic capacity and muscle strength are greatest during the follicular phase of the menstrual cycle, when estrogen levels peak. In addition, studies indicate that resistance training conducted in the follicular phase of the menstrual cycle (follicular phase-based resistance training) may be superior to luteal phase-based training in terms of enhancing muscle strength and mass. This raises the possibility that the physiological capabilities of skeletal muscle to adapt to exercise training are dependent on the menstrual cycle and can be important for female athletes in optimizing their training. In this paper, we critically review the current state of the art concerning the impact of menstrual cycle phase-based resistance training and highlight why follicular phase-based resistance training possibly is superior to luteal phase-based training in enhancing resistance training outcomes. Finally, we identify directions for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gamberale F, Strindberg L, Wahlberg I. Female work capacity during the menstrual cycle: physiological and psychological reactions. Scand J Work Environ Health. 1975;1:120–7. https://doi.org/10.5271/sjweh.2855.

    Article  CAS  PubMed  Google Scholar 

  2. McNulty KL, Elliott-Sale KJ, Dolan E, et al. The effects of menstrual cycle phase on exercise performance in eumenorrheic women: a systematic review and meta-analysis. Sports Med. 2020;50:1813–27. https://doi.org/10.1007/s40279-020-01319-3.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hansen M. Female hormones: do they influence muscle and tendon protein metabolism? Proc Nutr Soc. 2017;77:32–41. https://doi.org/10.1017/S0029665117001951.

    Article  CAS  PubMed  Google Scholar 

  4. Stricker R, Eberhart R, Chevailler MC, et al. Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer. Clin Chem Lab Med. 2006;44:883–7. https://doi.org/10.1515/CCLM.2006.160.

    Article  CAS  PubMed  Google Scholar 

  5. Phillips SK, Sanderson AG, Birch K, et al. Changes in maximal voluntary force of human adductor pollicis muscle during the menstrual cycle. J Physiol. 1996;496(Pt 2):551–7. https://doi.org/10.1113/jphysiol.1996.sp021706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sarwar R, Niclos BB, Rutherford OM. Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. J Physiol. 1996;493(Pt 1):267–72. https://doi.org/10.1113/jphysiol.1996.sp021381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haines M, McKinley-Barnard SK, Andre TL, et al. Skeletal muscle estrogen receptor activation in response to eccentric exercise up-regulates myogenic-related gene expression independent of differing serum estradiol levels occurring during the human menstrual cycle. J Sports Sci Med. 2018;17:31–9.

    PubMed  PubMed Central  Google Scholar 

  8. Ikeda K, Horie-Inoue K, Inoue S. Functions of estrogen and estrogen receptor signaling on skeletal muscle. J Steroid Biochem Mol Biol. 2019;191: 105375. https://doi.org/10.1016/j.jsbmb.2019.105375.

    Article  CAS  PubMed  Google Scholar 

  9. Janse DEJX, Thompson B, Han A. Methodological recommendations for menstrual cycle research in sports and exercise. Med Sci Sports Exerc. 2019;51:2610–7. https://doi.org/10.1249/MSS.0000000000002073.

    Article  Google Scholar 

  10. Thompson B, Almarjawi A, Sculley D, et al. The effect of the menstrual cycle and oral contraceptives on acute responses and chronic adaptations to resistance training: a systematic review of the literature. Sports Med. 2020;50:171–85. https://doi.org/10.1007/s40279-019-01219-1.

    Article  PubMed  Google Scholar 

  11. Kraemer RR, Heleniak RJ, Tryniecki JL, et al. Follicular and luteal phase hormonal responses to low-volume resistive exercise. Med Sci Sports Exerc. 1995;27:809–17.

    Article  CAS  PubMed  Google Scholar 

  12. Nakamura Y, Aizawa K, Imai T, et al. Hormonal responses to resistance exercise during different menstrual cycle states. Med Sci Sports Exerc. 2011;43:967–73. https://doi.org/10.1249/MSS.0b013e3182019774.

    Article  CAS  PubMed  Google Scholar 

  13. Hansen M, Kjaer M. Influence of sex and estrogen on musculotendinous protein turnover at rest and after exercise. Exerc Sport Sci Rev. 2014;42:183–92. https://doi.org/10.1249/JES.0000000000000026.

    Article  PubMed  Google Scholar 

  14. Sung E, Han A, Hinrichs T, et al. Effects of follicular versus luteal phase-based strength training in young women. Springerplus. 2014;3:668. https://doi.org/10.1186/2193-1801-3-668.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sakamaki-Sunaga M, Min S, Kamemoto K, et al. Effects of menstrual phase-dependent resistance training frequency on muscular hypertrophy and strength. J Strength Cond Res. 2016;30:1727–34. https://doi.org/10.1519/JSC.0000000000001250.

    Article  PubMed  Google Scholar 

  16. Reis E, Frick U, Schmidtbleicher D. Frequency variations of strength training sessions triggered by the phases of the menstrual cycle. Int J Sports Med. 1995;16:545–50. https://doi.org/10.1055/s-2007-973052.

    Article  CAS  PubMed  Google Scholar 

  17. Wikstrom-Frisen L, Boraxbekk CJ, Henriksson-Larsen K. Effects on power, strength and lean body mass of menstrual/oral contraceptive cycle based resistance training. J Sports Med Phys Fitness. 2017;57:43–52. https://doi.org/10.23736/S0022-4707.16.05848-5.

    Article  PubMed  Google Scholar 

  18. Oosthuyse T, Bosch AN. Oestrogen’s regulation of fat metabolism during exercise and gender specific effects. Curr Opin Pharmacol. 2012;12:363–71. https://doi.org/10.1016/j.coph.2012.02.008.

    Article  CAS  PubMed  Google Scholar 

  19. Enns DL, Tiidus PM. Estrogen influences satellite cell activation and proliferation following downhill running in rats. J Appl Physiol. 1985;2008(104):347–53. https://doi.org/10.1152/japplphysiol.00128.2007.

    Article  Google Scholar 

  20. Oosthuyse T, Bosch AN. The effect of the menstrual cycle on exercise metabolism: implications for exercise performance in eumenorrhoeic women. Sports Med. 2010;40:207–27. https://doi.org/10.2165/11317090-000000000-00000.

    Article  PubMed  Google Scholar 

  21. McClung JM, Davis JM, Wilson MA, et al. Estrogen status and skeletal muscle recovery from disuse atrophy. J Appl Physiol. 1985;2006(100):2012–23. https://doi.org/10.1152/japplphysiol.01583.2005.

    Article  CAS  Google Scholar 

  22. Sugiura T, Ito N, Goto K, et al. Estrogen administration attenuates immobilization-induced skeletal muscle atrophy in male rats. J Physiol Sci. 2006;56:393–9. https://doi.org/10.2170/physiolsci.RP006906.

    Article  CAS  PubMed  Google Scholar 

  23. Hansen M, Skovgaard D, Reitelseder S, et al. Effects of estrogen replacement and lower androgen status on skeletal muscle collagen and myofibrillar protein synthesis in postmenopausal women. J Gerontol A Biol Sci Med Sci. 2012;67:1005–13. https://doi.org/10.1093/gerona/gls007.

    Article  CAS  PubMed  Google Scholar 

  24. Kriengsinyos W, Wykes LJ, Goonewardene LA, et al. Phase of menstrual cycle affects lysine requirement in healthy women. Am J Physiol Endocrinol Metab. 2004;287:E489-496. https://doi.org/10.1152/ajpendo.00262.2003.

    Article  CAS  PubMed  Google Scholar 

  25. Lamont LS, Lemon PW, Bruot BC. Menstrual cycle and exercise effects on protein catabolism. Med Sci Sports Exerc. 1987;19:106–10.

    Article  CAS  PubMed  Google Scholar 

  26. Schaumberg MA, Emmerton LM, Jenkins DG, et al. Use of oral contraceptives to manipulate menstruation in young, physically active women. Int J Sports Physiol Perform. 2018;13:82–7. https://doi.org/10.1123/ijspp.2016-0689.

    Article  PubMed  Google Scholar 

  27. Burrows M, Peters CE. The influence of oral contraceptives on athletic performance in female athletes. Sports Med. 2007;37:557–74. https://doi.org/10.2165/00007256-200737070-00001.

    Article  PubMed  Google Scholar 

  28. Stanczyk FZ. All progestins are not created equal. Steroids. 2003;68:879–90. https://doi.org/10.1016/j.steroids.2003.08.003.

    Article  CAS  PubMed  Google Scholar 

  29. Oxfeldt M, Dalgaard LB, Jorgensen EB, et al. Molecular markers of skeletal muscle hypertrophy following 10 wk of resistance training in oral contraceptive users and nonusers. J Appl Physiol. 1985;2020(129):1355–64. https://doi.org/10.1152/japplphysiol.00562.2020.

    Article  CAS  Google Scholar 

  30. Dalgaard LB, Dalgas U, Andersen JL, et al. Influence of oral contraceptive use on adaptations to resistance training. Front Physiol. 2019;10:824. https://doi.org/10.3389/fphys.2019.00824.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dalgaard LB, Jorgensen EB, Oxfeldt M, et al. Influence of second generation oral contraceptive use on adaptations to resistance training in young untrained women. J Strength Cond Res. 2020. https://doi.org/10.1519/JSC.0000000000003735.

    Article  PubMed  Google Scholar 

  32. Elliott-Sale KJ, McNulty KL, Ansdell P, et al. The effects of oral contraceptives on exercise performance in women: a systematic review and meta-analysis. Sports Med. 2020;50:1785–812. https://doi.org/10.1007/s40279-020-01317-5.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hostrup M, Bangsbo J. Limitations in intense exercise performance of athletes—effect of speed endurance training on ion handling and fatigue development. J Physiol. 2017;595:2897–913. https://doi.org/10.1113/JP273218.

    Article  CAS  PubMed  Google Scholar 

  34. Hostrup M, Cairns SP, Bangsbo J. Muscle ionic shifts during exercise: implications for fatigue and exercise performance. Compr Physiol. 2021;11:1895–959. https://doi.org/10.1002/cphy.c190024.

    Article  PubMed  Google Scholar 

  35. Meignie A, Duclos M, Carling C, et al. The effects of menstrual cycle phase on elite athlete performance: a critical and systematic review. Front Physiol. 2021;12: 654585. https://doi.org/10.3389/fphys.2021.654585.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Scheid JL, De Souza MJ. Menstrual irregularities and energy deficiency in physically active women: the role of ghrelin, PYY and adipocytokines. Med Sport Sci. 2010;55:82–102. https://doi.org/10.1159/000321974.

    Article  CAS  PubMed  Google Scholar 

  37. De Souza MJ, Toombs RJ, Scheid JL, et al. High prevalence of subtle and severe menstrual disturbances in exercising women: confirmation using daily hormone measures. Hum Reprod. 2010;25:491–503. https://doi.org/10.1093/humrep/dep411.

    Article  CAS  PubMed  Google Scholar 

  38. Burden RJ, Shill AL, Bishop NC. Elite female athlete research: stop searching for the “magic P.” Exp Physiol. 2021;106:2029–30. https://doi.org/10.1113/EP089884.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Figures were drafted in Biorender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Hostrup.

Ethics declarations

Funding

The review was supported as part of the Novo Nordisk Foundation grant to Team Danmark on the research network “Training strategies and competition preparation.”

Conflicts of interest

Julie Kissow, Kamine J. Jacobsen, Thomas P. Gunnarsson, Søren Jessen, and Morten Hostrup declare no conflicts of interest relevant to the content of this article.

Author contributions

JK and KJJ wrote the first draft of the manuscript. TPG was involved in overall feedback on the manuscript. MH and SJ critically revised the original manuscript and provided intellectual feedback. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kissow, J., Jacobsen, K.J., Gunnarsson, T.P. et al. Effects of Follicular and Luteal Phase-Based Menstrual Cycle Resistance Training on Muscle Strength and Mass. Sports Med 52, 2813–2819 (2022). https://doi.org/10.1007/s40279-022-01679-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-022-01679-y

Navigation