Skip to main content
Log in

Flavonoid Containing Polyphenol Consumption and Recovery from Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Flavonoid polyphenols are bioactive phytochemicals found in fruits and teas among other sources. It has been postulated that foods and supplements containing flavonoid polyphenols may enhance recovery from exercise-induced muscle damage (EIMD) through upregulation of cell signalling stress response pathways, particularly the nuclear factor erythroid 2–related factor 2 (NRF2) pathway.

Objectives

This study aims to investigate the ability of polyphenol treatments containing flavonoids to enhance recovery of skeletal muscle strength, soreness and creatine kinase post EIMD.

Methods

Medline (Pubmed), Embase and SPORTdiscus were searched from inception to August 2020 for randomised placebo-controlled trials which assessed the impact of 6 or more days of flavonoid containing polyphenol ingestion on skeletal muscle recovery in the 96-h period following a single bout of EIMD. A total of 2983 studies were screened in duplicate resulting in 26 studies included for analysis. All meta-analyses were undertaken using a random-effects model.

Results

The pooled results of these meta-analyses show flavonoid polyphenol treatments can enhance recovery of muscle strength by 7.14% (95% CI [5.50–8.78], P < 0.00001) and reduce muscle soreness by 4.12% (95% CI [− 5.82 to − 2.41] P = 0.00001), no change in the recovery of creatine kinase concentrations was observed.

Conclusion

These results indicate that ingestion of polyphenol treatments which contain flavonoids has significant potential to improve recovery of muscular strength and reduce muscle soreness in the 4-day period post EIMD. However, the characterisation of polyphenol dosage and composition of study treatments should be prioritised in future research to facilitate the development of specific guidelines for the inclusion of flavonoid-rich foods in the diet of athletes and active individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EIMD:

Exercise-induced muscle damage

CI:

Confidence interval

Ca2 + :

Calcium ion

ROS:

Reactive oxygen species

DOMS:

Delayed onset muscle soreness

RCTs:

Randomised controlled trials

VAS:

Visual Analogue Scale

CK:

Creatine kinase

MVC:

Maximal voluntary contraction

SEM:

Standard error of mean

SD:

Standard deviation

MD:

Mean difference

CMJ:

Countermovement jump

RSI:

Reactive Strength Index

NRF2:

Nuclear factor erythroid 2–related factor 2

PPT:

Pressure pain threshold

EFSA:

European Food Safety Authority

TPC:

Total phenolic content

PI:

Prediction interval

References

  1. Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil. 2001;81:62–9. https://doi.org/10.1097/01.PHM.0000029772.45258.43.

    Article  Google Scholar 

  2. Owens DJ, Twist C, Cobley JN, Howatson G, Close GL. Exercise-induced muscle damage: what is it, what causes it and what are the nutritional solutions? Eur J Sport Sci. 2018;19:71–85. https://doi.org/10.1080/17461391.2018.1505957.

    Article  PubMed  Google Scholar 

  3. Proske U, Allen TJ. Damage to skeletal muscle from eccentric exercise. Exerc Sport Sci Rev. 2005;33:98–104.

    Article  Google Scholar 

  4. Proske U, Morgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol. 2001;573(2):333–45.

    Article  Google Scholar 

  5. Gissel H, Clausen T. Excitation-induced Ca2+ influx and skeletal muscle cell damage. Acta Physiol Scand. 2001;171:327–34.

    Article  CAS  Google Scholar 

  6. Powers SK, Ji LL, Kavazis AN, Jackson MJ. Reactive oxygen species: Impact on skeletal muscle. Compr Physiol. 2011;1:941–69. https://doi.org/10.1002/cphy.c100054.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, Dulak J. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J Muscle Res Cell Motil. 2015;36:377–93. https://doi.org/10.1007/s10974-015-9438-9.

    Article  CAS  PubMed  Google Scholar 

  8. Thomas K, Dent J, Howatson G, Goodall S. Etiology and recovery of neuromuscular fatigue after simulated soccer match play. Med Sci Sports Exerc. 2017;49(5):955–64. https://doi.org/10.1249/MSS.0000000000001196.

    Article  PubMed  Google Scholar 

  9. Howatson G, Milak A. Exercise induced muscle damage following a bout of sport specific repeated sprints. J Strength Cond Res. 2009;23(8):2419–24.

    Article  Google Scholar 

  10. Twist C, Sykes D. Evidence of exercise-induced muscle damage following a simulated rugby league match. Eur J Sport Sci. 2011;11(6):401–9. https://doi.org/10.1080/17461391.2010.536575.

    Article  Google Scholar 

  11. Souglis A, Bogdanis GC, Giannopoulou I, Papadopoulos C, Apostolidis N. Comparison of inflammatory responses and muscle damage indices following a soccer, basketball, volleyball and handball game at an elite competitive level. Res Sports Med. 2015;23(1):59–72. https://doi.org/10.1080/15438627.2014.975814.

    Article  CAS  PubMed  Google Scholar 

  12. Harty PS, Cottet ML, Malloy JK, Kerksick CM. Nutritional and Supplementation Strategies to Prevent and Attenuate Exercise-Induced Muscle Damage: a Brief Review. Sports Med Open. 2019;5:1–17. https://doi.org/10.1186/s40798-018-0176-6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Leeder J, Gissane C, van Someren K, Gregson W, Howatson G. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2012;46(4):233–40. https://doi.org/10.1136/bjsports-2011-090061.

    Article  PubMed  Google Scholar 

  14. Bieuzen F, Bleakley CM, Costello JT. Contrast water therapy and exercise induced muscle damage: a systematic review and meta-analysis. PLoS ONE. 2013;8(4):e62356. https://doi.org/10.1371/journal.pone.0062356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hill J, Howatson G, van Someren K, Leeder J, Pedlar C. Compression garments and recovery from exercise-induced muscle damage: a meta-analysis. Br J Sports Med. 2014;48(18):1340–6. https://doi.org/10.1136/bjsports-2013-092456.

    Article  PubMed  Google Scholar 

  16. Smith l, Keating MN, Holbert D, Spratt DI, McCammon MR, Smith SS et al. The effects of athletic massage on delayed onset muscle soreness, creatine kinase, and neutrophil count: a preliminary report. J Orthop Sports Phys Ther. 1994;19(2):93–9.

  17. Maughan RJ, Depiesse F, Geyer H. The use of dietary supplements by athletes. J Sports Sci. 2007;25(Suppl 1):S103–13. https://doi.org/10.1080/02640410701607395.

    Article  PubMed  Google Scholar 

  18. Pasiakos SM, Lieberman HR, McLellan TM. Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: a systematic review. Sports Med. 2014;44(5):655–70. https://doi.org/10.1007/s40279-013-0137-7.

    Article  PubMed  Google Scholar 

  19. Howatson G, Hoad M, Goodall S, Tallent J, Bell PG, French DN. Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study. J Int Soc Sports Nutr. 2012;9(20):1–7.

    Article  CAS  Google Scholar 

  20. Deminice R, Rosa FT, Franco GS, Jordao AA, de Freitas EC. Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans. Nutrition. 2013;29(9):1127–32. https://doi.org/10.1016/j.nut.2013.03.003.

    Article  CAS  PubMed  Google Scholar 

  21. Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, et al. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. Clin Sci (Lond). 2011;121(6):267–78. https://doi.org/10.1042/CS20100597.

    Article  CAS  Google Scholar 

  22. Barker T, Schneider ED, Dixon BM, Henriksen VT, Weaver LK. Supplemental vitamin D enhances the recovery in peak isometric force shortly after intense exercise. Nutr Metab (Lond). 2013;10(69):1–10.

    Google Scholar 

  23. Frank J, Fukagawa NK, Bilia AR, Johnson EJ, Kwon O, Prakash V, et al. Terms and nomenclature used for plant-derived components in nutrition and related research: efforts toward harmonization. Nutr Rev. 2020;78(6):451–8. https://doi.org/10.1093/nutrit/nuz081.

    Article  PubMed  Google Scholar 

  24. Myburgh KH. Polyphenol supplementation: Benefits for exercise performance or oxidative stress? Sports Med. 2014. https://doi.org/10.1007/s40279-014-0151-4.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bowtell J, Kelly V. Fruit-derived polyphenol supplementation for athlete recovery and performance. Sports Med. 2019;49:3–23. https://doi.org/10.1007/s40279-018-0998-x.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. https://doi.org/10.1017/jns.2016.41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bell PG, Stevenson E, Davison GW, Howatson G. The effects of montmorency tart cherry concentrate supplementation on recovery following prolonged, intermittent exercise. Nutrients. 2016. https://doi.org/10.3390/nu8070441.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bell PG, Walshe IH, Davison GW, Stevenson EJ, Howatson G. Recovery facilitation with Montmorency cherries following high-intensity, metabolically challenging exercise. Appl Physiol Nutr Metab. 2015;40:414–23. https://doi.org/10.1139/apnm-2014-0244.

    Article  PubMed  Google Scholar 

  29. Bowtell JL, Sumners DP, Dyer A, Fox P, Mileva KN. Montmorency cherry juice reduces muscle damage caused by intensive strength exercise. Med Sci Sports Exerc. 2011;43:1544–51. https://doi.org/10.1249/MSS.0b013e31820e5adc.

    Article  CAS  PubMed  Google Scholar 

  30. Brown MA, Stevenson EJ, Howatson G. Montmorency tart cherry (Prunus cerasus L.) supplementation accelerates recovery from exercise-induced muscle damage in females. Eur J Sport Sci. 2019;19:95–102. https://doi.org/10.1080/17461391.2018.1502360.

    Article  PubMed  Google Scholar 

  31. Connolly DAJ, McHugh MP, Padilla-Zakour OI. Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Br J Sports Med. 2006;40:679–83. https://doi.org/10.1136/bjsm.2005.025429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Howatson G, McHugh MP, Hill JA, Brouner J, Jewell AP, van Someren KA, et al. Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports. 2010;6:22–33. https://doi.org/10.1111/j.1600-0838.2009.01005.x.

    Article  Google Scholar 

  33. Levers K, Dalton R, Galvan E, O’Connor A, Goodenough C, Simbo S, et al. Effects of powdered Montmorency tart cherry supplementation on acute endurance exercise performance in aerobically trained individuals. J Int Soc Sports Nutr. 2016. https://doi.org/10.1186/s12970-016-0133-z.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lamb KL, Ranchordas MK, Johnson E, Denning J, Downing F, Lynn A. No effect of Tart Cherry juice or pomegranate juice on recovery from exercise-induced muscle damage in non-resistance trained men. Nutrients. 2019. https://doi.org/10.3390/nu11071593.

    Article  PubMed  PubMed Central  Google Scholar 

  35. da Silva W, Machado ÁS, Souza MA, Mello-Carpes PB, Carpes FP. Effect of green tea extract supplementation on exercise-induced delayed onset muscle soreness and muscular damage. Physiol Behav. 2018;194:77–82. https://doi.org/10.1016/j.physbeh.2018.05.006.

    Article  CAS  PubMed  Google Scholar 

  36. Jówko E, Długołęcka B, Makaruk B, Cieśliński I. The effect of green tea extract supplementation on exercise-induced oxidative stress parameters in male sprinters. Eur J Nutr. 2015;54:783–91. https://doi.org/10.1007/s00394-014-0757-1.

    Article  CAS  PubMed  Google Scholar 

  37. Jówko E, Sacharuk J, Balasińska B, Ostaszewski P, Charmas M, Charmas R. Green tea extract supplementation gives protection against exercise-induced oxidative damage in healthy men. Nutr Res. 2011;31:813–21. https://doi.org/10.1016/j.nutres.2011.09.020.

    Article  CAS  PubMed  Google Scholar 

  38. Kuo Y-C, Lin J-C, Bernard JR, Liao Y-H. Green tea extract supplementation does not hamper endurance-training adaptation but improves antioxidant capacity in sedentary men. Appl Physiol Nutr Metab. 2015;40:990–6. https://doi.org/10.1139/apnm-2014-0538.

    Article  CAS  PubMed  Google Scholar 

  39. Ammar A, Bailey SJ, Chtourou H, Trabelsi K, Turki M, Hökelmann A, et al. Effects of pomegranate supplementation on exercise performance and post-exercise recovery in healthy adults: a systematic review. Br J Nutr. 2018. https://doi.org/10.1017/S0007114518002696.

    Article  PubMed  Google Scholar 

  40. Trombold JR, Barnes JN, Critchley L, Coyle EF. Ellagitannin consumption improves strength recovery 2–3 d after eccentric exercise. Med Sci Sports Exerc. 2010;42:493–8. https://doi.org/10.1249/MSS.0b013e3181b64edd.

    Article  CAS  PubMed  Google Scholar 

  41. Trombold JR, Reinfeld AS, Casler JR, Coyle EF. The effect of pomegranate juice supplementation on strength and soreness after eccentric exercise. J Strength Cond Res. 2011;25:1782–8.

    Article  Google Scholar 

  42. Bloedon TK, Braithwaite RE, Carson IA, Klimis-Zacas D, Lehnhard RA. Impact of anthocyanin-rich whole fruit consumption on exercise-induced oxidative stress and inflammation: a systematic review and meta-analysis. Nutr Rev. 2019. https://doi.org/10.1093/nutrit/nuz018.

    Article  PubMed  Google Scholar 

  43. Massaro M, Scoditti E, Carluccio MA, Kaltsatou A, Cicchella A. Effect of cocoa products and its polyphenolic constituents on exercise performance and exercise-induced muscle damage and inflammation: a review of clinical trials. Nutrients. 2019. https://doi.org/10.3390/nu11071471.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ranchordas MK, Rogerson D, Soltani H, Costello JT. Antioxidants for preventing and reducing muscle soreness after exercise: a Cochrane systematic review. Br J Sports Med. 2018. https://doi.org/10.1136/bjsports-2018-099599.

    Article  PubMed  Google Scholar 

  45. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210. https://doi.org/10.1186/s13643-016-0384-4.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Drevon D, Fursa SR, Malcolm AL. Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behav Modif. 2017;41(2):323–39. https://doi.org/10.1177/0145445516673998.

    Article  PubMed  Google Scholar 

  47. Borenstein M, Hedges L, Rothstein H. Meta-analysis. Fixed effects vs. random effects. Englewood: Biostat; 2007.

  48. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. London: Wiley; 2009.

    Book  Google Scholar 

  49. Julian PTH, Simon GT, Jonathan JD, Altman DG. Measuring inconsistency in meta-analyses. Br Med J. 2003;327:557–60.

    Article  Google Scholar 

  50. Richardson M, Garner P, Donegan S. Interpretation of subgroup analyses in systematic reviews: a tutorial. Clin Epidemiol Glob Health. 2019;7(2):192–8. https://doi.org/10.1016/j.cegh.2018.05.005.

    Article  Google Scholar 

  51. Maher CG, Sherrington C, Elkins MR. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2017. https://doi.org/10.1093/ptj/83.8.713.

    Article  PubMed  Google Scholar 

  52. de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129–33. https://doi.org/10.1016/s0004-9514(09)70043-1.

    Article  PubMed  Google Scholar 

  53. Verhagen AP, de Vet HCW, de Bie RA, Kessels AGH, Boers M, Bouter LM, et al. The Delphi List: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by delphi consensus. J Clin Epidemiol. 1998;51(12):1235–41.

    Article  CAS  Google Scholar 

  54. Lynn A, Garner S, Nelson N, Simper TN, Hall AC, Ranchordas MK. Effect of bilberry juice on indices of muscle damage and inflammation in runners completing a half-marathon: a randomised, placebo-controlled trial. J Int Soc Sports Nutr. 2018;15:1–8. https://doi.org/10.1186/s12970-018-0227-x.

    Article  CAS  Google Scholar 

  55. Herrlinger KA, Chirouzes DM, Ceddia MA. Supplementation with a polyphenolic blend improves post-exercise strength recovery and muscle soreness. Food Nutr Res. 2015. https://doi.org/10.3402/fnr.v59.30034.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Beyer KS, Stout JR, Fukuda DH, Jajtner AR, Townsend JR, Church DD, et al. Impact of polyphenol supplementation on acute and chronic response to resistance training. J Strength Cond Res. 2017;31:2945–54. https://doi.org/10.1519/JSC.0000000000002104.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Beals K, Allison KF, Darnell M, Lovalekar M, Baker R, Nieman DC, et al. The effects of a tart cherry beverage on reducing exercise-induced muscle soreness. Isokinet Exerc Sci. 2017;25:53–63. https://doi.org/10.3233/IES-160645.

    Article  Google Scholar 

  58. Levers K, Dalton R, Galvan E, Goodenough C, O’Connor A, Simbo S, et al. Effects of powdered Montmorency tart cherry supplementation on an acute bout of intense lower body strength exercise in resistance trained males. J Int Soc Sports Nutr. 2015;12:41. https://doi.org/10.1186/s12970-015-0102-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Quinlan R, Hill JA. The efficacy of tart cherry juice in aiding recovery after intermittent exercise. Int J Sports Physiol Perform. 2020. https://doi.org/10.1123/ijspp.2019-0101.

    Article  Google Scholar 

  60. Arent SM, Senso M, Golem DL, McKeever KH. The effects of theaflavin-enriched black tea extract on muscle soreness, oxidative stress, inflammation, and endocrine responses to acute anaerobic interval training: a randomized, double-blind, crossover study. J Int Soc Sports Nutr. 2010;7:1–10. https://doi.org/10.1186/1550-2783-7-11.

    Article  CAS  Google Scholar 

  61. Jajtner AR, Hoffman JR, Townsend JR, Beyer KS, Varanoske AN, Church DD, et al. The effect of polyphenols on cytokine and granulocyte response to resistance exercise. Physiol Rep. 2016;4:1–15. https://doi.org/10.14814/phy2.13058.

    Article  CAS  Google Scholar 

  62. O’Fallon KS, Kaushik D, Michniak-Kohn B, Dunne CP, Zambraski EJ, Clarkson PM. Effects of quercetin supplementation on markers of muscle damage and inflammation after eccentric exercise. Int J Sport Nutr Exerc Metab. 2012;22:430–7. https://doi.org/10.1123/ijsnem.22.6.430.

    Article  CAS  PubMed  Google Scholar 

  63. Bazzucchi I, Patrizio F, Ceci R, Duranti G, Sgrò P, Sabatini S, et al. The effects of quercetin supplementation on eccentric exercise-induced muscle damage. Nutrients. 2019;11:205. https://doi.org/10.3390/nu11010205.

    Article  CAS  PubMed Central  Google Scholar 

  64. Buchwald-Werner S, Naka I, Wilhelm M, Schutz E, Schoen C, Reule C. Effects of lemon verbena extract (Recoverben(R)) supplementation on muscle strength and recovery after exhaustive exercise: a randomized, placebo-controlled trial. J Int Soc Sports Nutr. 2018;15:5. https://doi.org/10.1186/s12970-018-0208-0.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Costello R, Willems MET, Myers SD, Lewis NA, Myers F, Lee BJ, et al. No effect of New Zealand blackcurrant extract on recovery of muscle damage following running a half-marathon. Int J Sport Nutr Exerc Metab. 2020;30(4):287–94.

    Article  CAS  Google Scholar 

  66. Hutchison AT, Flieller EB, Dillon KJ, Leverett BD. Black currant nectar reduces muscle damage and inflammation following a bout of high-intensity eccentric contractions. J Diet Suppl. 2016;13(1):1–15. https://doi.org/10.3109/19390211.2014.952864.

    Article  PubMed  Google Scholar 

  67. Morgan P, Wollman P, Jackman S, Bowtell J. Flavanol-Rich Cacao Mucilage juice enhances recovery of power but not strength from intensive exercise in healthy. Young Men Sports. 2018;6:159. https://doi.org/10.3390/sports6040159.

    Article  Google Scholar 

  68. Lima LCR, Barreto RV, Bassan NM, Greco CC, Denadai BS. Consumption of an anthocyanin-rich antioxidant juice accelerates recovery of running economy and indirect markers of exercise-induced muscle damage following downhill running. Nutrients. 2019. https://doi.org/10.3390/nu11102274.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Quinlan R, Hill JA. The efficacy of tart cherry juice in aiding recovery after intermittent exercise. Int J Sports Physiol Perform. 2020;15(3):368–74.

    Article  Google Scholar 

  70. Somerville V, Bringans C, Braakhuis A. Polyphenols and performance: a systematic review and meta-analysis. Sports Med. 2017;47:1589–99. https://doi.org/10.1007/s40279-017-0675-5.

    Article  PubMed  Google Scholar 

  71. Morton JP, Atkinson G, MacLaren DP, Cable NT, Gilbert G, Broome C, et al. Reliability of maximal muscle force and voluntary activation as markers of exercise-induced muscle damage. Eur J Appl Physiol. 2005;94(5–6):541–8. https://doi.org/10.1007/s00421-005-1373-9.

    Article  PubMed  Google Scholar 

  72. Warren GL, Lowe DA, Armstrong RB. Measurement tools used in the study of eccentric contraction-induced injury. Sports Med. 1999;27:43–59.

    Article  CAS  Google Scholar 

  73. Boonstra AM, Schiphorst Preuper HR, Reneman MF, Posthumus JB, Stewart RE. Reliability and validity of the visual analogue scale for disability in patients with chronic musculoskeletal pain. Int J Rehabil Res. 2008;31(2):165–9.

    Article  Google Scholar 

  74. Wing YLM, Muthalib M, Nosaka K. Visual Analog Scale and pressure pain threshold for delayed onset muscle soreness assessment. J Musculoskelet Pain. 2013;21:320–6. https://doi.org/10.3109/10582452.2013.848967.

    Article  Google Scholar 

  75. Clarkson PM, Ebbeling C. Investigation of serum creatine kinase variability after muscle-damaging exercise. Clin Sci (Lond). 1988;75:257–61. https://doi.org/10.1042/cs0750257.

    Article  CAS  Google Scholar 

  76. Baird MF, Graham SM, Baker JS, Bickerstaff GF. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab. 2012;2012:960363. https://doi.org/10.1155/2012/960363.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Howatson G, Van Someren K, Hortobagyi T. Repeated bout effect after maximal eccentric exercise. Int J Sports Med. 2007;28(7):557–63. https://doi.org/10.1055/s-2007-964866.

    Article  CAS  PubMed  Google Scholar 

  78. McHugh MP. Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sports. 2003;13(2):88–97. https://doi.org/10.1034/j.1600-0838.2003.02477.x.

    Article  PubMed  Google Scholar 

  79. Clifford MN. Diet-derived phenols in plasma and tissues and their implications for health. Planta Med. 2004;70(12):1103–14. https://doi.org/10.1055/s-2004-835835.

    Article  CAS  PubMed  Google Scholar 

  80. Huang Y, Li W, Su Z-Y, Kong A-NT. The complexity of the Nrf2 pathway: Beyond the antioxidant response. J Nutr Biochem. 2015;26:1401–13. https://doi.org/10.1007/s11864-014-0294-4.

  81. Forman HJ, Davies KJA, Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic Biol Med. 2014;66:24–35. https://doi.org/10.1016/j.freeradbiomed.2013.05.045.

    Article  CAS  PubMed  Google Scholar 

  82. Esposito D, Chen A, Grace MH, Komarnytsky S, Lila MA. Inhibitory effects of wild blueberry anthocyanins and other flavonoids on biomarkers of acute and chronic inflammation in vitro. J Agric Food Chem. 2014;62(29):7022–8. https://doi.org/10.1021/jf4051599.

    Article  CAS  PubMed  Google Scholar 

  83. Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. The role of polyphenols in human health and food systems: a mini-review. Front Nutr. 2018;5:87. https://doi.org/10.3389/fnut.2018.00087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Amiot MJ, Riva C, Vinet A. Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes Rev. 2016;17(7):573–86. https://doi.org/10.1111/obr.12409.

    Article  CAS  PubMed  Google Scholar 

  85. Lucey A, Heneghan C, Kiely ME. Guidance for the design and implementation of human dietary intervention studies for health claim submissions. Nutr Bull. 2016;41:378–94. https://doi.org/10.1111/nbu.12241.

    Article  Google Scholar 

  86. Zhong S, Sandhu A, Edirisinghe I, Burton-Freeman B. Characterization of wild blueberry polyphenols bioavailability and kinetic profile in plasma over 24-h period in human subjects. Mol Nutr Food Res. 2017;61:1–13. https://doi.org/10.1002/mnfr.201700405.

    Article  CAS  Google Scholar 

  87. Mertens-Talcott S, Rios J, Jilma-Stohlawetz P, Pacheco-Palencia L, Meibohm B, Talcott S, et al. Pharmacokinetics of anthocyanins and antioxidant effects after the consumption of anthocyanin-rich acai juice and pulp (Euterpe oleracea Mart.) in human healthy volunteers. J Agric Food Chem. 2008;56:7796–802.

  88. Seymour EM, Warber SM, Kirakosyan A, Noon KR, Gillespie B, Uhley VE, et al. Anthocyanin pharmacokinetics and dose-dependent plasma antioxidant pharmacodynamics following whole tart cherry intake in healthy humans. J Funct Foods. 2014;11:509–16. https://doi.org/10.1016/j.jff.2014.08.007.

    Article  CAS  Google Scholar 

  89. Sandhu AK, Miller MG, Thangthaeng N, Scott TM, Shukitt-Hale B, Edirisinghe I, et al. Metabolic fate of strawberry polyphenols after chronic intake in healthy older adults. Food Funct. 2018;9:96–106. https://doi.org/10.1039/c7fo01843f.

    Article  CAS  PubMed  Google Scholar 

  90. de Ferrars RM, Czank C, Zhang Q, Botting NP, Kroon PA, Cassidy A, et al. The pharmacokinetics of anthocyanins and their metabolites in humans. Br J Pharmacol. 2014;171:3268–82. https://doi.org/10.1111/bph.12676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Martínez-Huélamo M, Vallverdú-Queralt A, Di Lecce G, Valderas-Martínez P, Tulipani S, Jáuregui O, et al. Bioavailability of tomato polyphenols is enhanced by processing and fat addition: Evidence from a randomized feeding trial. Mol Nutr Food Res. 2016;60:1578–89. https://doi.org/10.1002/mnfr.201500820.

    Article  CAS  PubMed  Google Scholar 

  92. Kalt W, Liu Y, McDonald JE, Vinqvist-Tymchuk MR, Fillmore SA. Anthocyanin metabolites are abundant and persistent in human urine. J Agric Food Chem. 2014;62(18):3926–34. https://doi.org/10.1021/jf500107j.

    Article  CAS  PubMed  Google Scholar 

  93. Bjørnsen T, Salvesen S, Berntsen S, Hetlelid KJ, Stea TH, Lohne-Seiler H, et al. Vitamin C and E supplementation blunts increases in total lean body mass in elderly men after strength training. Scand J Med Sci Sports. 2016;26:755–63. https://doi.org/10.1111/sms.12506.

    Article  PubMed  Google Scholar 

  94. Paulsen G, Cumming KT, Holden G, Hallen J, Ronnestad BR, Sveen O, et al. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. J Physiol. 2014;592(8):1887–901. https://doi.org/10.1113/jphysiol.2013.267419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci. 2009;106:8665–70. https://doi.org/10.1073/pnas.0903485106.

    Article  PubMed  Google Scholar 

  96. Gomez-Cabrera MC, Salvador-Pascual A, Cabo H, Ferrando B, Vina J. Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radic Biol Med. 2015;86:37–46. https://doi.org/10.1016/j.freeradbiomed.2015.04.006.

  97. Braakhuis AJ, Hopkins WG, Lowe TE. Effects of dietary antioxidants on training and performance in female runners. Eur J Sport Sci. 2014;14:160–8. https://doi.org/10.1080/17461391.2013.785597.

    Article  PubMed  Google Scholar 

  98. Scribbans TD, Ma JK, Edgett BA, Vorobej KA, Mitchell AS, Zelt JGE, et al. Resveratrol supplementation does not augment performance adaptations or fibre-type-specific responses to high-intensity interval training in humans. Appl Physiol Nutr Metab. 2014;39:1305–13. https://doi.org/10.1139/apnm-2014-0070.

    Article  CAS  PubMed  Google Scholar 

  99. Gliemann L, Schmidt JF, Olesen J, Biensø RS, Peronard SL, Grandjean SU, et al. Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. J Physiol. 2013;591:5047–59. https://doi.org/10.1113/jphysiol.2013.258061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rothschild JA, Bishop DJ. Effects of dietary supplements on adaptations to endurance training. Sports Med. 2020;50(1):25–53. https://doi.org/10.1007/s40279-019-01185-8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorna Doyle.

Ethics declarations

Funding

Information that explains whether and by whom the research was supported: the research leading to these results was funded by the Irish Department of Agriculture, Food and the Marine, under the Food Institutional Research Measure (FIRM) Agreement no. 17F277 (2018-2022).

Conflict of interest

Conor C. Carey, Alice Lucey, and Lorna Doyle declare that they have no conflict of interest.

Ethics approval

N/A

Consent to participate

N/A.

Consent for publication

N/A.

Availability of data and material

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

N/A.

Author contributions

All authors contributed to the study conception and design. Duplicate screening of studies was performed by Conor C. Carey and Lorna Doyle. Data analysis was undertaken by Conor C. Carey. The first draft of the manuscript was written by Conor C. Carey and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 86 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carey, C.C., Lucey, A. & Doyle, L. Flavonoid Containing Polyphenol Consumption and Recovery from Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis. Sports Med 51, 1293–1316 (2021). https://doi.org/10.1007/s40279-021-01440-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01440-x

Navigation