Skip to main content
Log in

High- and Low-Load Resistance Training: Interpretation and Practical Application of Current Research Findings

  • Current Opinion
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Our current state of knowledge regarding the load (lighter or heavier) lifted in resistance training programmes that will result in ‘optimal’ strength and hypertrophic adaptations is unclear. Despite this, position stands and recommendations are made based on, we propose, limited evidence to lift heavier weights. Here we discuss the state of evidence on the impact of load and how it, as a single variable, stimulates adaptations to take place and whether evidence for recommending heavier loads is available, well-defined, currently correctly interpreted or has been overlooked. Areas of discussion include electromyography amplitude, in vivo and in vitro methods of measuring hypertrophy, and motor schema and skill acquisition. The present piece clarifies to trainers and trainees the impact of these variables by discussing interpretation of synchronous and sequential motor unit recruitment and revisiting the size principle, poor agreement between whole-muscle cross-sectional area (CSA) and biopsy-determined changes in myofibril CSA, and neural adaptations around task specificity. Our opinion is that the practical implications of being able to self-select external load include reducing the need for specific facility memberships, motivating older persons or those who might be less confident using heavy loads, and allowing people to undertake home- or field-based resistance training intervention strategies that might ultimately improve exercise adherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Schoenfeld et al. [6], with permission

Similar content being viewed by others

References

  1. Fisher J, Steele J, Smith D. Evidence-based resistance training recommendations for muscular hypertrophy. Med Sport. 2013;17(4):217–35.

    Google Scholar 

  2. Fisher J, Steele J, Bruce-Low S, et al. Evidence-based resistance training recommendations. Med Sport. 2011;15(3):147–62.

    Article  Google Scholar 

  3. Kraemer WJ, Adams K, Cafarelli E, et al. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2002;34:364–80.

    Article  PubMed  Google Scholar 

  4. Ratamess NA, Alvar BA, Evetoch TK, et al. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708.

    Article  Google Scholar 

  5. Schoenfeld B. Is there a minimum intensity threshold for resistance training-induced hypertrophic adaptations? Sports Med. 2013;43(12):1279–88.

    Article  PubMed  Google Scholar 

  6. Schoenfeld BJ, Wilson JM, Lowery RP, et al. Muscular adaptations in low-versus high-load resistance training: a meta-analysis. Eur J Sport Sci. 2016;16(1):1–10.

    Article  PubMed  Google Scholar 

  7. Schoenfeld BJ, Contreras B, Willardson JM, et al. Muscle activation during low- versus high-load resistance training in well-trained men. Eur J Appl Physiol. 2014;114(12):2491–7.

    Article  PubMed  Google Scholar 

  8. Jenkins ND, Housh TJ, Bergstrom HC, et al. Muscle activation during three sets to failure at 80 vs. 30 % 1RM resistance exercise. Eur J Appl Physiol. 2015;115(11):2335–47.

    Article  PubMed  Google Scholar 

  9. Looney DP, Kraemer WJ, Joseph MF, et al. Electromyographical and perceptual responses to different resistance intensities in a squat protocol: does performing sets to failure with light loads produce the same activity? J Strength Cond Res. 2016;30(3):729–99.

    Article  Google Scholar 

  10. Denny-Brown D, Pennybacker JB. Fibrillation and fasciculation in voluntary muscle. Brain. 1938;61(3):311–2.

    Article  Google Scholar 

  11. Carpinelli R. The size principle and a critical analysis of the unsubstantiated heavier-is-better recommendation for resistance training. J Exerc Sci Fit. 2008;6:67–86.

    Google Scholar 

  12. Enoka RM, Duchateau J. Inappropriate interpretation of surface EMG signals and muscle fiber characteristics impedes progress on understanding the control of neuromuscular function. J Appl Physiol. 2015;119(12):1516–8.

    Article  CAS  PubMed  Google Scholar 

  13. Adam A, De Luca CJ. Recruitment order of motor units in human vastus lateralis muscle is maintained during fatiguing contractions. J Neurophysiol. 2003;90:2919–27.

    Article  PubMed  Google Scholar 

  14. Westad C, Westgaard RH, De Luca CJ. Motor unit recruitment and derecruitment induced by brief increase in contraction amplitude of the human trapezius muscle. J Physiol. 2003;552:645–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Petrofsky JS, Phillips CA. Discharge characteristics of motor units and the surface EMG during fatiguing isometric contractions at submaximal tensions. Aviat Space Environ Med. 1985;56:581–6.

    CAS  PubMed  Google Scholar 

  16. Behm DG. Force maintenance with submaximal fatiguing contractions. Can J Appl Physiol. 2004;29(3):274–90.

    Article  PubMed  Google Scholar 

  17. Garland SJ, Gossen R. The muscular wisdom hypothesis in human muscle fatigue. Exerc Sport Sci Rev. 2002;30(1):45–9.

    Article  PubMed  Google Scholar 

  18. Boe SG, Stashuk DW, Doherty TJ. Motor unit number estimation by decomposition-enhanced spike-triggered averaging: control data, test-retest reliability, and contractile level effects. Muscle Nerve. 2004;29:693–9.

    Article  PubMed  Google Scholar 

  19. Hodson-Tole EF, Wakeling JM. Variations in motor unit recruitment patterns occur within and between muscles in the running rat (Rattus norvegicus). J Exp Biol. 2007;210:2333–45.

    Article  CAS  PubMed  Google Scholar 

  20. Steele J, Fisher J. Scientific rigour: a heavy or light load to carry? [letter]. Sports Med. 2014;44(1):141–2.

    Article  PubMed  Google Scholar 

  21. Schoenfeld B. Author’s reply to Steele and Fisher: “Scientific rigour: a heavy or light load to carry?”: the importance of maintaining objectivity in drawing evidence-based conclusions [letter]. Sports Med. 2014;44:143–5.

    Article  CAS  PubMed  Google Scholar 

  22. Mitchell CJ, Churchward-Venne TA, West DW, et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol. 2012;113(1):71–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McCall GE, Byrnes WC, Dickinson A, et al. Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. J Appl Physiol. 1996;81(5):2004–12.

    CAS  PubMed  Google Scholar 

  24. Campos GER, Luecke TJ, Wendeln HK, et al. Muscular adaptations in response to three different resistance training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1–2):50–60.

    Article  PubMed  Google Scholar 

  25. Schuenke MD, Herman JR, Gliders RM, et al. Early phase muscular adaptations in response to slow-speed versus traditional resistance-training regimens. Eur J Appl Physiol. 2012;2012(112):3585–95.

    Article  Google Scholar 

  26. Ogasawara R, Loenneke JP, Thiebaud RS, Abe T. Low-load bench press training to fatigue results in muscle hypertrophy similar to high-load bench press training. Int J Clin Med. 2013;4:114–21.

    Article  Google Scholar 

  27. Popov DV, Tsvirkun DV, Netreba AI, et al. Hormonal adaptation determines the increase in muscle mass and strength during low-intensity strength training without relaxation. Human Physiol. 2006;32(5):609–14.

    Article  CAS  Google Scholar 

  28. Tanimoto M, Ishii N. Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. J Appl Physiol. 2006;100:1150–7.

    Article  PubMed  Google Scholar 

  29. Tanimoto M, Sanada K, Yamamoto K, et al. Effects of whole-body low-intensity resistance training with slow movement and tonic force generation on muscular size and strength in young men. J Strength Cond Res. 2008;22:1926–38.

    Article  PubMed  Google Scholar 

  30. Van Roie E, Delecluse C, Coudyzer W, et al. Strength training at high versus low external resistance in older adults: effects on muscle volume, muscle strength, and force-velocity characteristics. Exp Geront. 2013;48:1351–61.

    Article  Google Scholar 

  31. Ogborn D, Schoenfeld BJ. The role of fiber types in muscle hypertrophy: implications for loading strategies. Strength Cond J. 2014;36(2):20–5.

    Article  Google Scholar 

  32. Vinogradova OL, Popov DV, Netreba AI, et al. Optimization of training: new developments in safe strength training. Hum Physiol. 2013;39(5):511–23.

    Article  Google Scholar 

  33. Netreba A, Popov D, Yam Bravyy, et al. Responses of knee extensor muscles to leg press training of various types in human. Russian J Physiol. 2013;99(3):406–16.

    CAS  Google Scholar 

  34. Hather BM, Adams GR, Tesch PE, et al. Skeletal muscle responses to lower limb suspension in humans. J Appl Physiol. 1992;72(4):1493–8.

    CAS  PubMed  Google Scholar 

  35. Oates BR, Glover EI, West DW, et al. Low-volume resistance exercise attenuates the decline in strength and muscle mass associated with immobilization. Muscle Nerve. 2010;42(4):539–46.

    Article  PubMed  Google Scholar 

  36. Adams GR, Bamman MM. Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy. Compr Physiol. 2012;2(4):2829–71.

    PubMed  Google Scholar 

  37. Verdijk LB, Gleeson BG, Jonkers RAM, et al. Skeletal muscle hypertrophy following resistance training is accompanied by a fiber-type specific increase in satellite cell content in elderly men. J Gerontol. 2009;64A(3):332–9.

    Article  CAS  Google Scholar 

  38. Burd NA, Moore DR, Mitchell CJ, et al. Big claims for big weights but with little evidence. Eur J Appl Physiol. 2013;113(1):267–8.

    Article  PubMed  Google Scholar 

  39. Schuenke MD, Herman J, Staron RS. Preponderance of evidence proves “big” weights optimize hypertrophic and strength adaptations. Eur J Appl Physiol. 2013;113(1):269–71.

    Article  PubMed  Google Scholar 

  40. Wakahara T, Fukutani A, Kawakami Y, et al. Nonuniform muscle hypertrophy: its relation to muscle activation in training session. Med Sci Sports Exerc. 2013;45(11):2158–65.

    Article  PubMed  Google Scholar 

  41. Lexell J, Taylor CC. A morphometrical comparison of right and left whole human vastus lateralis muscle: how to reduce sampling errors in biopsy techniques. Clin Physiol. 1991;11(3):271–6.

    Article  CAS  PubMed  Google Scholar 

  42. Lemon PWR, Tarnopolsky MA, MacDougall JD, et al. Protein requirements and muscle mass/strength changes during intensive training in novice bodybuilders. J Appl Physiol. 1992;73(2):767–75.

    CAS  PubMed  Google Scholar 

  43. Jones DA, Rutherford OM. Human muscle strength training: the effects of three different regimes and the nature of resultant changes. J Physiol. 1987;391:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carpinelli R, Otto RM, Winett RA. A critical analysis of the ACSM position stand on resistance training: insufficient evidence to support recommended training protocols. J Exerc Physiol. 2004;7:1–60.

    Google Scholar 

  45. Carpinelli R. Challenging the American College of Sports Medicine 2009 position stand on resistance training. Med Sport. 2009;13:131–7.

    Article  Google Scholar 

  46. Jungblut S. The correct interpretation of the size principle and its practical application to resistance training. Med Sport. 2009;13(4):203–9.

    Article  Google Scholar 

  47. Hickson RC, Hidaka K, Foster C. Skeletal muscle fibre-type, resistance training, and strength-related performance. Med Sci Sports Exerc. 1994;26:593–8.

    Article  CAS  PubMed  Google Scholar 

  48. Mazzetti SA, Kraemer WJ, Volek JS, et al. The influence of direct supervision of resistance training on strength performance. Med Sci Sports Exerc. 2000;32(6):1175–84.

    Article  CAS  PubMed  Google Scholar 

  49. Schoenfeld BJ, Peterson MD, Ogborn D, et al. Effects of low- versus high-load resistance training on muscle strength and hypertrophy in well-trained men. J Strength Cond Res. 2015;29(10):2954–63.

    Article  PubMed  Google Scholar 

  50. Schoenfeld BJ, Ratamess NA, Peterson MD, et al. Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men. J Strength Cond Res. 2014;28(10):2909–18.

    Article  PubMed  Google Scholar 

  51. Behm DG, Sale DG. Velocity specificity of resistance training. Sports Med. 1993;15(6):347–88.

    Article  Google Scholar 

  52. Drowatzky JN, Zuccato FC. Interrelationships between selected measures of static and dynamic balance. Res Q. 1967;38:509–10.

    CAS  PubMed  Google Scholar 

  53. Mount J. Effect of practice of a throwing skill in one body position on performance of the skill in an alternate position. Percept Mot Skills. 1996;83:723–32.

    Article  CAS  PubMed  Google Scholar 

  54. Schmidt RA. Motor schema theory after 27 years: reflections and implications for a new theory. Res Q Exerc Sport. 2003;74(4):366–75.

    Article  PubMed  Google Scholar 

  55. Brown LE, Weir JP. ASEP procedures recommendation I: accurate assessment of muscular strength and power. J Exerc Physiol. 2001;4(3):1–21.

    Google Scholar 

  56. Soares-Caldeira LF, Ritt-Dias RM, Okuno NM, et al. Familiarization indexes in sessions of 1-RM tests in adult women. J Strength Cond Res. 2009;23(7):2039–45.

    Article  PubMed  Google Scholar 

  57. Cronin JB, Henderson ME. Maximal strength and power assessment in novice weight trainers. J Strength Cond Res. 2007;18(1):48–52.

    Google Scholar 

  58. Graves JE, Pollock ML, Carpenter DM, et al. Quantitative assessment of full range-of-motion isometric lumbar extension strength. Spine. 1990;15(4):289–94.

    Article  CAS  PubMed  Google Scholar 

  59. Welsch MA, Williams PA, Pollock ML, et al. Quantification of full-range-of-motion unilateral and bilateral knee flexion and extension torque ratios. Arch Phys Med Rehabil. 1998;79(8):971–8.

    Article  CAS  PubMed  Google Scholar 

  60. Marcora S. Perception of effort during exercise is independent of afferent feedback from the skeletal muscles, heart, and lungs. J Appl Physiol. 2009;106:2060–2.

    Article  PubMed  Google Scholar 

  61. Steele J. Intensity; in-ten-si-ty; noun. 1. Often used ambiguously within resistance training. 2. Is it time to drop the term altogether? Br J Sports Med. 2014;48(22):1586–8.

    Article  PubMed  Google Scholar 

  62. Shimano T, Kraemer WJ, Spiering BA, et al. Relationship between the number of repetitions and selected percentages of one repetition maximum in free weight exercises in trained and untrained men. J Strength Cond Res. 2006;20:819–23.

    PubMed  Google Scholar 

  63. Silva VL, Azevedo AP, Cordeiro JP, et al. Effects of exercise intensity on perceived exertion during multiple sets of bench press to volitional failure. J Trainol. 2014;3:41–6.

    Article  Google Scholar 

  64. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–81.

    CAS  PubMed  Google Scholar 

  65. Pritchett RC, Green JM, Wickwire PJ, et al. Acute and session RPE responses during resistance training: bouts to failure at 60% and 90% of 1RM. S Afr J Sports Med. 2009;21(1):23–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Fisher.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

James Fisher, James Steele and Dave Smith declare that they have no conflicts of interest relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fisher, J., Steele, J. & Smith, D. High- and Low-Load Resistance Training: Interpretation and Practical Application of Current Research Findings. Sports Med 47, 393–400 (2017). https://doi.org/10.1007/s40279-016-0602-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0602-1

Keywords

Navigation