Skip to main content
Log in

The Role of Oxidative, Inflammatory and Neuroendocrinological Systems During Exercise Stress in Athletes: Implications of Antioxidant Supplementation on Physiological Adaptation During Intensified Physical Training

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

During periods of intensified physical training, reactive oxygen species (ROS) release may exceed the protective capacity of the antioxidant system and lead to dysregulation within the inflammatory and neuroendocrinological systems. Consequently, the efficacy of exogenous antioxidant supplementation to maintain the oxidative balance in states of exercise stress has been widely investigated. The aim of this review was to (1) collate the findings of prior research on the effect of intensive physical training on oxidant–antioxidant balance; (2) summarise the influence of antioxidant supplementation on the reduction-oxidation signalling pathways involved in physiological adaptation; and (3) provide a synopsis on the interactions between the oxidative, inflammatory and neuroendocrinological response to exercise stimuli. Based on prior research, it is evident that ROS are an underlying aetiology in the adaptive process; however, the impact of antioxidant supplementation on physiological adaptation remains unclear. Equivocal results have been reported on the impact of antioxidant supplementation on exercise-induced gene expression. Further research is required to establish whether the interference of antioxidant supplementation consistently observed in animal-based and in vivo research extends to a practical sports setting. Moreover, the varied results reported within the literature may be due to the hormetic response of oxidative, inflammatory and neuroendocrinological systems to an exercise stimulus. The collective findings suggest that intensified physical training places substantial stress on the body, which can manifest as an adaptive or maladaptive physiological response. Additional research is required to determine the efficacy of antioxidant supplementation to minimise exercise-stress during intensive training and promote an adaptive state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Busso T. Variable dose-response relationship between exercise training and performance. Med Sci Sports Exerc. 2003;35(7):1188–95.

    PubMed  Google Scholar 

  2. Radak Z, Chung HY, Goto S. Exercise and hormesis: oxidative stress-related adaptation for successful aging. Biogerontology. 2005;6(1):71–5.

    CAS  PubMed  Google Scholar 

  3. Selye H. The stress of life. London: Longmans Green; 1956.

    Google Scholar 

  4. Meeusen R, Duclos M, Gleeson M, et al. Prevention, diagnosis and treatment of the Overtraining Syndrome. Eur J Sport Sci. 2006;6(1):1–14.

    Google Scholar 

  5. Petibois C, Cazorla G, Poortmans JR, et al. Biochemical aspects of overtraining in endurance sports : the metabolism alteration process syndrome. Sports Med. 2003;33(2):83–94.

    PubMed  Google Scholar 

  6. Snyder AC. Overtraining and glycogen depletion hypothesis. Med Sci Sports Exerc. 1998;30(7):1146–50.

    CAS  PubMed  Google Scholar 

  7. Steinacker JM, Lormes W, Reissnecker S, et al. New aspects of the hormone and cytokine response to training. Eur J Appl Physiol. 2004;91(4):382–91.

    CAS  PubMed  Google Scholar 

  8. Tiidus PM. Radical species in inflammation and overtraining. Can J Physiol Pharmacol. 1998;76(5):533–8.

    CAS  PubMed  Google Scholar 

  9. Halson SL, Bridge MW, Meeusen R, et al. Time course of performance changes and fatigue markers during intensified training in trained cyclists. J Appl Physiol. 2002;93(3):947–56.

    PubMed  Google Scholar 

  10. Kellmann M. Preventing overtraining in athletes in high-intensity sports and stress/recovery monitoring. Scand J Med Sci Sports. 2010;20(Suppl 2):95–102.

    PubMed  Google Scholar 

  11. Smith LL. Tissue trauma: the underlying cause of overtraining syndrome? J Strength Cond Res. 2004;18(1):185–93.

    PubMed  Google Scholar 

  12. Peternelj TT, Coombes JS. Antioxidant supplementation during exercise training: beneficial or detrimental? Sports Med. 2011;41(12):1043–69.

    PubMed  Google Scholar 

  13. Nikolaidis MG, Kerksick CM, Lamprecht M, et al. Does vitamin C and E supplementation impair the favorable adaptations of regular exercise? Oxid Med Cell Longev. 2012:707941.

  14. Gomez-Cabrera MC, Vina J, Ji LL. Interplay of oxidants and antioxidants during exercise: implications for muscle health. Phys Sportsmed. 2009;37(4):116–23.

    PubMed  Google Scholar 

  15. Palazzetti S, Richard MJ, Favier A, et al. Overloaded training increases exercise-induced oxidative stress and damage. Can J Appl Physiol. 2003;28(4):588–604.

    CAS  PubMed  Google Scholar 

  16. Finaud J, Scislowski V, Lac G, et al. Antioxidant status and oxidative stress in professional rugby players: evolution throughout a season. Int J Sports Med. 2006;27(2):87–93.

    CAS  PubMed  Google Scholar 

  17. Tanskanen M, Uusitalo AL, Kinnunen H, et al. Association of military training with oxidative stress and overreaching. Med Sci Sports Exerc. 2011;43(8):1552–60.

    CAS  PubMed  Google Scholar 

  18. Margonis K, Fatouros IG, Jamurtas AZ, et al. Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis. Free Radic Biol Med. 2007;43(6):901–10.

    CAS  PubMed  Google Scholar 

  19. Santos-Silva A, Rebelo MI, Castro EM, et al. Leukocyte activation, erythrocyte damage, lipid profile and oxidative stress imposed by high competition physical exercise in adolescents. Clin Chim Acta. 2001;306(1–2):119–26.

    CAS  PubMed  Google Scholar 

  20. Marin DP, Bolin AP, Campoio TR, et al. Oxidative stress and antioxidant status response of handball athletes: implications for sport training monitoring. Int Immunopharmacol. 2013;17(2):462–70.

    CAS  PubMed  Google Scholar 

  21. Knez WL, Jenkins DG, Coombes JS. The effect of an increased training volume on oxidative stress. Int J Sports Med. 2014;35(1):8–13.

    CAS  PubMed  Google Scholar 

  22. Halliwell B, Gutteridge J. Free radicals in biology and medicine. 3rd ed. Oxford: Oxford University Press; 1999.

    Google Scholar 

  23. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.

    CAS  PubMed  Google Scholar 

  24. Powers SK, Duarte J, Kavazis AN, et al. Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp Physiol. 2010;95(1):1–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Alessio HM, Hagerman AE, Fulkerson BK, et al. Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Med Sci Sports Exerc. 2000;32(9):1576–81.

    CAS  PubMed  Google Scholar 

  26. Thomas MJ. The role of free radicals and antioxidants. Nutrition. 2000;16(78):716–8.

  27. Nikolaidis MG, Jamurtas AZ. Blood as a reactive species generator and redox status regulator during exercise. Arch Biochem Biophys. 2009;490(2):77–84.

    CAS  PubMed  Google Scholar 

  28. McArdle A, Pattwell D, Vasilaki A, et al. Contractile activity-induced oxidative stress: cellular origin and adaptive responses. Am J Physiol Cell Physiol. 2001;280(3):C621–7.

    CAS  PubMed  Google Scholar 

  29. Allen RG, Tresini M. Oxidative stress and gene regulation. Free Radic Biol Med. 2000;28(3):463–99.

    CAS  PubMed  Google Scholar 

  30. Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med. 2008;44(2):153–9.

    CAS  PubMed  Google Scholar 

  31. Ji LL. Modulation of skeletal muscle antioxidant defense by exercise: role of redox signaling. Free Radic Biol Med. 2008;44(2):142–52.

    CAS  PubMed  Google Scholar 

  32. Berzosa C, Cebrian I, Fuentes-Broto L, et al. Acute exercise increases plasma total antioxidant status and antioxidant enzyme activities in untrained men. J Biomed Biotechnol. 2011:540458.

  33. Bogdanis GC, Stavrinou P, Fatouros IG, et al. Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food Chem Toxicol. 2013;61:171–7.

    CAS  PubMed  Google Scholar 

  34. Azizbeigi K, Azarbayjani MA, Peeri M, et al. The effect of progressive resistance training on oxidative stress and antioxidant enzyme activity in erythrocytes in untrained men. Int J Sport Nutr Exerc Metab. 2013;23(3):230–8.

    CAS  PubMed  Google Scholar 

  35. Brites FD, Evelson PA, Christiansen MG, et al. Soccer players under regular training show oxidative stress but an improved plasma antioxidant status. Clin Sci (Lond). 1999;96(4):381–5.

    CAS  PubMed  Google Scholar 

  36. Dekany M, Nemeskeri V, Gyore I, et al. Antioxidant status of interval-trained athletes in various sports. Int J Sports Med. 2006;27(2):112–6.

    CAS  PubMed  Google Scholar 

  37. Cazzola R, Russo-Volpe S, Cervato G, et al. Biochemical assessments of oxidative stress, erythrocyte membrane fluidity and antioxidant status in professional soccer players and sedentary controls. Eur J Clin Invest. 2003;33(10):924–30.

    CAS  PubMed  Google Scholar 

  38. Pittaluga M, Parisi P, Sabatini S, et al. Cellular and biochemical parameters of exercise-induced oxidative stress: relationship with training levels. Free Radic Res. 2006;40(6):607–14.

    CAS  PubMed  Google Scholar 

  39. Kramer HF, Goodyear LJ. Exercise, MAPK, and NF-kappaB signaling in skeletal muscle. J Appl Physiol. 2007;103(1):388–95.

  40. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999;18(49):6853–66.

    CAS  PubMed  Google Scholar 

  41. Schlesinger MJ. Heat shock proteins. J Biol Chem. 1990;265(21):12111–4.

    CAS  PubMed  Google Scholar 

  42. Hood DA. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl Physiol Nutr Metab. 2009;34(3):465–72.

    CAS  PubMed  Google Scholar 

  43. Irrcher I, Ljubicic V, Hood DA. Interactions between ROS and AMP kinase activity in the regulation of PGC-1alpha transcription in skeletal muscle cells. Am J Physiol Cell Physiol. 2009;296(1):C116–23.

    CAS  PubMed  Google Scholar 

  44. Radak Z, Chung HY, Koltai E, et al. Exercise, oxidative stress and hormesis. Ageing Res Rev. 2008;7(1):34–42.

    CAS  PubMed  Google Scholar 

  45. Lachance PA, Nakat Z, Jeong WS. Antioxidants: an integrative approach. Nutrition. 2001;17(10):835–8.

    CAS  PubMed  Google Scholar 

  46. Itoh H, Ohkuwa T, Yamazaki Y, et al. Vitamin E supplementation attenuates leakage of enzymes following 6 successive days of running training. Int J Sports Med. 2000;21(5):369–74.

    CAS  PubMed  Google Scholar 

  47. Vollaard NB, Cooper CE, Shearman JP. Exercise-induced oxidative stress in overload training and tapering. Med Sci Sports Exerc. 2006;38(7):1335–41.

    CAS  PubMed  Google Scholar 

  48. Campbell PT, Gross MD, Potter JD, et al. Effect of exercise on oxidative stress: a 12-month randomized, controlled trial. Med Sci Sports Exerc. 2010;42(8):1448–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Nikolaidis MG, Paschalis V, Giakas G, et al. Decreased blood oxidative stress after repeated muscle-damaging exercise. Med Sci Sports Exerc. 2007;39(7):1080–9.

    CAS  PubMed  Google Scholar 

  50. Svensson MB, Ekblom B, Cotgreave IA, et al. Adaptive stress response of glutathione and uric acid metabolism in man following controlled exercise and diet. Acta Physiol Scand. 2002;176(1):43–56.

    CAS  PubMed  Google Scholar 

  51. Mastaloudis A, Leonard SW, Traber MG. Oxidative stress in athletes during extreme endurance exercise. Free Radic Biol Med. 2001;31(7):911–22.

    CAS  PubMed  Google Scholar 

  52. Conti V, Russomanno G, Corbi G, et al. Aerobic training workload affects human endothelial cells redox homeostasis. Med Sci Sports Exerc. 2013;45(4):644–53.

    CAS  PubMed  Google Scholar 

  53. Tanskanen M, Atalay M, Uusitalo A. Altered oxidative stress in overtrained athletes. J Sports Sci. 2010;28(3):309–17.

    PubMed  Google Scholar 

  54. Palazzetti S, Rousseau AS, Richard MJ, et al. Antioxidant supplementation preserves antioxidant response in physical training and low antioxidant intake. Br J Nutr. 2004;91(1):91–100.

    CAS  PubMed  Google Scholar 

  55. Teixeira V, Valente H, Casal S, et al. Antioxidant status, oxidative stress, and damage in elite kayakers after 1 year of training and competition in 2 seasons. Appl Physiol Nutr Metab. 2009;34(4):716–24.

    CAS  PubMed  Google Scholar 

  56. Bailey DM, Davies B, Young IS. Intermittent hypoxic training: implications for lipid peroxidation induced by acute normoxic exercise in active men. Clin Sci (Lond). 2001;101(5):465–75.

    CAS  PubMed  Google Scholar 

  57. Howatson G, McHugh MP, Hill JA, et al. Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports. 2010;20(6):843–52.

    CAS  PubMed  Google Scholar 

  58. Schippinger G, Wonisch W, Abuja PM, et al. Lipid peroxidation and antioxidant status in professional American football players during competition. Eur J Clin Invest. 2002;32(9):686–92.

    CAS  PubMed  Google Scholar 

  59. Shing CM, Peake JM, Ahern SM, et al. The effect of consecutive days of exercise on markers of oxidative stress. Appl Physiol Nutr Metab. 2007;32(4):677–85.

    CAS  PubMed  Google Scholar 

  60. Okamura K, Doi T, Hamada K, et al. Effect of repeated exercise on urinary 8-hydroxy-deoxyguanosine excretion in humans. Free Radic Res. 1997;26(6):507–14.

  61. Radak Z, Pucsuk J, Boros S, et al. Changes in urine 8-hydroxydeoxyguanosine levels of super-marathon runners during a four-day race period. Life Sci. 2000;66(18):1763–7.

    CAS  PubMed  Google Scholar 

  62. Rowlands DS, Pearce E, Aboud A, et al. Oxidative stress, inflammation, and muscle soreness in an 894-km relay trail run. Eur J Appl Physiol. 2012;112(5):1839–48.

    CAS  PubMed  Google Scholar 

  63. Gomes EC, Allgrove JE, Florida-James G, et al. Effect of vitamin supplementation on lung injury and running performance in a hot, humid, and ozone-polluted environment. Scand J Med Sci Sports. 2011;21(6):e452–60.

    CAS  PubMed  Google Scholar 

  64. Dean S, Braakhuis A, Paton C. The effects of EGCG on fat oxidation and endurance performance in male cyclists. Int J Sport Nutr Exerc Metab. 2009;19(6):624–44.

    CAS  PubMed  Google Scholar 

  65. Nieman DC, Williams AS, Shanely RA, et al. Quercetin’s influence on exercise performance and muscle mitochondrial biogenesis. Med Sci Sports Exerc. 2010;42(2):338–45.

    CAS  PubMed  Google Scholar 

  66. Walker TB, Altobelli SA, Caprihan A, et al. Failure of Rhodiola rosea to alter skeletal muscle phosphate kinetics in trained men. Metabolism. 2007;56(8):1111–7.

    CAS  PubMed  Google Scholar 

  67. Richards JC, Lonac MC, Johnson TK, et al. Epigallocatechin-3-gallate increases maximal oxygen uptake in adult humans. Med Sci Sports Exerc. 2010;42(4):739–44.

    PubMed Central  PubMed  Google Scholar 

  68. Lafay S, Jan C, Nardon K, et al. Grape extract improves antioxidant status and physical performance in elite male athletes. J Sports Sci Med. 2009;8(3):468–80.

    PubMed Central  PubMed  Google Scholar 

  69. Allgrove J, Farrell E, Gleeson M, et al. Regular dark chocolate consumption’s reduction of oxidative stress and increase of free-fatty-acid mobilization in response to prolonged cycling. Int J Sport Nutr Exerc Metab. 2011;21(2):113–23.

    CAS  PubMed  Google Scholar 

  70. Cheuvront SN, Ely BR, Kenefick RW, et al. No effect of nutritional adenosine receptor antagonists on exercise performance in the heat. Am J Physiol Regul Integr Comp Physiol. 2009;296(2):R394–401.

    CAS  PubMed  Google Scholar 

  71. MacRae HS, Mefferd KM. Dietary antioxidant supplementation combined with quercetin improves cycling time trial performance. Int J Sport Nutr Exerc Metab. 2006;16(4):405–19.

    CAS  PubMed  Google Scholar 

  72. Kalafati M, Jamurtas AZ, Nikolaidis MG, et al. Ergogenic and antioxidant effects of spirulina supplementation in humans. Med Sci Sports Exerc. 2010;42(1):142–51.

    PubMed  Google Scholar 

  73. Dalbo VJ, Roberts MD, Hassell SE, et al. Effects of a mineral antioxidant complex on clinical safety, body water, lactate response, and aerobic performance in response to exhaustive exercise. Int J Sport Nutr Exerc Metab. 2010;20(5):381–92.

    CAS  PubMed  Google Scholar 

  74. Weight LM, Myburgh KH, Noakes TD. Vitamin and mineral supplementation: effect on the running performance of trained athletes. Am J Clin Nutr. 1988;47(2):192–5.

    CAS  PubMed  Google Scholar 

  75. Romano-Ely BC, Todd MK, Saunders MJ, et al. Effect of an isocaloric carbohydrate-protein-antioxidant drink on cycling performance. Med Sci Sports Exerc. 2006;38(9):1608–16.

    CAS  PubMed  Google Scholar 

  76. Bloomer RJ, Canale RE, Blankenship MM, et al. Effect of Ambrotose AO(R) on resting and exercise-induced antioxidant capacity and oxidative stress in healthy adults. Nutr J. 2010;9:49.

    PubMed Central  PubMed  Google Scholar 

  77. Laaksonen R, Fogelholm M, Himberg JJ, et al. Ubiquinone supplementation and exercise capacity in trained young and older men. Eur J Appl Physiol. 1995;72(1–2):95–100.

    CAS  Google Scholar 

  78. Zhou S, Zhang Y, Davie A, et al. Muscle and plasma coenzyme Q10 concentration, aerobic power and exercise economy of healthy men in response to four weeks of supplementation. J Sports Med Phys Fitness. 2005;45(3):337–46.

    CAS  PubMed  Google Scholar 

  79. Mizuno K, Tanaka M, Nozaki S, et al. Antifatigue effects of coenzyme Q10 during physical fatigue. Nutrition. 2008;24(4):293–9.

    CAS  PubMed  Google Scholar 

  80. Ylikoski T, Piirainen J, Hanninen O, et al. The effect of coenzyme Q10 on the exercise performance of cross-country skiers. Mol Aspects Med. 1997;18(Suppl):S283–90.

    CAS  PubMed  Google Scholar 

  81. Medved I, Brown MJ, Bjorksten AR, et al. Effects of intravenous N-acetylcysteine infusion on time to fatigue and potassium regulation during prolonged cycling exercise. J Appl Physiol. 2004;96(1):211–7.

    CAS  PubMed  Google Scholar 

  82. Medved I, Brown MJ, Bjorksten AR, et al. N-acetylcysteine infusion alters blood redox status but not time to fatigue during intense exercise in humans. J Appl Physiol. 2003;94(4):1572–82.

    CAS  PubMed  Google Scholar 

  83. Bailey SJ, Winyard PG, Blackwell JR, et al. Influence of N-acetylcysteine administration on pulmonary O uptake kinetics and exercise tolerance in humans. Respir Physiol Neurobiol. 2011;175(1):121–9.

    CAS  PubMed  Google Scholar 

  84. Matuszczak Y, Farid M, Jones J, et al. Effects of N-acetylcysteine on glutathione oxidation and fatigue during handgrip exercise. Muscle Nerve. 2005;32(5):633–8.

    CAS  PubMed  Google Scholar 

  85. Reid MB, Stokic DS, Koch SM, et al. N-acetylcysteine inhibits muscle fatigue in humans. J Clin Invest. 1994;94(6):2468–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Travaline JM, Sudarshan S, Roy BG, et al. Effect of N-acetylcysteine on human diaphragm strength and fatigability. Am J Respir Crit Care Med. 1997;156(5):1567–71.

    CAS  PubMed  Google Scholar 

  87. Corn SD, Barstow TJ. Effects of oral N-acetylcysteine on fatigue, critical power, and W’ in exercising humans. Respir Physiol Neurobiol. 2011;178(2):261–8.

    CAS  PubMed  Google Scholar 

  88. Kelly MK, Wicker RJ, Barstow TJ, et al. Effects of N-acetylcysteine on respiratory muscle fatigue during heavy exercise. Respir Physiol Neurobiol. 2009;165(1):67–72.

    CAS  PubMed  Google Scholar 

  89. McKenna MJ, Medved I, Goodman CA, et al. N-acetylcysteine attenuates the decline in muscle Na+, K+-pump activity and delays fatigue during prolonged exercise in humans. J Physiol (Lond). 2006;576(Pt 1):279–88.

    PubMed Central  CAS  Google Scholar 

  90. Halliwell B, Aeschbach R, Loliger J, et al. The characterization of antioxidants. Food Chem Toxicol. 1995;33(7):601–17.

    CAS  PubMed  Google Scholar 

  91. Watson TA, MacDonald-Wicks LK, Garg ML. Oxidative stress and antioxidants in athletes undertaking regular exercise training. Int J Sport Nutr Exerc Metab. 2005;15(2):131–46.

    CAS  PubMed  Google Scholar 

  92. Watson TA, Callister R, Taylor RD, et al. Antioxidant restriction and oxidative stress in short-duration exhaustive exercise. Med Sci Sports Exerc. 2005;37(1):63–71.

    CAS  PubMed  Google Scholar 

  93. Melikoglu MA, Kaldirimci M, Katkat D, et al. The effect of regular long term training on antioxidant enzymatic activities. J Sports Med Phys Fitness. 2008;48(3):388–90.

    CAS  PubMed  Google Scholar 

  94. Falone S, Mirabilio A, Pennelli A, et al. Differential impact of acute bout of exercise on redox- and oxidative damage-related profiles between untrained subjects and amateur runners. Physiol Res. 2010;59(6):953–61.

    CAS  PubMed  Google Scholar 

  95. Pialoux V, Brugniaux JV, Rock E, et al. Antioxidant status of elite athletes remains impaired 2 weeks after a simulated altitude training camp. Eur J Nutr. 2010;49(5):285–92.

    CAS  PubMed  Google Scholar 

  96. Aguilo A, Tauler P, Fuentespina E, et al. Antioxidant response to oxidative stress induced by exhaustive exercise. Physiol Behav. 2005;84(1):1–7.

    CAS  PubMed  Google Scholar 

  97. Paschoal VC, Amancio OM. Nutritional status of Brazilian elite swimmers. Int J Sport Nutr Exerc Metab. 2004;14(1):81–94.

    PubMed  Google Scholar 

  98. Farajian P, Kavouras SA, Yannakoulia M, et al. Dietary intake and nutritional practices of elite Greek aquatic athletes. Int J Sport Nutr Exerc Metab. 2004;14(5):574–85.

    CAS  PubMed  Google Scholar 

  99. Rousseau AS, Hininger I, Palazzetti S, et al. Antioxidant vitamin status in high exposure to oxidative stress in competitive athletes. Br J Nutr. 2004;92(3):461–8.

    CAS  PubMed  Google Scholar 

  100. Peake JM, Suzuki K, Coombes JS. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J Nutr Biochem. 2007;18(6):357–71.

    CAS  PubMed  Google Scholar 

  101. Fragala MS, Kraemer WJ, Denegar CR, et al. Neuroendocrine-immune interactions and responses to exercise. Sports Med. 2011;41(8):621–39.

    PubMed  Google Scholar 

  102. Duntas LH. Oxidants, antioxidants in physical exercise and relation to thyroid function. Horm Metab Res. 2005;37(9):572–6.

    CAS  PubMed  Google Scholar 

  103. Vollaard NB, Shearman JP, Cooper CE. Exercise-induced oxidative stress: myths, realities and physiological relevance. Sports Med. 2005;35(12):1045–62.

    PubMed  Google Scholar 

  104. Diaz-Castro J, Guisado R, Kajarabille N, et al. Coenzyme Q(10) supplementation ameliorates inflammatory signaling and oxidative stress associated with strenuous exercise. Eur J Nutr. 2011;51(7):791-9.

  105. Di Giacomo C, Acquaviva R, Sorrenti V, et al. Oxidative and antioxidant status in plasma of runners: effect of oral supplementation with natural antioxidants. J Med Food. 2009;12(1):145–50.

    PubMed  Google Scholar 

  106. Sacheck JM, Milbury PE, Cannon JG, et al. Effect of vitamin E and eccentric exercise on selected biomarkers of oxidative stress in young and elderly men. Free Radic Biol Med. 2003;34(12):1575–88.

    CAS  PubMed  Google Scholar 

  107. Bowtell JL, Sumners DP, Dyer A, et al. Montmorency cherry juice reduces muscle damage caused by intensive strength exercise. Med Sci Sports Exerc. 2011;43(8):1544–51.

    CAS  PubMed  Google Scholar 

  108. Morillas-Ruiz J, Zafrilla P, Almar M, et al. The effects of an antioxidant-supplemented beverage on exercise-induced oxidative stress: results from a placebo-controlled double-blind study in cyclists. Eur J Appl Physiol. 2005;31:1–7.

    Google Scholar 

  109. Arent SM, Pellegrino JK, Williams CA, et al. Nutritional supplementation, performance, and oxidative stress in college soccer players. J Strength Cond Res. 2010;24(4):1117–24.

    PubMed  Google Scholar 

  110. Chang WH, Hu SP, Huang YF, et al. Effect of purple sweet potato leaves consumption on exercise-induced oxidative stress and IL-6 and HSP72 levels. J Appl Physiol. 2010;109(6):1710–5.

    CAS  PubMed  Google Scholar 

  111. Lamprecht M, Oettl K, Schwaberger G, et al. Protein modification responds to exercise intensity and antioxidant supplementation. Med Sci Sports Exerc. 2009;41(1):155–63.

    CAS  PubMed  Google Scholar 

  112. Slattery KM, Dascombe B, Wallace LK, et al. Effect of N-acetylcysteine on cycling performance after intensified training. Med Sci Sports Exerc. 2014;46(6):1114–23.

    CAS  PubMed  Google Scholar 

  113. Phillips T, Childs AC, Dreon DM, et al. A dietary supplement attenuates IL-6 and CRP after eccentric exercise in untrained males. Med Sci Sports Exerc. 2003;35(12):2032–7.

    CAS  PubMed  Google Scholar 

  114. Vassilakopoulos T, Karatza MH, Katsaounou P, et al. Antioxidants attenuate the plasma cytokine response to exercise in humans. J Appl Physiol. 2003;94(3):1025–32.

    CAS  PubMed  Google Scholar 

  115. Skarpanska-Stejnborn A, Pilaczynska-Szczesniak L, Basta P, et al. Effects of oral supplementation with plant superoxide dismutase extract on selected redox parameters and an inflammatory marker in a 2,000-m rowing-ergometer test. Int J Sport Nutr Exerc Metab. 2011;21(2):124–34.

    PubMed  Google Scholar 

  116. Nishizawa M, Hara T, Miura T, et al. Supplementation with a flavanol-rich lychee fruit extract influences the inflammatory status of young athletes. Phytother Res. 2011;25(10):1486–93.

    CAS  PubMed  Google Scholar 

  117. Davison G, Gleeson M, Phillips S. Antioxidant supplementation and immunoendocrine responses to prolonged exercise. Med Sci Sports Exerc. 2007;39(4):645–52.

    PubMed  Google Scholar 

  118. Peters EM, Anderson R, Nieman DC, et al. Vitamin C supplementation attenuates the increases in circulating cortisol, adrenaline and anti-inflammatory polypeptides following ultramarathon running. Int J Sports Med. 2001;22(7):537–43.

    CAS  PubMed  Google Scholar 

  119. Peters EM, Anderson R, Theron AJ. Attenuation of increase in circulating cortisol and enhancement of the acute phase protein response in vitamin c-supplemented ultramarathoners. Int J Sports Med. 2001;22:120–6.

    CAS  PubMed  Google Scholar 

  120. Teixeira V, Valente HF, Casal SI, et al. Antioxidants do not prevent postexercise peroxidation and may delay muscle recovery. Med Sci Sports Exerc. 2009;41(9):1752–60.

    CAS  PubMed  Google Scholar 

  121. Dascombe BJ, Karunaratna M, Cartoon J, et al. Nutritional supplementation habits and perceptions of elite athletes within a state-based sporting institute. J Sci Med Sport. 2010;13(2):274–80.

    CAS  PubMed  Google Scholar 

  122. Gomez-Cabrera MC, Domenech E, Romagnoli M, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008;87(1):142–9.

    CAS  PubMed  Google Scholar 

  123. Jackson MJ, McArdle A, McArdle F. Antioxidant micronutrients and gene expression. Proc Nutr Soc. 1998;57(2):301–5.

    CAS  PubMed  Google Scholar 

  124. Gliemann L, Schmidt JF, Olesen J, et al. Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. J Physiol. 2013;591(Pt 20):5047–59.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Ristow M, Zarse K, Oberbach A, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A. 2009;106(21):8665–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Paulsen G, Cumming KT, Holden G, et al. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. J Physiol. 2014;592(Pt 8):1887–901.

    CAS  PubMed  Google Scholar 

  127. Fischer CP, Hiscock NJ, Basu S, et al. Vitamin E isoform-specific inhibition of the exercise-induced heat shock protein 72 expression in humans. J Appl Physiol. 2006;100(5):1679–87.

    CAS  PubMed  Google Scholar 

  128. Khassaf M, McArdle A, Esanu C, et al. Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. J Physiol (Lond). 2003;549(Pt 2):645–52.

    PubMed Central  CAS  Google Scholar 

  129. Childs A, Jacobs C, Kaminski T, et al. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med. 2001;31(6):745–53.

    CAS  PubMed  Google Scholar 

  130. Margaritis I, Rousseau AS. Does physical exercise modify antioxidant requirements? Nutr Res Rev. 2008;21(1):3–12.

    CAS  PubMed  Google Scholar 

  131. Thompson HJ, Heimendinger J, Haegele A, et al. Effect of increased vegetable and fruit consumption on markers of oxidative cellular damage. Carcinogenesis. 1999;20(12):2261–6.

    CAS  PubMed  Google Scholar 

  132. Funes L, Carrera-Quintanar L, Cerdan-Calero M, et al. Effect of lemon verbena supplementation on muscular damage markers, proinflammatory cytokines release and neutrophils’ oxidative stress in chronic exercise. Eur J Appl Physiol. 2011;111(4):695–705.

    CAS  PubMed  Google Scholar 

  133. Petersen AC, McKenna MJ, Medved I, et al. Infusion with the antioxidant N-acetylcysteine attenuates early adaptive responses to exercise in human skeletal muscle. Acta Physiologica. 2012;204(3):382–92.

    CAS  PubMed  Google Scholar 

  134. Gomez-Cabrera MC, Borras C, Pallardo FV, et al. Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol. 2005;567(Pt 1):113–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Silveira LR, Pilegaard H, Kusuhara K, et al. The contraction induced increase in gene expression of peroxisome proliferator-activated receptor (PPAR)-gamma coactivator 1alpha (PGC-1alpha), mitochondrial uncoupling protein 3 (UCP3) and hexokinase II (HKII) in primary rat skeletal muscle cells is dependent on reactive oxygen species. Biochim Biophys Acta. 2006;1763(9):969–76.

    CAS  PubMed  Google Scholar 

  136. Makanae Y, Kawada S, Sasaki K, et al. Vitamin C administration attenuates overload-induced skeletal muscle hypertrophy in rats. Acta Physiologica (Oxf). 2013;208(1):57–65.

    CAS  PubMed  Google Scholar 

  137. Ringholm S, Olesen J, Pedersen JT, et al. Effect of lifelong resveratrol supplementation and exercise training on skeletal muscle oxidative capacity in aging mice; impact of PGC-1alpha. Exp Gerontol. 2013;48(11):1311–8.

    CAS  PubMed  Google Scholar 

  138. Williams SL, Strobel NA, Lexis LA, et al. Antioxidant requirements of endurance athletes: implications for health. Nutr Rev. 2006;64(3):93–108.

    PubMed  Google Scholar 

  139. Proske U, Morgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol (Lond). 2001;537(Pt 2):333–45.

    PubMed Central  CAS  Google Scholar 

  140. Pedersen BK, Hoffman-Goetz L. Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev. 2000;80(3):1055–81.

    CAS  PubMed  Google Scholar 

  141. Pyne DB, Baker MS, Smith JA, et al. Exercise and the neutrophil oxidative burst: biological and experimental variability. Eur J Appl Physiol. 1996;74(6):564–71.

    CAS  Google Scholar 

  142. Podhorska-Okolow M, Sandri M, Zampieri S, et al. Apoptosis of myofibres and satellite cells: exercise-induced damage in skeletal muscle of the mouse. Neuropathol Appl Neurobiol. 1998;24(6):518–31.

    CAS  PubMed  Google Scholar 

  143. Stupka N, Tarnopolsky MA, Yardley NJ, et al. Cellular adaptation to repeated eccentric exercise-induced muscle damage. J Appl Physiol. 2001;91(4):1669–78.

    CAS  PubMed  Google Scholar 

  144. Hellsten Y, Frandsen U, Orthenblad N, et al. Xanthine oxidase in human skeletal muscle following eccentric exercise: a role in inflammation. J Physiol (Lond). 1997;498(Pt 1):239–48.

    PubMed Central  CAS  Google Scholar 

  145. Vider J, Lehtmaa J, Kullisaar T, et al. Acute immune response in respect to exercise-induced oxidative stress. Pathophysiology. 2001;7(4):263–70.

    CAS  PubMed  Google Scholar 

  146. Tidball JG. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol. 2005;288(2):R345–53.

    CAS  PubMed  Google Scholar 

  147. Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev. 1994;74(1):139–62.

    CAS  PubMed  Google Scholar 

  148. Dean RT, Fu S, Stocker R, et al. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J. 1997;324(Pt 1):1–18.

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Babior BM. NADPH oxidase: an update. Blood. 1999;93(5):1464–76.

    CAS  PubMed  Google Scholar 

  150. Dong J, Chen P, Wang R, et al. NADPH oxidase: a target for the modulation of the excessive oxidase damage induced by overtraining in rat neutrophils. Int J Biol Sci. 2011;7(6):881–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Brickson S, Hollander J, Corr DT, et al. Oxidant production and immune response after stretch injury in skeletal muscle. Med Sci Sports Exerc. 2001;33(12):2010–5.

    CAS  PubMed  Google Scholar 

  152. Ji LL, Gomez-Cabrera MC, Steinhafel N, et al. Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle. FASEB J. 2004;18(13):1499–506.

    CAS  PubMed  Google Scholar 

  153. Janssen-Heininger YM, Poynter ME, Baeuerle PA. Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med. 2000;28(9):1317–27.

    CAS  PubMed  Google Scholar 

  154. Aoi W, Naito Y, Takanami Y, et al. Oxidative stress and delayed-onset muscle damage after exercise. Free Radic Biol Med. 2004;37(4):480–7.

    CAS  PubMed  Google Scholar 

  155. Pyne DB, Smith JA, Baker MS, et al. Neutrophil oxidative activity is differentially affected by exercise intensity and type. J Sci Med Sport. 2000;3(1):44–54.

    CAS  PubMed  Google Scholar 

  156. MacIntyre DL, Sorichter S, Mair J, et al. Markers of inflammation and myofibrillar proteins following eccentric exercise in humans. Eur J Appl Physiol. 2001;84(3):180–6.

    CAS  PubMed  Google Scholar 

  157. Marcora SM, Bosio A. Effect of exercise-induced muscle damage on endurance running performance in humans. Scand J Med Sci Sports. 2007;17(6):662–71.

    CAS  PubMed  Google Scholar 

  158. Ascensao A, Rebelo A, Oliveira E, et al. Biochemical impact of a soccer match-analysis of oxidative stress and muscle damage markers throughout recovery. Clin Biochem. 2008;41(10–11):841–51.

    CAS  PubMed  Google Scholar 

  159. Urhausen A, Gabriel HH, Kindermann W. Impaired pituitary hormonal response to exhaustive exercise in overtrained endurance athletes. Med Sci Sports Exerc. 1998;30(3):407–14.

    CAS  PubMed  Google Scholar 

  160. Hedelin R, Kentta G, Wiklund U, et al. Short-term overtraining: effects on performance, circulatory responses, and heart rate variability. Med Sci Sports Exerc. 2000;32(8):1480–4.

    CAS  PubMed  Google Scholar 

  161. Collins M, Renault V, Grobler LA, et al. Athletes with exercise-associated fatigue have abnormally short muscle DNA telomeres. Med Sci Sports Exerc. 2003;35(9):1524–8.

    CAS  PubMed  Google Scholar 

  162. Twist C, Eston R. The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. Eur J Appl Physiol. 2005;94(5–6):652–8.

    PubMed  Google Scholar 

  163. Trombold JR, Reinfeld AS, Casler JR, et al. The effect of pomegranate juice supplementation on strength and soreness after eccentric exercise. J Strength Cond Res. 2011;25(7):1782–8.

    PubMed  Google Scholar 

  164. Gauche E, Lepers R, Rabita G, et al. Vitamin and mineral supplementation and neuromuscular recovery after a running race. Med Sci Sports Exerc. 2006;38(12):2110–7.

    CAS  PubMed  Google Scholar 

  165. Mastaloudis A, Morrow JD, Hopkins DW, et al. Antioxidant supplementation prevents exercise-induced lipid peroxidation, but not inflammation, in ultramarathon runners. Free Radic Biol Med. 2004;36(10):1329–41.

    CAS  PubMed  Google Scholar 

  166. Nieman DC, Henson DA, McAnulty SR, et al. Influence of vitamin C supplementation on oxidative and immune changes after an ultramarathon. J Appl Physiol. 2002;92(5):1970–7.

    CAS  PubMed  Google Scholar 

  167. Konrad M, Nieman DC, Henson DA, et al. The acute effect of ingesting a quercetin-based supplement on exercise-induced inflammation and immune changes in runners. Int J Sport Nutr Exerc Metab. 2011;21(4):338–46.

    CAS  PubMed  Google Scholar 

  168. Dawson B, Henry GJ, Goodman C, et al. Effect of Vitamin C and E supplementation on biochemical and ultrastructural indices of muscle damage after a 21 km run. Int J Sports Med. 2002;23(1):10–5.

    CAS  PubMed  Google Scholar 

  169. Nieman DC, Gillitt ND, Knab AM, et al. Influence of a polyphenol-enriched protein powder on exercise-induced inflammation and oxidative stress in athletes: a randomized trial using a metabolomics approach. PloS One. 2013;8(8):e72215.

    PubMed Central  CAS  PubMed  Google Scholar 

  170. McAnulty LS, Miller LE, Hosick PA, et al. Effect of resveratrol and quercetin supplementation on redox status and inflammation after exercise. Appl Physiol Nutr Metab. 2013;38(7):760–5.

    CAS  PubMed  Google Scholar 

  171. Thompson D, Bailey DM, Hill J, et al. Prolonged vitamin C supplementation and recovery from eccentric exercise. Eur J Appl Physiol. 2004;92(1–2):133–8.

    CAS  PubMed  Google Scholar 

  172. Cobley JN, McGlory C, Morton JP, et al. N-Acetylcysteine attenuates fatigue following repeated-bouts of intermittent exercise: practical implications for tournament situations. Int J Sport Nutr Exerc Metab. 2011;21(6):451–61.

    CAS  PubMed  Google Scholar 

  173. Higashida K, Kim SH, Higuchi M, et al. Normal adaptations to exercise despite protection against oxidative stress. Am J Physiol Endocrinol Metab. 2011;301(5):E779–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Close GL, Ashton T, Cable T, et al. Ascorbic acid supplementation does not attenuate post-exercise muscle soreness following muscle-damaging exercise but may delay the recovery process. Br J Nutr. 2006;95(5):976–81.

    CAS  PubMed  Google Scholar 

  175. Viru A. Adaptive regulation of hormone interaction with receptor. Exp Clin Endocrinol. 1991;97(1):13–28.

    CAS  PubMed  Google Scholar 

  176. Hackney AC. Exercise as a stressor to the human neuroendocrine system. Medicina (Kaunas). 2006;42(10):788–97.

    PubMed  Google Scholar 

  177. Viru A, Viru M. Biochemical monitoring of sports training. Champaign, IL: Human Kinetics; 2001.

    Google Scholar 

  178. Podolin DA, Munger PA, Mazzeo RS. Plasma catecholamine and lactate response during graded exercise with varied glycogen conditions. J Appl Physiol. 1991;71(4):1427–33.

    CAS  PubMed  Google Scholar 

  179. Ciloglu F, Peker I, Pehlivan A, et al. Exercise intensity and its effects on thyroid hormones. Neuro Endocrinol Lett. 2005;26(6):830–4.

    CAS  PubMed  Google Scholar 

  180. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–5.

    CAS  PubMed  Google Scholar 

  181. Mehta JL, Li D. Epinephrine upregulates superoxide dismutase in human coronary artery endothelial cells. Free Radic Biol Med. 2001;30(2):148–53.

    CAS  PubMed  Google Scholar 

  182. Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep. 1997;17(1):3–8.

    CAS  PubMed  Google Scholar 

  183. Venditti P, Meo SD. Thyroid hormone-induced oxidative stress. Cell Mol Life Sci. 2006;63(4):414–34.

    CAS  PubMed  Google Scholar 

  184. Tapia G, Fernandez V, Varela P, et al. Thyroid hormone-induced oxidative stress triggers nuclear factor-kappaB activation and cytokine gene expression in rat liver. Free Radic Biol Med. 2003;35(3):257–65.

    CAS  PubMed  Google Scholar 

  185. Ho RC, Hirshman MF, Li Y, et al. Regulation of IkappaB kinase and NF-kappaB in contracting adult rat skeletal muscle. Am J Physiol Cell Physiol. 2005;289(4):C794–801.

    CAS  PubMed  Google Scholar 

  186. Asayama K, Kato K. Oxidative muscular injury and its relevance to hyperthyroidism. Free Radic Biol Med. 1990;8(3):293–303.

    CAS  PubMed  Google Scholar 

  187. Sjostrand M, Eriksson JW. Neuroendocrine mechanisms in insulin resistance. Mol Cell Endocrinol. 2009;297(1–2):104–11.

    PubMed  Google Scholar 

  188. Balon TW, Yerneni KK. Redox regulation of skeletal muscle glucose transport. Med Sci Sports Exerc. 2001;33(3):382–5.

    CAS  PubMed  Google Scholar 

  189. Costantini D, Marasco V, Moller AP. A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J Comp Physiol B. 2011;181(4):447–56.

    CAS  PubMed  Google Scholar 

  190. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.

    CAS  PubMed  Google Scholar 

  191. Asp S, Daugaard JR, Kristiansen S, et al. Exercise metabolism in human skeletal muscle exposed to prior eccentric exercise. J Physiol (Lond). 1998;509(Pt 1):305–13.

    PubMed Central  CAS  Google Scholar 

  192. Calabrese EJ, Baldwin LA. Hormesis: the dose-response revolution. Annu Rev Pharmacol Toxicol. 2003;43:175–97.

    CAS  PubMed  Google Scholar 

  193. Reid MB. Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med Sci Sports Exerc. 2001;33(3):371–6.

    CAS  PubMed  Google Scholar 

  194. Andrade FH, Reid MB, Westerblad H. Contractile response of skeletal muscle to low peroxide concentrations: myofibrillar calcium sensitivity as a likely target for redox-modulation. FASEB J. 2001;15(2):309–11.

    CAS  PubMed  Google Scholar 

  195. Di Meo S, Venditti P. Mitochondria in exercise-induced oxidative stress. Biol Signals Recept. 2001;10(1–2):125–40.

    PubMed  Google Scholar 

  196. Gomez-Cabrera MC, Domenech E, Vina J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44(2):126–31.

    CAS  PubMed  Google Scholar 

  197. Suzuki K, Totsuka M, Nakaji S, et al. Endurance exercise causes interaction among stress hormones, cytokines, neutrophil dynamics, and muscle damage. J Appl Physiol. 1999;87(4):1360–7.

    CAS  PubMed  Google Scholar 

  198. Radak Z, Apor P, Pucsok J, et al. Marathon running alters the DNA base excision repair in human skeletal muscle. Life Sci. 2003;72(14):1627–33.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

No funding or sponsorship was provided for the preparation of this manuscript. Katie Slattery, David Bentley and Aaron Coutts have no conflicts of interest. All authors contributed fully to the preparation of this manuscript. All human and animal studies have been approved by the appropriate Ethics Committee and have therefore been performed in accordance with the Helsinki Declaration. All participants provided informed consent prior to inclusion in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katie Slattery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slattery, K., Bentley, D. & Coutts, A.J. The Role of Oxidative, Inflammatory and Neuroendocrinological Systems During Exercise Stress in Athletes: Implications of Antioxidant Supplementation on Physiological Adaptation During Intensified Physical Training. Sports Med 45, 453–471 (2015). https://doi.org/10.1007/s40279-014-0282-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-014-0282-7

Keywords

Navigation