Skip to main content
Log in

Capturing the Impact of Constraints on the Cost-Effectiveness of Cell and Gene Therapies: A Systematic Review

  • Systematic Review
  • Published:
PharmacoEconomics Aims and scope Submit manuscript

Abstract

Objective

Decision-makers need to resolve constraints on delivering cell and gene therapies to patients as these treatments move into routine care. This study aimed to investigate if, and how, constraints that affect the expected cost and health consequences of cell and gene therapies have been included in published examples of cost-effectiveness analyses (CEAs).

Method

A systematic review identified CEAs of cell and gene therapies. Studies were identified from previous systematic reviews and by searching Medline and Embase until 21 January 2022. Constraints described qualitatively were categorised by theme and summarised by a narrative synthesis. Constraints evaluated in quantitative scenario analyses were appraised by whether they changed the decision to recommend treatment.

Results

Thirty-two CEAs of cell (n = 20) and gene therapies (n = 12) were included. Twenty-one studies described constraints qualitatively (70% cell therapy CEAs; 58% gene therapy CEAs). Qualitative constraints were categorised by four themes: single payment models; long-term affordability; delivery by providers; manufacturing capability. Thirteen studies assessed constraints quantitatively (60% cell therapy CEAs; 8% gene therapy CEAs). Two types of constraint were assessed quantitatively across four jurisdictions (USA, Canada, Singapore, The Netherlands): alternatives to single payment models (n = 9 scenario analyses); improving manufacturing (n = 12 scenario analyses). The impact on decision-making was determined by whether the estimated incremental cost-effectiveness ratios crossed a relevant cost-effectiveness threshold for each jurisdiction (outcome-based payment models: n = 25 threshold comparisons made, 28% decisions changed; improving manufacturing: n = 24 threshold comparisons made, 4% decisions changed).

Conclusion

The net health impact of constraints is vital evidence to help decision-makers scale up the delivery of cell and gene therapies as patient volume increases and more advanced therapy medicinal products are launched. CEAs will be essential to quantify how constraints affect the cost-effectiveness of care, prioritise constraints to be resolved, and establish the value of strategies to implement cell and gene therapies by accounting for their health opportunity cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ma C, Wang Z, Xu T, He Z, Wei Y. The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol Adv. 2020;40(May-June(107502)):1–14.

  2. Wotherspoon L, Buchan R, Morrison E, Amatt G. Evaluation of institutional readiness at sites within the UK NHS using a novel advanced therapy medicinal product assessment tool. Regen Med. 2021;16(3):253–68.

    Article  CAS  PubMed  Google Scholar 

  3. Ogunbayo D. Horizon Scan for Advanced Therapy Medicinal Products. Newcastle upon Tyne: NIHR Innovation Observatory; 2021.

  4. Pillai M, Davies M, Thistlethwaite F. Delivery of adoptive cell therapy in the context of the health-care system in the UK: challenges for clinical sites. Ther Adv Vaccines Immunother. 2020;8(2515135520944355):1–8.

    Google Scholar 

  5. Elverum K, Whitman M. Delivering cellular and gene therapies to patients: solutions for realizing the potential of the next generation of medicine. Gene Ther. 2020;27(12):537–44.

    Article  CAS  PubMed  Google Scholar 

  6. Fenwick E, Claxton K, Sculpher M. The value of implementation and the value of information: combined and uneven development. Med Decis Making. 2008;28(1):21–32.

    Article  PubMed  Google Scholar 

  7. Sharpe M, Barry J, Kefalas P. Clinical adoption of advanced therapies: challenges and opportunities. J Pharm Sci. 2021;110(5):1877–84.

    Article  CAS  PubMed  Google Scholar 

  8. June C, Riddell S, Schumacher T. Adoptive cellular therapy: a race to the finish line. Sci Transl Med. 2015;7(280(ps7)):1–8.

  9. High K, Roncarolo M. Gene therapy. N Engl J Med. 2019;381(5):455–64.

    Article  CAS  PubMed  Google Scholar 

  10. Hettle R, Corbett M, Hinde S, Hodgson R, Jones-Diette J, Woolacott N, et al. The assessment and appraisal of regenerative medicines and cell therapy products: an exploration of methods for review, economic evaluation and appraisal. Health Technol Assess. 2017;21(7):1–204.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Aballéa S, Thokagevistk K, Velikanova R, Simoens S, Annemans L, Antonanzas F, et al. Health economic evaluation of gene replacement therapies: methodological issues and recommendations. J Mark Access Health Policy. 2020;8(1(1822666)):1–16.

  12. ten Ham R, Klungel O, Leufkens H, Frederix G. A review of methodological considerations for economic evaluations of gene therapies and their application in literature. Value Health. 2020;23(9):1268–80.

    Article  PubMed  Google Scholar 

  13. Drummond M, Neumann P, Sullivan S, Fricke F, Tunis S, Dabbous O, et al. Analytic considerations in applying a general economic evaluation reference case to gene therapy. Value Health. 2019;22(6):661–8.

    Article  PubMed  Google Scholar 

  14. Hampson G, Towse A, Pearson S, Dreitlein W, Henshall C. Gene therapy: evidence, value and affordability in the US health care system. J Comp Eff Res. 2018;7(1):15–28.

    Article  PubMed  Google Scholar 

  15. Angelis A, Naci H, Hackshaw A. Recalibrating health technology assessment methods for cell and gene therapies. Pharmacoeconomics. 2020;38(12):1297–308.

    Article  PubMed  Google Scholar 

  16. Jönsson B, Hampson G, Michaels J, Towse A, von der Schulenburg J, Wong O. Advanced therapy medicinal products and health technology assessment principles and practices for value-based and sustainable healthcare. Eur J Health Econ. 2019;20(3):427–38.

    Article  PubMed  Google Scholar 

  17. Coyle D, Durand-Zaleski I, Farrington J, Garrison L, von der Schulenburg J, Greiner W, et al. HTA methodology and value frameworks for evaluation and policy making for cell and gene therapies. Eur J Health Econ. 2020;21(9):1421–37.

    Article  PubMed  Google Scholar 

  18. Raymakers A, Regier D, Peacock S. Modelling uncertainty in survival and cost-effectiveness is vital in the era of gene therapies: the case of axicabtagene ciloleucel. Health Policy Technol. 2019;8(2):103–4.

    Article  Google Scholar 

  19. Gavan S, Lu C, Payne K. Assessing the joint value of genomic-based diagnostic tests and gene therapies. J Personal Med. 2019;9(2(28)):1–9.

  20. Kansagra A, Farnia S, Majhail N. Expanding access to chimeric antigen receptor T-cell therapies: challenges and opportunities. Am Soc Clin Oncol Educ Book. 2020;40(1):e27–34.

    Article  Google Scholar 

  21. Jørgensen J, Mungapen L, Kefalas P. Data collection infrastructure for patient outcomes in the UK—opportunities and challenges for cell and gene therapies launching. J Mark Access Health Policy. 2019;7(1(1573164)):1–13.

  22. Jørgensen J, Kefalas P. The use of innovative payment mechanisms for gene therapies in Europe and the USA. Regen Med. 2021;16(4):405–22.

    Article  PubMed  Google Scholar 

  23. Ramsay C, Grant A, Wallace S, Garthwaite P, Monk A, Russell I. Statistical assessment of the learning curves of health technologies. Health Technol Assess. 2001;5(12):1–79.

    Article  CAS  PubMed  Google Scholar 

  24. Wright S, Paulden M, Payne K. Implementing interventions with varying marginal cost-effectiveness: an application in precision medicine. Med Decis Making. 2020;40(7):924–38.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Page M, McKenzie J, Bossuyt P, Boutron I, Hoffmann T, Mulrow C, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372(n71):1–9.

    Google Scholar 

  26. Wright S, Newman W, Payne K. Accounting for capacity constraints in economic evaluations of precision medicine: a systematic review. Pharmacoeconomics. 2019;37(8):1011–27.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ho J, Borle K, Dragojlovic N, Dhillon M, Kitchin V, Kopac N, et al. Economic evidence on potentially curative gene therapy products: a systematic literature review. Pharmacoeconomics. 2021;39(9):995–1019.

    Article  PubMed  Google Scholar 

  28. Lloyd-Williams H, Hughes D. A systematic review of economic evaluations of advanced therapy medicinal products. Br J Clin Pharmacol. 2021;87(6):2428–43.

    Article  PubMed  Google Scholar 

  29. Centre for Reviews and Dissemination. Search Strategies. 2014. https://www.crd.york.ac.uk/crdweb/searchstrategies.asp. Accessed 20 Jan 2022.

  30. Food and Drug Administration. Approved Cellular and Gene Therapy Products. 2022. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products. Accessed 21 Jan 2022.

  31. European Medicines Agency. Download medicine data: European public assessment reports (EPAR). 2022. https://www.ema.europa.eu/en/medicines/download-medicine-data#european-public-assessment-reports-(epar)-section. Accessed 21 Jan 2022.

  32. Morgan S, Vogler S, Wagner A. Payers’ experiences with confidential pharmaceutical price discounts: a survey of public and statutory health systems in North America, Europe, and Australasia. Health Policy. 2017;121(4):354–62.

    Article  PubMed  Google Scholar 

  33. Wang X, Wang Y, Li S, Gkitzia C, Lim S, Koh L, et al. Cost-effectiveness and budget impact analyses of tisagenlecleucel in adult patients with relapsed or refractory diffuse large B-cell lymphoma from Singapore’s private insurance payer’s perspective. J Med Econ. 2021;24(1):637–53.

    Article  PubMed  Google Scholar 

  34. Qi C, Bollu V, Yang H, Dalal A, Zhang S, Zhang J. Cost-effectiveness analysis of tisagenlecleucel for the treatment of patients with relapsed or refractory diffuse large B-cell lymphoma in the United States. Clin Ther. 2021;43(8):1300-19.e8.

    Article  CAS  PubMed  Google Scholar 

  35. Wakase S, Teshima T, Zhang J, Ma Q, Fujita T, Yang H, et al. Cost effectiveness analysis of tisagenlecleucel for the treatment of adult patients with relapsed or refractory diffuse large B cell lymphoma in Japan. Transpl Cell Ther. 2021;27(6):506.e1–.e10.

  36. Cher B, Gan K, Aziz M, Lin L, Hwang W, Poon L, et al. Cost utility analysis of tisagenlecleucel vs salvage chemotherapy in the treatment of relapsed/refractory diffuse large B-cell lymphoma from Singapore’s healthcare system perspective. J Med Econ. 2020;23(11):1321–9.

    Article  PubMed  Google Scholar 

  37. Liu R, Oluwole O, Diakite I, Botteman M, Snider J, Locke F. Cost effectiveness of axicabtagene ciloleucel versus tisagenlecleucel for adult patients with relapsed or refractory large B-cell lymphoma after two or more lines of systemic therapy in the United States. J Med Econ. 2021;24(1):458–68.

    Article  PubMed  Google Scholar 

  38. Lin J, Muffly L, Spinner M, Barnes J, Owens D, Goldhaber-Fiebert J. Cost effectiveness of chimeric antigen receptor T-cell therapy in multiply relapsed or refractory adult large B-cell lymphoma. J Clin Oncol. 2019;37(24):2105–19.

    Article  CAS  PubMed  Google Scholar 

  39. Whittington M, McQueen R, Ollendorf D, Kumar V, Chapman R, Tice J, et al. Long-term survival and cost-effectiveness associated with axicabtagene ciloleucel vs chemotherapy for treatment of B-cell lymphoma. JAMA Netw Open. 2019;2(2(e190035)):1–9.

  40. Roth J, Sullivan S, Lin V, Bansal A, Purdum A, Navale L, et al. Cost-effectiveness of axicabtagene ciloleucel for adult patients with relapsed or refractory large B-cell lymphoma in the United States. J Med Econ. 2018;21(12):1238–45.

    Article  PubMed  Google Scholar 

  41. Wakase S, Teshima T, Zhang J, Ma Q, Watanabe Y, Yang H, et al. Cost-effectiveness analysis of tisagenlecleucel for the treatment of pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia in Japan. Transpl Cell Ther. 2021;27(3):241.e1–.e11.

  42. Furzer J, Gupta S, Nathan P, Schechter T, Pole J, Krueger J, et al. Cost-effectiveness of tisagenlecleucel vs standard care in high-risk relapsed pediatric acute lymphoblastic leukemia in Canada. JAMA Oncol. 2020;6(3):393–401.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Santasusana J, Saldaña A, García-Muñoz N, Gostkorzewicz J, Llinàs D, de Heredia C. Cost-effectiveness analysis of tisagenlecleucel in the treatment of relapsed or refractory B-cell acute lymphoblastic leukaemia in children and young adults in Spain. Clinicoecon Outcomes Res. 2020;2020(12):253–64.

    Article  Google Scholar 

  44. Thielen F, van Dongen-Leunis A, Arons A, Ladestein J, Hoogerbrugge P, de Groot C. Cost-effectiveness of anti-CD19 chimeric antigen receptor T-Cell therapy in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia. A societal view. Eur J Haematol. 2020;105(2):203–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sarkar R, Gloude N, Schiff D, Murphy J. Cost-effectiveness of chimeric antigen receptor T-cell therapy in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia. J Natl Cancer Inst. 2019;111(7):719–26.

    Article  PubMed  Google Scholar 

  46. Lin J, Lerman B, Barnes J, Boursiquot B, Tan Y, Robinson A, et al. Cost effectiveness of chimeric antigen receptor T-cell therapy in relapsed or refractory pediatric B-cell acute lymphoblastic leukemia. J Clin Oncol. 2018;36(32):3192–202.

    Article  CAS  PubMed  Google Scholar 

  47. Whittington M, McQueen R, Ollendorf D, Kumar V, Chapman R, Tice J, et al. Long-term survival and value of chimeric antigen receptor T-Cell therapy for pediatric patients with relapsed or refractory leukemia. JAMA Pediatr. 2018;172(12):1161–8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moradi-Lakeh M, Yaghoubi M, Seitz P, Javanbakht M, Brock E. Cost-effectiveness of tisagenlecleucel in paediatric acute lymphoblastic leukaemia (pALL) and adult diffuse large B-cell lymphoma (DLBCL) in Switzerland. Adv Ther. 2021;38(6):3427–43.

    Article  PubMed  Google Scholar 

  49. Simons C, Malone D, Wang M, Maglinte G, Inocencio T, Wade S, et al. Cost-effectiveness for KTE-X19 CAR T therapy for adult patients with relapsed/refractory mantle cell lymphoma in the United States. J Med Econ. 2021;24(1):421–31.

    Article  PubMed  Google Scholar 

  50. Lindenberg M, Retèl V, Rohaan M, van den Berg J, Haanen J, van Harten W. Evaluating different adoption scenarios for TIL-therapy and the influence on its (early) cost-effectiveness. BMC Cancer. 2020;20(1(712)):1–14.

  51. Retèl V, Steuten L, Foppen M, Mewes J, Lindenberg M, Haanen J, et al. Early cost-effectiveness of tumor infiltrating lymphocytes (TIL) for second line treatment in advanced melanoma: a model-based economic evaluation. BMC Cancer. 2018;18(1(895)).

  52. Gong C, Hay J. Cost-effectiveness analysis of abiraterone and sipuleucel-T in asymptomatic metastatic castration-resistant prostate cancer. J Natl Compr Canc Netw. 2014;12(10):1417–25.

    Article  PubMed  Google Scholar 

  53. Uhrmann M, Lorenz B, Gisse C. Cost Effectiveness of Voretigene Neparvovec for RPE65-Mediated Inherited Retinal Degeneration in Germany. Transl Vis Sci Technol. 2020;9(9(17)):1–8.

  54. Viriato D, Bennett N, Sidhu R, Hancock E, Lomax H, Trueman D, et al. An economic evaluation of voretigene neparvovec for the treatment of biallelic RPE65-mediated inherited retinal dystrophies in the UK. Adv Ther. 2020;37(3):1233–47.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Johnson S, Buessing M, O’Connell T, Pitluck S, Ciulla T. Cost-effectiveness of voretigene neparvovec-rzyl vs standard care for RPE65-mediated inherited retinal disease. JAMA Ophthalmol. 2019;137(10):1115–23.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zimmermann M, Lubinga S, Banken R, Rind D, Cramer G, Synnott P, et al. Cost utility of voretigene neparvovec for biallelic RPE65-mediated inherited retinal disease. Value Health. 2019;22(2):161–7.

    Article  PubMed  Google Scholar 

  57. Cook K, Forbes S, Adamski K, Ma J, Chawla A, Garrison L Jr. Assessing the potential cost-effectiveness of a gene therapy for the treatment of hemophilia A. J Med Econ. 2020;23(5):501–12.

    Article  PubMed  Google Scholar 

  58. Machin N, Ragni M, Smith K. Gene therapy in hemophilia A: a cost-effectiveness analysis. Blood Adv. 2018;2(14):1792–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shih S, Farrar M, Wiley V, Chambers G. Newborn screening for spinal muscular atrophy with disease-modifying therapies: a cost-effectiveness analysis. J Neurol Neurosurg Psychiatry. 2021;92(12):1296–304.

    Article  PubMed  Google Scholar 

  60. Broekhoff T, Sweegers C, Krijkamp E, Mantel-Teeuwisse A, Leufkens H, Goettsch W, et al. Early cost-effectiveness of onasemnogene abeparvovec-xioi (zolgensma) and nusinersen (spinraza) treatment for spinal muscular atrophy i in the netherlands with relapse scenarios. Value Health. 2021;24(6):759–69.

    Article  PubMed  Google Scholar 

  61. Dean R, Jensen I, Cyr P, Miller B, Maru B, Sproule D, et al. An updated cost-utility model for onasemnogene abeparvovec (Zolgensma®) in spinal muscular atrophy type 1 patients and comparison with evaluation by the Institute for Clinical and Effectiveness Review (ICER). J Mark Access Health Policy. 2021;9(1(1889841)):1–12.

  62. Malone D, Dean R, Arjunji R, Jensen I, Cyr P, Miller B, et al. Cost-effectiveness analysis of using onasemnogene abeparvocec (AVXS-101) in spinal muscular atrophy type 1 patients. J Mark Access Health Policy. 2019;7(1(1601484)):1–14.

  63. Kansal A, Reifsnider O, Brand S, Hawkins N, Coughlan A, Li S, et al. Economic evaluation of betibeglogene autotemcel (Beti-cel) gene addition therapy in transfusion-dependent β-thalassemia. J Mark Access Health Policy. 2021;9(1(1922028)):1–13.

  64. Almutairi A, Alkhatib N, Oh M, Curiel-Lewandrowski C, Babiker H, Cranmer L, et al. Economic evaluation of talimogene laherparepvec plus ipilimumab combination therapy vs ipilimumab monotherapy in patients with advanced unresectable melanoma. JAMA Dermatol. 2019;155(1):22–8.

    Article  PubMed  Google Scholar 

  65. Institute for Clinical and Economic Review. 2020–2023 value assessment framework. Boston: Institute for Clinical and Economic Review; 2020.

    Google Scholar 

  66. Binder L, Ghadban M, Sit C, Barnard K. Health technology assessment process for oncology drugs: impact of CADTH changes on public payer reimbursement recommendations. Curr Oncol. 2022;29(3):1514–26.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zwaap J, Knies S, van der Meijden C, Staal P, van der Heiden L. Cost-effectiveness in practice. Diemen: Zorginstituut Nederland; 2015.

  68. Eisman A, Quanbeck A, Bounthavong M, Panattoni L, Glasgow R. Implementation science issues in understanding, collecting, and using cost estimates: a multi-stakeholder perspective. Implement Sci. 2021;16(1(75)):1–12.

  69. Garrison L Jr, Pauly M, Willke R, Neumann P. An overview of value, perspective, and decision context-a health economics approach: an ISPOR Special Task Force Report [2]. Value Health. 2018;21(2):124–30.

    Article  PubMed  Google Scholar 

  70. Damschroder L, Aron D, Keith R, Kirsh S, Alexander J, Lowery J. Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implement Sci. 2009;4(50):1–15.

    Google Scholar 

  71. Sanders G, Neumann P, Basu A, Brock D, Feeny D, Krahn M, et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness in health and medicine. JAMA. 2016;316(10):1093–103.

    Article  PubMed  Google Scholar 

  72. Walker S, Griffin S, Asaria M, Tsuchiya A, Sculpher M. Striving for a societal perspective: a framework for economic evaluations when costs and effects fall on multiple sectors and decision makers. Appl Health Econ Health Policy. 2019;17(5):577–90.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Advanced Therapy Treatment Centres. Working together to accelerate patient access to advanced therapies. 2022. https://www.theattcnetwork.co.uk. Accessed 23 Sep 2022.

  74. Cell and Gene Therapy Catapult. Healthcare system readiness for the adoption of advanced therapies: learnings from the introduction of CAR T cell therapies in the UK. London: Cell and Gene Therapy Catapult; 2021.

    Google Scholar 

  75. Panzar J, Willig R. Economies of scope. Am Econ Rev. 1981;71(2):268–72.

    Google Scholar 

  76. World Health Organization. Everybody’s business: strengthening health systems to improve health outcomes: WHO’s framework for action. Geneva: World Health Organization; 2007.

    Google Scholar 

  77. Hauck K, Morton A, Chalkidou K, Chi Y, Culyer A, Levin C, et al. How can we evaluate the cost-effectiveness of health system strengthening? A typology and illustrations. Soc Sci Med. 2019;220(1):141–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Carlson J, Sullivan S, Garrison L, Neumann P, Veenstra D. Linking payment to health outcomes: a taxonomy and examination of performance-based reimbursement schemes between healthcare payers and manufacturers. Health Policy. 2010;96(3):179–90.

    Article  PubMed  Google Scholar 

  79. Lomas J, Claxton K, Martin S, Soares M. Resolving the “cost-effective but unaffordable” paradox: estimating the health opportunity costs of nonmarginal budget impacts. Value Health. 2018;21(3):266–75.

    Article  PubMed  Google Scholar 

  80. Salleh S, Thokala P, Brennan A, Hughes R, Dixon S. Discrete event simulation-based resource modelling in health technology assessment. Pharmacoeconomics. 2017;35(10):989–1006.

    Article  PubMed  Google Scholar 

  81. Paulden M. Calculating and interpreting ICERs and net benefit. Pharmacoeconomics. 2020;38(8):785.

    Article  PubMed  Google Scholar 

  82. Stinnett A, Mullahy J. Net health benefits: a new framework for the analysis of uncertainty in cost-effectiveness analysis. Med Decis Making. 1998;18(S2):S68–80.

    Article  CAS  PubMed  Google Scholar 

  83. Faria R, Walker S, Whyte S, Dixon S, Palmer S, Sculpher M. How to invest in getting cost-effective technologies into practice? A framework for value of implementation analysis applied to novel oral anticoagulants. Med Decis Making. 2017;37(2):148–61.

    Article  PubMed  Google Scholar 

  84. Whyte S, Dixon S, Faria R, Walker S, Palmer S, Sculpher M, et al. Estimating the cost-effectiveness of implementation: is sufficient evidence available? Value Health. 2016;19(2):138–44.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Whittington M, McQueen R, Campbell J. Valuing chimeric antigen receptor T-cell therapy: current evidence, uncertainties, and payment implications. J Clin Oncol. 2020;38(4):359–66.

    Article  PubMed  Google Scholar 

  86. Hsieh H, Shannon S. Three approaches to qualitative content analysis. Qual Health Res. 2005;15(9):1277–88.

    Article  PubMed  Google Scholar 

  87. Sullivan W, Payne K. The appropriate elicitation of expert opinion in economic models: making expert data fit for purpose. Pharmacoeconomics. 2011;29(6):455–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by SPG, SJW, and KP. The first draft of the manuscript was written by SPG, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sean P. Gavan.

Ethics declarations

Conflict of interest

Sean P. Gavan and Katherine Payne declare that they have no conflict of interest. Stuart J. Wright reports consultancy fees for acting on a steering group for a project investigating the impact of including supply constraints in economic evaluations for PHMR on a project funded by Roche. Fiona Thistlethwaite reports institutional research grant income from Instil Bio; honoraria from GSK, Bristol Myers Squibb, Janssen, and Pfizer; advisory committee membership for Immatics; and speaker fees from Kite/Gilead; is principal investigator for commercial ATMP trials (Adaptimmune, GSK, T-knife Therapeutics, Instil Bio), but does not receive personal payment; and is director of iMATCH (Innovate Manchester Advanced Therapy Centre Hub), supported by Innovate UK.

Funding

This work was supported by Innovate UK (grant number 104234). For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising.

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 61 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavan, S.P., Wright, S.J., Thistlethwaite, F. et al. Capturing the Impact of Constraints on the Cost-Effectiveness of Cell and Gene Therapies: A Systematic Review. PharmacoEconomics 41, 675–692 (2023). https://doi.org/10.1007/s40273-022-01234-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40273-022-01234-7

Navigation