Skip to main content
Log in

Current Challenges in Neonatal Resuscitation: What is the Role of Adrenaline?

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Adrenaline, also known as epinephrine, is a hormone, neurotransmitter, and medication. It is the best established drug in neonatal resuscitation, but only weak evidence supports current recommendations for its use. Furthermore, the available evidence is partly based on extrapolations from adult studies, and this introduces further uncertainty, especially when considering the unique physiological characteristics of newly born infants. The timing, dose, and route of administration of adrenaline are still debated, even though this medication has been used in neonatal resuscitation for a long time. According to the most recent Neonatal Resuscitation Guidelines from the American Heart Association, adrenaline use is indicated when the heart rate remains < 60 beats per minute despite the establishment of adequate ventilation with 100% oxygen and chest compressions. The aforementioned guidelines recommend intravenous administration (via an umbilical venous catheter) of adrenaline at a dose of 0.01–0.03 mg/kg (1:10,000 concentration). Endotracheal administration of a higher dose (0.05–0.1 mg/kg) may be considered while venous access is being obtained, even if supportive data for endotracheal adrenaline are lacking. The safety and efficacy of intraosseous administration of adrenaline remain to be investigated. This article reviews the evidence on the circulatory effects and tolerability of adrenaline in the newborn, discusses literature data on adrenaline use in neonatal cardiopulmonary resuscitation, and describes international recommendations and outcome data regarding the use of this medication during neonatal resuscitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wyckoff MH, Perlman JM. Use of high-dose epinephrine and sodium bicarbonate during neonatal resuscitation: is there proven benefit? Clin Perinatol. 2006;33(1):141–51.

    Article  CAS  PubMed  Google Scholar 

  2. Crile G, Dolley DH. An experimental research into the resuscitation of dogs killed by anesthetics and asphyxia. J Exp Med. 1906;8(6):713–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wiggers CJ. Cardiac massage followed by countershock in revival of mammalian ventricles from fibrillation due to coronary occlusion. Am J Physiol. 1936;116:161.

    Google Scholar 

  4. Redding JS, Pearson JW. Evaluation of drugs for cardiac resuscitation. Anesthesiology. 1963;24:203–7.

    Article  CAS  PubMed  Google Scholar 

  5. Perlman JM, Wyllie J, Kattwinkel J, Wyckoff MH, Aziz K, Guinsburg R, et al. Part 7: neonatal resuscitation: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation. 2015;132(16 Suppl 1):S204–41.

    Article  PubMed  Google Scholar 

  6. Wyckoff MH, Aziz K, Escobedo MB, Kapadia VS, Kattwinkel J, Perlman JM, et al. Part 13: neonatal resuscitation: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015;132(suppl 2):S543–60.

    Article  PubMed  Google Scholar 

  7. Weiner GM, Zaichkin J. Textbook of neonatal resuscitation (NRP). 7th ed. Elk Grove Village: American Academy of Pediatrics; 2016.

    Google Scholar 

  8. Barber CA, Wyckoff MH. Use and efficacy of endotracheal versus intravenous epinephrine during neonatal cardiopulmonary resuscitation in the delivery room. Pediatrics. 2006;118(3):1028–34.

    Article  PubMed  Google Scholar 

  9. Halling C, Sparks JE, Christie L, Wyckoff MH. Efficacy of intravenous and endotracheal epinephrine during neonatal cardiopulmonary resuscitation in the delivery room. J Pediatr. 2017;185:232–6.

    Article  CAS  PubMed  Google Scholar 

  10. Chawla S, Foglia EE, Kapadia V, Wyckoff MH. Perinatal management: what has been learned through the network? Semin Perinatol. 2016;40(6):391–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Laptook AR, Shankaran S, Ambalavanan N, Carlo WA, McDonald SA, Higgins RD, et al. Hypothermia Subcommittee of the NICHD Neonatal Research Network. Outcome of term infants using apgar scores at 10 minutes following hypoxic-ischemic encephalopathy. Pediatrics. 2009;124(6):1619–26.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wyckoff MH, Salhab WA, Heyne RJ, Kendrick DE, Stoll BJ, Laptook AR, et al. Outcome of extremely low birth weight infants who received delivery room cardiopulmonary resuscitation. J Pediatr. 2012;160(2):239–44.

    Article  PubMed  Google Scholar 

  13. Harrington DJ, Redman CW, Moulden M, Greenwood CE. The long-term outcome in surviving infants with Apgar zero at 10 minutes: a systematic review of the literature and hospital-based cohort. Am J Obstet Gynecol. 2007;196(5):463.

    Article  PubMed  Google Scholar 

  14. Kapadia VS, Wyckoff MH. Epinephrine use during newborn resuscitation. Front Pediatr. 2017;5:97.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Barrington KJ. Hypotension and shock in the preterm infant. Semin Fetal Neonatal Med. 2008;13(1):16–23.

    Article  PubMed  Google Scholar 

  16. Weiner GM, Niermeyer S. Medications in neonatal resuscitation: epinephrine and the search for better alternative strategies. Clin Perinatol. 2012;39:843–55.

    Article  PubMed  Google Scholar 

  17. Polin RA, Fox WW, Abman SH. Fetal and neonatal physiology. 4th ed. Philadelphia: Elsevier/Saunders; 2011.

    Google Scholar 

  18. Devic E, Xiang Y, Gould D, Kobilka B. Beta-adrenergic receptor subtype-specific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice. Mol Pharmacol. 2001;60(3):577–83.

    CAS  PubMed  Google Scholar 

  19. Wyllie J, Niermeyer S. The role of resuscitation drugs and placental transfusion in the delivery room management of newborn infants. Semin Fetal Neonatal Med. 2008;13(6):416–23.

    Article  PubMed  Google Scholar 

  20. Branco de Almeida MF, Guinsburg R. Controversies about the resuscitation of extremely preterm infants in the delivery room. J Pediatr (Rio J). 2005;81(Suppl. 1):S3–S15.

    Article  Google Scholar 

  21. Gao F, de Beer VJ, Hoekstra M, Xiao C, Duncker DJ, Merkus D. Both beta1- and beta2-adrenoceptors contribute to feedforward coronary resistance vessel dilation during exercise. Am J Physiol Heart Circ Physiol. 2010;298(3):H921–9.

    Article  CAS  PubMed  Google Scholar 

  22. Friedman WF. The intrinsic physiologic properties of the developing heart. Progr Cardiovasc Dis. 1972;15(1):87–111.

    Article  CAS  Google Scholar 

  23. Kojima M, Ishima T, Taniguchi N, Kimura K, Sada H, Sperelakis N. Developmental changes in beta adrenoceptors, muscarinic cholinoceptors and Ca2+ channels in rat ventricular muscles. Br J Pharmacol. 1990;99(2):334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Inayatulla A, Li DY, Chemtob S, Varma DR. Ontogeny of positive inotropic responses to sympathomimetic agents and of myocardial adrenoceptors in rats. Can J Physiol Pharmacol. 1994;72(4):361–7.

    Article  CAS  PubMed  Google Scholar 

  25. Barrington KJ, Finer NN, Chan WK. A blind, randomized comparison of the circulatory effects of dopamine and epinephrine infusions in the newborn piglet during normoxia and hypoxia. Crit Care Med. 1995;23(4):740–8.

    Article  CAS  PubMed  Google Scholar 

  26. Pryds O, Christensen NJ, Friis-Hansen B. Increased cerebral blood flow and plasma epinephrine in hypoglycemic, preterm neonates. Pediatrics. 1990;85(2):172–6.

    CAS  PubMed  Google Scholar 

  27. Cheung PY, Barrington KJ, Pearson RJ, Bigam DL, Finer NN, van Aerde JE. Systemic, pulmonary and mesenteric perfusion and oxygenation effects of dopamine and epinephrine. Am J Respir Crit Care Med. 1997;155(1):32–7.

    Article  CAS  PubMed  Google Scholar 

  28. Brierley J, Carcillo JA, Choong K, Cornell T, Decaen A, Deymann A, et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med. 2009;37(2):666–88.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Seri I. Management of hypotension and low systemic blood flow in the very low birth weight neonate during the first postnatal week. J Perinatol. 2006;26:S8–13.

    Article  PubMed  Google Scholar 

  30. Vogl SE, Worda C, Egarter C, Bieglmayer C, Szekeres T, Huber J, et al. Mode of delivery is associated with maternal and fetal endocrine stress response. Br J Obstet Gynecol. 2006;113(4):441–5.

    Article  CAS  Google Scholar 

  31. Wang JX, Zhang WY. The influence of mode of delivery on the level of catecholamines in umbilical cord blood of neonates. Zhonghua Yi Xue Za Zhi. 2009;89(19):1340–2.

    CAS  PubMed  Google Scholar 

  32. Faxelius G, Lagercrantz H, Yao A. Sympathoadrenal activity and peripheral blood flow after birth: comparison in infants delivered vaginally and by caesarean section. J Pediatr. 1984;105(1):144–8.

    Article  CAS  PubMed  Google Scholar 

  33. Greenough A, Lagercrantz H, Pool J, Dahlin I. Plasma catecholamine levels in preterm infants. Effect of birth asphyxia and Apgar score. Acta Paediatr Scand. 1987;76(1):54–9.

    Article  CAS  PubMed  Google Scholar 

  34. Schwab K, Kruse K, Breitung B, Paulick R. Free and sulfoconjugated catecholamines in preterm and term newborns after delivery. Monatsschr Kinderheilkd. 1989;137:28–32.

    CAS  PubMed  Google Scholar 

  35. Lagercrantz H, Bistoletti P. Catecholamine release in the newborn infant at birth. Pediatr Res. 1977;11(8):889–93.

    Article  CAS  PubMed  Google Scholar 

  36. Schwab KO, Breitung B, von Stockhausen HB. Inappropriate secretion of umbilical plasma catecholamines in preterm compared to term neonates. J Perinat Med. 1996;24(4):373–80.

    Article  CAS  PubMed  Google Scholar 

  37. Simons SH, van Dijk M, van Lingen RA, Roofthooft D, Boomsma F, van den Anker JN, et al. Randomised controlled trial evaluating effects of morphine on plasma adrenaline/noradrenaline concentrations in newborns. Arch Dis Child Fetal Neonatal Ed. 2005;90(1):F36–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mahoney L, Crook D, Walter KN, Sherman E, Rabe H. What is the evidence for the use of adrenaline in the treatment of neonatal hypotension? Cardiovasc Hematol Agents Med Chem. 2012;10(1):50–98.

    Article  CAS  PubMed  Google Scholar 

  39. Cheek B, Malinek M, Fraillon M. Plasma adrenaline and noradrenaline in the neonatal period, and infants with respiratory distress syndrome and placental insufficiency. Pediatrics. 1963;31:374–81.

    CAS  PubMed  Google Scholar 

  40. Ronca AE, Abel RA, Ronan PJ, Renner KJ, Alberts JR. Effects of labor contractions on catecholamine release and breathing frequency in newborn rats. Behav Neurosci. 2006;120(6):1308–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakai T, Yamada R. Urinary catecholamine excretion by various age groups with special reference to clinical value of measuring catecholamines in newborns. Pediatr Res. 1983;17(6):456–60.

    Article  CAS  PubMed  Google Scholar 

  42. Lagercrantz H, Nilsson E, Redham I, Hjemdahl P. Plasma catecholamines following nursing procedures in a neonatal ward. Early Hum Dev. 1986;14(1):61–5.

    Article  CAS  PubMed  Google Scholar 

  43. Acolet D, Modi N, Giannakoulopoulos X, Bond C, Weg W, Clow A, et al. Changes in plasma cortisol and catecholamine concentrations in response to massage in preterm infants. Arch Dis Child. 1993;68(1):29–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mayfield SR, Stonestreet BS, Shaul PW, Brubakk AM, Susa J, Oh W. Plasma catecholamine concentrations of newborn piglets in thermoneutral and cold environments. J Dev Physiol. 1989;11(6):331–4.

    CAS  PubMed  Google Scholar 

  45. Kallio J, Karlsson R, Toppari J, Helminen T, Scheinin M, Kero P. Antenatal dexamethasone treatment decreases plasma catecholamine levels in preterm infants. Pediatr Res. 1998;43(6):801–7.

    Article  CAS  PubMed  Google Scholar 

  46. Quinn MW, Wild J, Dean HG, Hartley R, Rushforth JA, Puntis JW, et al. Randomised double-blind controlled trial of effect of morphine on catecholamine concentrations in ventilated preterm babies. Lancet. 1993;342(8867):324–7.

    Article  CAS  PubMed  Google Scholar 

  47. International Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiac Care. Part II: neonatal resuscitation. Circulation. 2000;102(Suppl I):I343–57.

  48. American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Part 13: neonatal resuscitation guidelines. Circulation. 2005;112:IV188–95.

  49. Kattwinkel J, Perlman JM, Aziz K, Colby C, Fairchild K, Gallagher J, et al. Part 15: neonatal resuscitation: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(suppl 3):S909–19.

    Article  PubMed  Google Scholar 

  50. Vali P, Mathew B, Lakshminrusimha S. Neonatal resuscitation: evolving strategies. Matern Health Neonatol Perinatol. 2015;1:4.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vali P, Mathew B, Lakshminrusimha S. In quest of epinephrine’s optimal route and dose in neonatal cardiopulmonary resuscitation-are we there yet? J Pediatr. 2017;189:239.

    Article  PubMed  Google Scholar 

  52. Perondi MB, Reis AG, Paiva EF, Nadkarni VM, Berg RA. A comparison of high-dose and standard-dose epinephrine in children with cardiac arrest. N Engl J Med. 2004;350(17):1722–30.

    Article  CAS  PubMed  Google Scholar 

  53. Brown CG, Werman HA, Davis EA, Katz S, Hamlin RL. The effect of high-dose phenylephrine versus epinephrine on regional cerebral blood flow during CPR. Ann Emerg Med. 1987;16(7):743–8.

    Article  CAS  PubMed  Google Scholar 

  54. Carpenter TC, Stenmark KR. High-dose epinephrine is not superior to standard-dose epinephrine in pediatric in-hospital cardiopulmonary arrest. Pediatrics. 1997;99(3):403–8.

    Article  CAS  PubMed  Google Scholar 

  55. Dieckmann RA, Vardis R. High-dose epinephrine in pediatric out-of-hospital cardiopulmonary arrest. Pediatrics. 1995;95(6):901–13.

    CAS  PubMed  Google Scholar 

  56. Perlman JM, Risser R. Cardiopulmonary resuscitation in the delivery room: associated clinical events. Arch Pediatr Adolesc Med. 1995;149(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  57. Pinto M, Solevåg AL, O’Reilly M, Aziz K, Cheung P-Y, Schmölzer GM. Evidence on adrenaline use in resuscitation and its relevance to newborn infants: a non-systematic review. Neonatology. 2017;111:37–44.

    Article  CAS  PubMed  Google Scholar 

  58. Tang W, Weil MH, Sun S, Noc M, Yang L, Gazmuri RJ. Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation. 1995;92:3089–93.

    Article  CAS  PubMed  Google Scholar 

  59. Berg RA, Otto CW, Kern KB, Sanders AB, Hilwig RW, Hansen KK, et al. High-dose epinephrine results in greater early mortality after resuscitation from prolonged cardiac arrest in pigs: a prospective, randomized study. Crit Care Med. 1994;22:282–90.

    Article  CAS  PubMed  Google Scholar 

  60. Niemann JT, Stratton SJ, Cruz B, Lewis RJ. Endotracheal drug administration during out-of-hospital resuscitation: where are the survivors? Resuscitation. 2002;53(2):153–7.

    Article  PubMed  Google Scholar 

  61. Ziino AJ, Davies MW, Davis PG. Epinephrine for the resuscitation of apparently stillborn or extremely bradycardic newborn infants. Cochrane Database Syst Rev. 2003;2:CD003849.

  62. Lindemann R. Resuscitation of the newborn. Endotracheal administration of epinephrine. Acta Paediatr Scand. 1984;73(2):210–2.

    Article  CAS  PubMed  Google Scholar 

  63. Schwab KO, von Stockhausen HB. Plasma catecholamines after endotracheal administration of adrenaline during postnatal resuscitation. Arch Dis Child Fetal Neonat Ed. 1994;70(3):F213–7.

    Article  CAS  Google Scholar 

  64. Jonmarker C, Olsson AK, Jogi P, Forsell C. Hemodynamic effects of tracheal and intravenous adrenaline in infants with congenital heart anomalies. Acta Anaesthesiol Scand. 1996;40(8):927–31.

    Article  CAS  PubMed  Google Scholar 

  65. Battin M, Page B, Knight D. Is there still a place for endotracheal adrenaline in neonatal resuscitation? J Paediatr Child Health. 2007;43(6):504.

    Article  PubMed  Google Scholar 

  66. Chalkias A, Xanthos T, Syggelou A, Bassareo PP, Iacovidou N. Controversies in neonatal resuscitation. J Matern Fetal Neonatal Med. 2013;26(suppl 2):50–4.

    Article  PubMed  Google Scholar 

  67. Abe KK, Blum GT, Yamamoto LG. Intraosseous is faster and easier than umbilical venous catheterization in newborn emergency vascular access mod-els. Am J Emerg Med. 2000;18(2):126–9.

    Article  CAS  PubMed  Google Scholar 

  68. Ellemunter H, Simma B, Trawoger R, Maurer H. Intraosseous lines in preterm and full term neonates. Arch Dis Child Fetal Neonatal Ed. 1999;80(1):F74–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mauch J, Ringer SK, Spielmann N, Weiss M. Intravenous versus intramuscular epinephrine administration during cardiopulmonary resuscitation—a pilot study in piglets. Paediatr Anaesth. 2013;23(10):906–12.

    Article  PubMed  Google Scholar 

  70. Doglioni N, Chiandetti L, Trevisanuto D. Intramuscolar epinephrine during neonatal resuscitation. Resuscitation. 2015;90:e5.

    Article  CAS  PubMed  Google Scholar 

  71. Ornato JP. Optimal vasopressor drug therapy during resuscitation. Crit Care. 2008;12(2):123.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bada HS. Prevention of intracranial hemorrhage. NeoReviews. 2000;1:e48–53.

    Article  Google Scholar 

  73. Frontanes A, García-Fragoso L, García I, Rivera J, Valcárcel M. Outcome of very-low-birth-weight infants who received epinephrine in the delivery room. Resuscitation. 2011;82:427–30.

    Article  PubMed  Google Scholar 

  74. Handley SC, Sun Y, Wyckoff MH, Lee HC. Outcomes of extremely preterm infants after delivery room cardiopulmonary resuscitation in a population-based cohort. J Perinatol. 2015;35(5):379–83.

    Article  CAS  PubMed  Google Scholar 

  75. Valverde E, Pellicer A, Madero R, Elorza D, Quero J, Cabañas F. Dopamine versus epinephrine for cardiovascular support in low birth weight infants: analysis of systemic effects and neonatal clinical outcomes. Pediatrics. 2006;117(6):e1213–22.

    Article  PubMed  Google Scholar 

  76. Noori S, Seri I. Neonatal blood pressure support: the use of inotropes, lusitropes and other vasopressor agents. Clin Perinatol. 2012;39:221–38.

    Article  PubMed  Google Scholar 

  77. O’Donnell AI, Gray PH, Rogers YM. Mortality and neurodevelopmental outcome for infants receiving adrenaline in neonatal resuscitation. J Paediatr Child Health. 1998;34(6):551–6.

    Article  PubMed  Google Scholar 

  78. Finer NN, Horbar JD, Carpenter JH. Cardiopulmonary resuscitation in the very low birth weight infant. The Vermont Oxford Network experience. Pediatrics. 1999;104(3):428–34.

    Article  CAS  PubMed  Google Scholar 

  79. Shah PS, Shah P, Tai KF. Chest compression and/or epinephrine at birth for preterm infants < 32 weeks gestational age: matched cohort study of neonatal outcomes. J Perinatol. 2009;29(10):693–7.

    Article  CAS  PubMed  Google Scholar 

  80. Moore GP, Daboval T, Coughlin KW. Chest compressions and epinephrine during resuscitation of infants born at the border of viability: yes, no or maybe? Paediatr Child Health. 2011;16(2):87–90.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Beauchamp TL, Childress JF. Principles of biomedical ethics. 6th ed. New York: Oxford University Press; 2009.

    Google Scholar 

  82. Valcamonico A, Accorsi P, Sanzeni C, Martelli P, La Boria P, Cavazza A, et al. Mid and long-term outcome of extremely low birth weight (ELBW) infants: an analysis of prognostic factors. J Matern Fetal Neonatal Med. 2007;20:465–71.

    Article  CAS  PubMed  Google Scholar 

  83. Doyle LW, Victorian Infant Collaborative Study Group. Changing availability of neonatal intensive care for extremely low birthweight infants in Victoria over two decades. Med J Aust. 2004;181(3):136–9.

    PubMed  Google Scholar 

  84. Kornberger E, Prengel AW, Krismer A, Schwarz B, Wenzel V, Lindner KH, et al. Vasopressin-mediated adrenocorticotropin release increases plasma cortisol concentrations during cardiopulmonary resuscitation. Crit Care Med. 2000;28(10):3517–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Antonucci.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

Roberto Antonucci, Luca Antonucci, Cristian Locci, Annalisa Porcella, and Laura Cuzzolin declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonucci, R., Antonucci, L., Locci, C. et al. Current Challenges in Neonatal Resuscitation: What is the Role of Adrenaline?. Pediatr Drugs 20, 417–428 (2018). https://doi.org/10.1007/s40272-018-0300-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-018-0300-6

Navigation