Skip to main content
Log in

Management of Older Adults with Sickle Cell Disease: Considerations for Current and Emerging Therapies

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

People with sickle cell disease (SCD) are living longer than ever before, with the median survival increasing from age 14 years in 1973, beyond age 40 years in the 1990s, and as high as 61 years in recent cohorts from academic centers. Improvements in survival have been attributed to initiatives, such as newborn screening, penicillin prophylaxis, vaccination against encapsulated organisms, better detection and treatment of splenic sequestration, and improved transfusion support. There are an estimated 100,000 people living with SCD in the United States and millions of people with SCD globally. Given that the number of older adults with SCD will likely continue to increase as survival improves, better evidence on how to manage this population is needed. When managing older adults with SCD (defined herein as age ≥ 40 years), healthcare providers should consider the potential pitfalls of extrapolating evidence from existing studies on current and emerging therapies that have typically been conducted with participants at mean ages far below 40 years. Older adults with SCD have historically had little to no representation in clinical trials; therefore, more guidance is needed on how to use current and emerging therapies in this population. This article summarizes the available evidence for managing older adults with SCD and discusses potential challenges to using approved and emerging drugs in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet. 2010;376(9757):2018–31. https://doi.org/10.1016/S0140-6736(10)61029-X.

    Article  CAS  PubMed  Google Scholar 

  2. Papageorgiou DP, Abidi SZ, Chang H-Y, et al. Simultaneous polymerization and adhesion under hypoxia in sickle cell disease. Proc Natl Acad Sci. 2018;115(38):9473–8. https://doi.org/10.1073/pnas.1807405115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kato GJ, Steinberg MH, Gladwin MT. Intravascular hemolysis and the pathophysiology of sickle cell disease. J Clin Invest. 2017;127(3):750–60. https://doi.org/10.1172/jci89741.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Elmariah H, Garrett ME, De Castro LM, et al. Factors associated with survival in a contemporary adult sickle cell disease cohort. Am J Hematol. 2014;89(5):530–5. https://doi.org/10.1002/ajh.23683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oyedeji CI, Hall K, Luciano A, Morey MC, Strouse JJ. Geriatric assessment for older adults with sickle cell disease: protocol for a prospective cohort pilot study. Pilot Feasibility Stud. 2020;6(1):131. https://doi.org/10.1186/s40814-020-00673-3.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Serjeant GR, Serjeant BE, Mason KP, Hambleton IR, Fisher C, Higgs DR. The changing face of homozygous sickle cell disease: 102 patients over 60 years. Int J Lab Hematol. 2009;31(6):585–96. https://doi.org/10.1111/j.1751-553X.2008.01089.x.

    Article  CAS  PubMed  Google Scholar 

  7. Steinberg MH. Genetic etiologies for phenotypic diversity in sickle cell anemia. Sci World J. 2009;9:46–67. https://doi.org/10.1100/tsw.2009.10.

    Article  Google Scholar 

  8. Steinberg M, Embury S. Alpha-thalassemia in blacks: genetic and clinical aspects and interactions with the sickle hemoglobin gene. Blood. 1986;68(5):985–90. https://doi.org/10.1182/blood.V68.5.985.985.

    Article  CAS  PubMed  Google Scholar 

  9. Oyedeji C, Strouse JJ, Crawford RD, Garrett ME, Ashley-Koch AE, Telen MJ. A multi-institutional comparison of younger and older adults with sickle cell disease. Am J Hematol. 2019;94(4):E115–7. https://doi.org/10.1002/ajh.25405.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Oyedeji CI, Hall K, Luciano A, Morey MC, Strouse JJ. The Sickle Cell Disease Functional Assessment (SCD-FA) tool: a feasibility pilot study. Pilot Feasibility Stud. 2022;8(1):53. https://doi.org/10.1186/s40814-022-01005-3.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Idris IM, Botchwey EA, Hyacinth HI. Sickle cell disease as an accelerated aging syndrome. Exp Biol Med (Maywood). 2022;247(4):368–74. https://doi.org/10.1177/15353702211068522.

    Article  CAS  PubMed  Google Scholar 

  12. Sandhu MK, Cohen A. Aging in sickle cell disease: co-morbidities and new issues in management. Hemoglobin. 2015;39(4):221–4. https://doi.org/10.3109/03630269.2015.1040493.

    Article  CAS  PubMed  Google Scholar 

  13. Khan AB, Kesse-Adu R, Breen C, et al. A descriptive study of the characteristics of older adults with sickle cell disease. Am J Hematol. 2018;93(2):E38-e40. https://doi.org/10.1002/ajh.24961.

    Article  PubMed  Google Scholar 

  14. Thein SL, Howard J. How I treat the older adult with sickle cell disease. Blood. 2018;132(17):1750–60. https://doi.org/10.1182/blood-2018-03-818161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oyedeji CI, Faldowski R, Morey M, et al. Characterizing frailty in adults with sickle cell disease using frailty phenotype. Blood. 2022;140(Suppl 1):5125–6. https://doi.org/10.1182/blood-2022-169616.

    Article  Google Scholar 

  16. Shi S, Klotz U. Age-related changes in pharmacokinetics. Curr Drug Metab. 2011;12(7):601–10. https://doi.org/10.2174/138920011796504527.

    Article  CAS  PubMed  Google Scholar 

  17. Panel BtAGSBCUE. American Geriatrics Society 2019 updated AGS Beers Criteria® for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2019;67(4):674–94. https://doi.org/10.1111/jgs.15767.

    Article  Google Scholar 

  18. Sergi G, De Rui M, Sarti S, Manzato E. Polypharmacy in the elderly: can comprehensive geriatric assessment reduce inappropriate medication use? Drugs Aging. 2011;28(7):509–19. https://doi.org/10.2165/11592010-000000000-00000.

    Article  PubMed  Google Scholar 

  19. Mangoni AA, Jackson SH. Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol. 2004;57(1):6–14. https://doi.org/10.1046/j.1365-2125.2003.02007.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bowie MW, Slattum PW. Pharmacodynamics in older adults: a review. Am J Geriatr Pharmacother. 2007;5(3):263–303. https://doi.org/10.1016/j.amjopharm.2007.10.001.

    Article  CAS  PubMed  Google Scholar 

  21. Gnjidic D, Hilmer SN, Blyth FM, et al. Polypharmacy cutoff and outcomes: five or more medicines were used to identify community-dwelling older men at risk of different adverse outcomes. J Clin Epidemiol. 2012;65(9):989–95. https://doi.org/10.1016/j.jclinepi.2012.02.018.

    Article  PubMed  Google Scholar 

  22. Jyrkkä J, Enlund H, Korhonen MJ, Sulkava R, Hartikainen S. Polypharmacy status as an indicator of mortality in an elderly population. Drugs Aging. 2009;26(12):1039–48. https://doi.org/10.2165/11319530-000000000-00000.

    Article  PubMed  Google Scholar 

  23. Zaninotto P, Huang YT, Di Gessa G, Abell J, Lassale C, Steptoe A. Polypharmacy is a risk factor for hospital admission due to a fall: evidence from the English longitudinal study of ageing. BMC Public Health. 2020;20(1):1804. https://doi.org/10.1186/s12889-020-09920-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frank C, Weir E. Deprescribing for older patients. CMAJ. 2014;186(18):1369–76. https://doi.org/10.1503/cmaj.131873.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Scott IA, Hilmer SN, Reeve E, et al. Reducing inappropriate polypharmacy: the process of deprescribing. JAMA Intern Med. 2015;175(5):827–34. https://doi.org/10.1001/jamainternmed.2015.0324.

    Article  PubMed  Google Scholar 

  26. Charache S, Terrin ML, Moore RD, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the multicenter study of hydroxyurea in sickle cell anemia. N Engl J Med. 1995;332(20):1317–22. https://doi.org/10.1056/nejm199505183322001.

    Article  CAS  PubMed  Google Scholar 

  27. Niihara Y, Miller ST, Kanter J, et al. A phase 3 trial of l-glutamine in sickle cell disease. N Engl J Med. 2018;379(3):226–35. https://doi.org/10.1056/NEJMoa1715971.

    Article  CAS  PubMed  Google Scholar 

  28. Vichinsky E, Hoppe CC, Ataga KI, et al. A phase 3 randomized trial of voxelotor in sickle cell disease. N Engl J Med. 2019;381(6):509–19. https://doi.org/10.1056/NEJMoa1903212.

    Article  CAS  PubMed  Google Scholar 

  29. Ataga KI, Kutlar A, Kanter J, et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N Engl J Med. 2016;376(5):429–39. https://doi.org/10.1056/NEJMoa1611770.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kutlar A, Kanter J, Liles DK, et al. Effect of crizanlizumab on pain crises in subgroups of patients with sickle cell disease: a SUSTAIN study analysis. Am J Hematol. 2019;94(1):55–61. https://doi.org/10.1002/ajh.25308.

    Article  CAS  PubMed  Google Scholar 

  31. Brandow AM, Carroll CP, Creary S, et al. American Society of Hematology 2020 guidelines for sickle cell disease: management of acute and chronic pain. Blood Adv. 2020;4(12):2656–701. https://doi.org/10.1182/bloodadvances.2020001851.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tanabe P, Silva S, Bosworth HB, et al. A randomized controlled trial comparing two vaso-occlusive episode (VOE) protocols in sickle cell disease (SCD). Am J Hematol. 2018;93(2):159–68. https://doi.org/10.1002/ajh.24948.

    Article  CAS  PubMed  Google Scholar 

  33. Vichinsky EP, Haberkern CM, Neumayr L, et al. A comparison of conservative and aggressive transfusion regimens in the perioperative management of sickle cell disease. The preoperative transfusion in Sickle Cell Disease Study Group. N Engl J Med. 1995;333(4):206–13. https://doi.org/10.1056/nejm199507273330402.

    Article  CAS  PubMed  Google Scholar 

  34. Howard J, Malfroy M, Llewelyn C, et al. The Transfusion Alternatives Preoperatively in Sickle Cell Disease (TAPS) study: a randomised, controlled, multicentre clinical trial. Lancet. 2013;381(9870):930–8. https://doi.org/10.1016/s0140-6736(12)61726-7.

    Article  PubMed  Google Scholar 

  35. Treadwell MJ, Law AW, Sung J, et al. Barriers to adherence of deferoxamine usage in sickle cell disease. Pediatr Blood Cancer. 2005;44(5):500–7. https://doi.org/10.1002/pbc.20290.

    Article  PubMed  Google Scholar 

  36. Kwiatkowski JL, Hamdy M, El-Beshlawy A, et al. Deferiprone vs deferoxamine for transfusional iron overload in SCD and other anemias: a randomized, open-label noninferiority study. Blood Adv. 2022;6(4):1243–54. https://doi.org/10.1182/bloodadvances.2021004938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vichinsky E, Onyekwere O, Porter J, et al. A randomised comparison of deferasirox versus deferoxamine for the treatment of transfusional iron overload in sickle cell disease. Br J Haematol. 2007;136(3):501–8. https://doi.org/10.1111/j.1365-2141.2006.06455.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Novartis Pharmaceuticals Corporation. Jadenu (Defirasirox) [package insert]. Available at: https://www.hcp.novartis.com/products/jadenu/chronic-iron-overload/dosing--administration/. 2021. Accessed 9 Sept 2022.

  39. Strouse JJ, Heeney MM. Hydroxyurea for the treatment of sickle cell disease: efficacy, barriers, toxicity, and management in children. Pediatr Blood Cancer. 2012;59(2):365–71. https://doi.org/10.1002/pbc.24178.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Charache S, Barton FB, Moore RD, et al. Hydroxyurea and sickle cell anemia. Clinical utility of a myelosuppressive “switching” agent. The multicenter study of hydroxyurea in sickle cell anemia. Medicine (Baltimore). 1996;75(6):300–26. https://doi.org/10.1097/00005792-199611000-00002.

    Article  CAS  PubMed  Google Scholar 

  41. Steinberg MH, Barton F, Castro O, et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA. 2003;289(13):1645–51. https://doi.org/10.1001/jama.289.13.1645.

    Article  CAS  PubMed  Google Scholar 

  42. Lanzkron S, Strouse JJ, Wilson R, et al. Systematic review: hydroxyurea for the treatment of adults with sickle cell disease. Ann Intern Med. 2008;148(12):939–55. https://doi.org/10.7326/0003-4819-148-12-200806170-00221.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Agrawal RK, Patel RK, Shah V, Nainiwal L, Trivedi B. Hydroxyurea in sickle cell disease: drug review. Indian J Hematol Blood Transfus. 2014;30(2):91–6. https://doi.org/10.1007/s12288-013-0261-4.

    Article  PubMed  Google Scholar 

  44. Boyette LB, Tuan RS. Adult stem cells and diseases of aging. J Clin Med. 2014;3(1):88–134. https://doi.org/10.3390/jcm3010088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://doi.org/10.1016/j.cell.2013.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu JZ, Thein SL. Revisiting anemia in sickle cell disease and finding the balance with therapeutic approaches. Blood. 2022;139(20):3030–9. https://doi.org/10.1182/blood.2021013873.

    Article  CAS  PubMed  Google Scholar 

  47. Giordano P, Urbano F, Lassandro G, Faienza MF. Mechanisms of bone impairment in sickle bone disease. Int J Environ Res Public Health. 2021. https://doi.org/10.3390/ijerph18041832.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Park SY, Matte A, Jung Y, et al. Pathologic angiogenesis in the bone marrow of humanized sickle cell mice is reversed by blood transfusion. Blood. 2020;135(23):2071–84. https://doi.org/10.1182/blood.2019002227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu JZ, Conrey AK, Frey IC, et al. A phase 1 dose escalation study of the pyruvate kinase activator mitapivat (AG-348) in sickle cell disease. Blood. 2022;140(19):2053–62. https://doi.org/10.1182/blood.2022015403.

    Article  CAS  PubMed  Google Scholar 

  50. Sherwood JB, Goldwasser E, Chilcote R, Carmichael LD, Nagel RL. Sickle cell anemia patients have low erythropoietin levels for their degree of anemia. Blood. 1986;67(1):46–9.

    Article  CAS  PubMed  Google Scholar 

  51. Pincez T, Lee SSK, Ilboudo Y, et al. Clonal hematopoiesis in sickle cell disease. Blood. 2021;138(21):2148–52. https://doi.org/10.1182/blood.2021011121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liggett LA, Cato LD, Weinstock JS, et al. Clonal hematopoiesis in sickle cell disease. J Clin Investig. 2022. https://doi.org/10.1172/JCI156060.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Brunson A, Keegan THM, Bang H, Mahajan A, Paulukonis S, Wun T. Increased risk of leukemia among sickle cell disease patients in California. Blood. 2017;130(13):1597–9. https://doi.org/10.1182/blood-2017-05-783233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Seminog OO, Ogunlaja OI, Yeates D, Goldacre MJ. Risk of individual malignant neoplasms in patients with sickle cell disease: English national record linkage study. J R Soc Med. 2016;109(8):303–9. https://doi.org/10.1177/0141076816651037.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ruzzon E, Randi ML, Tezza F, Luzzatto G, Scandellari R, Fabris F. Leg ulcers in elderly on hydroxyurea: a single center experience in Ph-myeloproliferative disorders and review of literature. Aging Clin Exp Res. 2006;18(3):187–90. https://doi.org/10.1007/bf03324647.

    Article  PubMed  Google Scholar 

  56. Hellström A, Nilsson C, Nilsson A, Fagerström C. Leg ulcers in older people: a national study addressing variation in diagnosis, pain and sleep disturbance. BMC Geriatr. 2016;16(1):25. https://doi.org/10.1186/s12877-016-0198-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Monfort J-B, Senet P. Leg ulcers in sickle-cell disease: treatment update. Adv Wound Care (New Rochelle). 2020;9(6):348–56. https://doi.org/10.1089/wound.2018.0918.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Minniti CP, Eckman J, Sebastiani P, Steinberg MH, Ballas SK. Leg ulcers in sickle cell disease. Am J Hematol. 2010;85(10):831–3. https://doi.org/10.1002/ajh.21838.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tolu SS, Crouch A, Choi J, et al. Hydroxyurea and fetal hemoglobin effect on leg ulcers in patients with sickle cell disease. Ann Hematol. 2022;101(3):541–8. https://doi.org/10.1007/s00277-021-04635-4.

    Article  CAS  PubMed  Google Scholar 

  60. Weinstein JR, Anderson S. The aging kidney: physiological changes. Adv Chronic Kidney Dis. 2010;17(4):302–7. https://doi.org/10.1053/j.ackd.2010.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pressiat C, Rakotoson MG, Habibi A, et al. Impact of renal function on hydroxyurea exposure in sickle-cell disease patients. Br J Clin Pharmacol. 2021;87(5):2274–85. https://doi.org/10.1111/bcp.14653.

    Article  CAS  PubMed  Google Scholar 

  62. Yan JH, Ataga K, Kaul S, et al. The influence of renal function on hydroxyurea pharmacokinetics in adults with sickle cell disease. J Clin Pharmacol. 2005;45(4):434–45. https://doi.org/10.1177/0091270004273526.

    Article  CAS  PubMed  Google Scholar 

  63. Yawn BP, Buchanan GR, Afenyi-Annan AN, et al. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA. 2014;312(10):1033–48. https://doi.org/10.1001/jama.2014.10517.

    Article  CAS  PubMed  Google Scholar 

  64. Nze C, Fortin B, Freedman R, et al. Sudden death in sickle cell disease: current experience. Br J Haematol. 2020;188(4):e43–5. https://doi.org/10.1111/bjh.16314.

    Article  PubMed  Google Scholar 

  65. Manci EA, Culberson DE, Yang YM, et al. Causes of death in sickle cell disease: an autopsy study. Br J Haematol. 2003;123(2):359–65. https://doi.org/10.1046/j.1365-2141.2003.04594.x.

    Article  PubMed  Google Scholar 

  66. Preston RA, Marbury T, Balaratnam G, et al. Pharmacokinetics of voxelotor in patients with renal and hepatic impairment. J Clin Pharmacol. 2021;61(4):493–505. https://doi.org/10.1002/jcph.1757.

    Article  CAS  PubMed  Google Scholar 

  67. Stevens DL, Hix M, Gildon BL. Crizanlizumab for the prevention of vaso-occlusive pain crises in sickle cell disease. J Pharm Technol. 2021;37(4):209–15. https://doi.org/10.1177/87551225211008460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brousseau DC, Owens PL, Mosso AL, Panepinto JA, Steiner CA. Acute care utilization and rehospitalizations for sickle cell disease. JAMA. 2010;303(13):1288–94. https://doi.org/10.1001/jama.2010.378.

    Article  CAS  PubMed  Google Scholar 

  69. McClish DK, Smith WR, Levenson JL, et al. Comorbidity, pain, utilization, and psychosocial outcomes in older versus younger sickle cell adults: the PiSCES Project. Biomed Res Int. 2017;2017:4070547. https://doi.org/10.1155/2017/4070547.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dufort A, Samaan Z. Problematic opioid use among older adults: epidemiology, adverse outcomes and treatment considerations. Drugs Aging. 2021;38(12):1043–53. https://doi.org/10.1007/s40266-021-00893-z.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Smith WR, Penberthy LT, Bovbjerg VE, et al. Daily assessment of pain in adults with sickle cell disease. Ann Intern Med. 2008;148(2):94–101. https://doi.org/10.7326/0003-4819-148-2-200801150-00004.

    Article  PubMed  Google Scholar 

  72. Osunkwo I, O’Connor HF, Saah E. Optimizing the management of chronic pain in sickle cell disease. Hematology. 2020;2020(1):562–9. https://doi.org/10.1182/hematology.2020000143.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Oyedeji CI, Hall K, Luciano A, Morey MC, Strouse JJ. The Sickle Cell Disease Functional Assessment (SCD-FA) tool: a feasibility pilot study. Pilot Feasibility Stud. 2022;8(1):53. https://doi.org/10.1186/s40814-022-01005-3.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Carroll CP, Lanzkron S, Haywood C Jr, et al. Chronic opioid therapy and central sensitization in sickle cell disease. Am J Prev Med. 2016;51(1 Suppl 1):S69-77. https://doi.org/10.1016/j.amepre.2016.02.012.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Darbari DS, Liljencrantz J, Ikechi A, et al. Pain and opioid use after reversal of sickle cell disease following HLA-matched sibling haematopoietic stem cell transplant. Br J Haematol. 2019;184(4):690–3. https://doi.org/10.1111/bjh.15169.

    Article  PubMed  Google Scholar 

  76. Sinha CB, Bakshi N, Ross D, Krishnamurti L. Management of chronic pain in adults living with sickle cell disease in the era of the opioid epidemic: a qualitative study. JAMA Netw Open. 2019;2(5): e194410. https://doi.org/10.1001/jamanetworkopen.2019.4410.

    Article  PubMed  PubMed Central  Google Scholar 

  77. David MS, Jones J, Lauriello A, et al. Converting adults with sickle cell disease from full agonist opioids to buprenorphine: a reliable method with safety and early evidence of reduced acute care utilization. Am J Hematol. 2022;97(11):1435–42. https://doi.org/10.1002/ajh.26699.

    Article  CAS  PubMed  Google Scholar 

  78. Williams H, Tanabe P. Sickle cell disease: a review of nonpharmacological approaches for pain. J Pain Symptom Manag. 2016;51(2):163–77. https://doi.org/10.1016/j.jpainsymman.2015.10.017.

    Article  Google Scholar 

  79. Han H, Hensch L, Tubman VN. Indications for transfusion in the management of sickle cell disease. Hematology. 2021;2021(1):696–703. https://doi.org/10.1182/hematology.2021000307.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Oyedeji CI, Welsby IJ. Optimizing management of sickle cell disease in patients undergoing surgery. Hematology Am Soc Hematol Educ Progr. 2021;2021(1):405–10. https://doi.org/10.1182/hematology.2021000274.

    Article  Google Scholar 

  81. Menis M, Anderson SA, Forshee RA, et al. Transfusion-associated circulatory overload (TACO) and potential risk factors among the inpatient US elderly as recorded in Medicare Administrative Databases during 2011. Vox Sang. 2014;106(2):144–52. https://doi.org/10.1111/vox.12070.

    Article  CAS  PubMed  Google Scholar 

  82. Oud JA, Evers D, de Haas M, et al. Transfusion-induced red blood cell alloimmunisation is unhampered in elderly patients. Br J Haematol. 2022;199(2):e1–4. https://doi.org/10.1111/bjh.18374.

    Article  PubMed  Google Scholar 

  83. Simon GI, Craswell A, Thom O, Fung YL. Outcomes of restrictive versus liberal transfusion strategies in older adults from nine randomised controlled trials: a systematic review and meta-analysis. Lancet Haematol. 2017;4(10):e465–74. https://doi.org/10.1016/s2352-3026(17)30141-2.

    Article  PubMed  Google Scholar 

  84. Chou ST, Alsawas M, Fasano RM, et al. American Society of Hematology 2020 guidelines for sickle cell disease: transfusion support. Blood Adv. 2020;4(2):327–55. https://doi.org/10.1182/bloodadvances.2019001143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee MT, Piomelli S, Granger S, et al. Stroke Prevention Trial in Sickle Cell Anemia (STOP): extended follow-up and final results. Blood. 2006;108(3):847–52. https://doi.org/10.1182/blood-2005-10-009506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ware RE, Helms RW. Stroke With Transfusions Changing to Hydroxyurea (SWiTCH). Blood. 2012;119(17):3925–32. https://doi.org/10.1182/blood-2011-11-392340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ferreira FA, Benites BD, Costa FF, Gilli S, Olalla-Saad ST. Recombinant erythropoietin as alternative to red cell transfusion in sickle cell disease. Vox Sang. 2019;114(2):178–81. https://doi.org/10.1111/vox.12750.

    Article  CAS  PubMed  Google Scholar 

  88. Little JA, McGowan VR, Kato GJ, et al. Combination erythropoietin-hydroxyurea therapy in sickle cell disease: experience from the National Institutes of Health and a literature review. Haematologica. 2006;91(8):1076–83.

    CAS  PubMed  Google Scholar 

  89. Coates TD, Wood JC. How we manage iron overload in sickle cell patients. Br J Haematol. 2017;177(5):703–16. https://doi.org/10.1111/bjh.14575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wilson SR, Sears M, Williams E, et al. Gaps in the diagnosis and management of iron overload in sickle cell disease: a “real-world” report from the GRNDaD registry. Br J Haematol. 2021;195(5):e157–60. https://doi.org/10.1111/bjh.17762.

    Article  PubMed  Google Scholar 

  91. Oyedeji CI, Crawford RD, Shah N. Adherence to iron chelation therapy with deferasirox formulations among patients with sickle cell disease and β-thalassemia. J Natl Med Assoc. 2021;113(2):170–6. https://doi.org/10.1016/j.jnma.2020.08.007.

    Article  PubMed  Google Scholar 

  92. Ribeiro LB, Soares EA, Costa FF, Gilli SCO, Olalla Saad ST, Benites BD. The challenges of handling deferasirox in sickle cell disease patients older than 40 years. Hematology. 2019;24(1):596–600. https://doi.org/10.1080/16078454.2019.1657667.

    Article  CAS  PubMed  Google Scholar 

  93. Kapoor E, Strum D, Shim T, Kim S, Sabetrasekh P, Monfared A. Characterization of sensorineural hearing loss in adult patients with sickle cell disease: a systematic review and meta-analysis. Otol Neurotol. 2021;42(1)=

  94. Chen SH, Liang DC, Lin HC, Cheng SY, Chen LJ, Liu HC. Auditory and visual toxicity during deferoxamine therapy in transfusion-dependent patients. J Pediatr Hematol Oncol. 2005;27(12):651–3. https://doi.org/10.1097/01.mph.0000194019.95096.b6.

    Article  PubMed  Google Scholar 

  95. Chiesi Farmaceutici S.p.A. Ferriprox (deferiprone) [package insert]. US FDA. Revised October 2011. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021825lbl.pdf. Accessed 5 Sept 2022.

  96. Schroeder P, Fulzele K, Forsyth S, et al. Etavopivat, a pyruvate kinase activator in red blood cells, for the treatment of sickle cell disease. J Pharmacol Exp Ther. 2022;380(3):210–9. https://doi.org/10.1124/jpet.121.000743.

    Article  CAS  PubMed  Google Scholar 

  97. Dufu K, Alt C, Strutt S, et al. GBT021601 inhibits HbS polymerization, prevents RBC sickling and improves the pathophysiology of sickle cell disease in a murine model. Blood. 2020;136(Suppl 1):7–8. https://doi.org/10.1182/blood-2020-140539.

    Article  Google Scholar 

  98. Brown RCC, Redfern A, Lisbon E, Washington C, Agodoa I, Smith-Whitley K. GBT021601, a next generation HbS polymerization inhibitor: results of safety, tolerability, pharmacokinetics and pharmacodynamics in adults living with sickle cell disease and healthy volunteers. Blood. 2021;138:3099. https://doi.org/10.1182/blood-2021-152924.

    Article  Google Scholar 

  99. Tarasev M, Herppich A, Gao X, Hines P. S107: P-selectin inhibitor inclacumab reduces cell adhesion in an in-vitro assays showing potential for prevention of vaso-occlusion events in sickle cell disease. HemaSphere. 2022;6:3–4.

    Article  PubMed Central  Google Scholar 

  100. Schmitt C, Abt M, Ciorciaro C, et al. First-in-man study with inclacumab, a human monoclonal antibody against P-selectin. J Cardiovasc Pharmacol. 2015;65(6):611–9. https://doi.org/10.1097/fjc.0000000000000233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Geng X, Mihaila R, Yuan Y, et al. Inclacumab, a fully human anti-P-selectin antibody, directly binds to PSGL-1 binding region and demonstrates robust and durable inhibition of cell adhesion. Blood. 2020;136(Suppl 1):10–1. https://doi.org/10.1182/blood-2020-140530.

    Article  Google Scholar 

  102. Mayer C, Cooper DS, Redfern A, et al. Preliminary results of a phase 1 study in healthy subjects administered inclacumab, a fully human IgG4 anti-P-selectin monoclonal antibody in development for treatment of sickle cell disease. Blood. 2021;138(Suppl 1):977–977. https://doi.org/10.1182/blood-2021-153370.

    Article  Google Scholar 

  103. Conran N, Belcher JD. Inflammation in sickle cell disease. Clin Hemorheol Microcirc. 2018;68(2–3):263–99. https://doi.org/10.3233/ch-189012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mold C, Tamerius JD, Phillips G Jr. Complement activation during painful crisis in sickle cell anemia. Clin Immunol Immunopathol. 1995;76(3 Pt 1):314–20. https://doi.org/10.1006/clin.1995.1131.

    Article  CAS  PubMed  Google Scholar 

  105. Vercellotti GM, Dalmasso AP, Schaid TR Jr, et al. Critical role of C5a in sickle cell disease. Am J Hematol. 2019;94(3):327–37. https://doi.org/10.1002/ajh.25384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bartolucci P, Ataga KI, Callaghan MU, et al. Trial in progress: the randomized, double-blind, placebo-controlled phase Ib CROSSWALK—a trial evaluating the safety of crovalimab for the management of acute uncomplicated vaso-occlusive episodes (VOEs) in patients with sickle cell disease (SCD). Blood. 2021;138(Suppl 1):3108. https://doi.org/10.1182/blood-2021-147854.

    Article  Google Scholar 

  107. Röth A, Nishimura JI, Nagy Z, et al. The complement C5 inhibitor crovalimab in paroxysmal nocturnal hemoglobinuria. Blood. 2020;135(12):912–20. https://doi.org/10.1182/blood.2019003399.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lim SH, Dutta D, Moore J. Rifaximin for sickle cell disease. Am J Hematol. 2019;94(12):E325–8. https://doi.org/10.1002/ajh.25637.

    Article  PubMed  Google Scholar 

  109. Dutta D, Methe BA, Morris A, Lim SH. Effects of rifaximin on circulating aged neutrophils in sickle cell disease. Am J Hematol. 2019;94(6):E175–6. https://doi.org/10.1002/ajh.25467.

    Article  PubMed  Google Scholar 

  110. Kanter J, Liem RI, Bernaudin F, et al. American Society of Hematology 2021 guidelines for sickle cell disease: stem cell transplantation. Blood Adv. 2021;5(18):3668–89. https://doi.org/10.1182/bloodadvances.2021004394.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Iqbal M, Reljic T, Corbacioglu S, et al. Systematic review/meta-analysis on efficacy of allogeneic hematopoietic cell transplantation in sickle cell disease: an international effort on behalf of the pediatric diseases working party of European Society for Blood and Marrow Transplantation and the Sickle Cell Transplantation International Consortium. Transplant Cell Ther. 2021;27(2):167.e1-167.e12. https://doi.org/10.1016/j.jtct.2020.10.007.

    Article  PubMed  Google Scholar 

  112. de la Fuente J, Dhedin N, Koyama T, et al. Haploidentical bone marrow transplantation with post-transplantation cyclophosphamide plus thiotepa improves donor engraftment in patients with sickle cell anemia: results of an International Learning Collaborative. Biol Blood Marrow Transplant. 2019;25(6):1197–209. https://doi.org/10.1016/j.bbmt.2018.11.027.

    Article  PubMed  Google Scholar 

  113. Kanter J, Walters MC, Krishnamurti L, et al. Biologic and clinical efficacy of lentiglobin for sickle cell disease. N Engl J Med. 2022;386(7):617–28. https://doi.org/10.1056/NEJMoa2117175.

    Article  CAS  PubMed  Google Scholar 

  114. Frangoul H, Altshuler D, Cappellini MD, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384(3):252–60. https://doi.org/10.1056/NEJMoa2031054.

    Article  CAS  PubMed  Google Scholar 

  115. Esrick EB, Lehmann LE, Biffi A, et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N Engl J Med. 2021;384(3):205–15. https://doi.org/10.1056/NEJMoa2029392.

    Article  CAS  PubMed  Google Scholar 

  116. Jazwinski SM, Kim S. Examination of the dimensions of biological age. Front Genet. 2019;10:263. https://doi.org/10.3389/fgene.2019.00263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Oyedeji CI, Oyesanya T, Strouse JJ. Living beyond life expectancy: experience with aging for older adults with sickle cell disease. Blood. 2021;138(Suppl 1):492. https://doi.org/10.1182/blood-2021-147288.

    Article  Google Scholar 

  118. Kaeberlein M. How healthy is the healthspan concept? Geroscience. 2018;40(4):361–4. https://doi.org/10.1007/s11357-018-0036-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Platt OS, Brambilla DJ, Rosse WF, et al. Mortality in sickle cell disease—life expectancy and risk factors for early death. N Engl J Med. 1994;330(23):1639–44. https://doi.org/10.1056/nejm199406093302303.

    Article  CAS  PubMed  Google Scholar 

  120. Paneni F, Diaz Cañestro C, Libby P, Lüscher TF, Camici GG. The aging cardiovascular system. Underst Cell Clin Levels. 2017;69(15):1952–67. https://doi.org/10.1016/j.jacc.2017.01.064.

    Article  Google Scholar 

  121. Almeida A, Roberts I. Bone involvement in sickle cell disease. Br J Haematol. 2005;129(4):482–90. https://doi.org/10.1111/j.1365-2141.2005.05476.x.

    Article  PubMed  Google Scholar 

  122. Gladwin MT, Sachdev V. Cardiovascular abnormalities in sickle cell disease. J Am Coll Cardiol. 2012;59(13):1123–33. https://doi.org/10.1016/j.jacc.2011.10.900.

    Article  PubMed  Google Scholar 

  123. Cichowitz C, Carroll PC, Strouse JJ, Haywood C Jr, Lanzkron S. Utility of the montreal cognitive assessment as a screening test for neurocognitive dysfunction in adults with sickle cell disease. South Med J. 2016;109(9):560–5. https://doi.org/10.14423/smj.0000000000000511.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Schmidt WP, Roesler A, Kretzschmar K, Ladwig KH, Junker R, Berger K. Functional and cognitive consequences of silent stroke discovered using brain magnetic resonance imaging in an elderly population. J Am Geriatr Soc. 2004;52(7):1045–50. https://doi.org/10.1111/j.1532-5415.2004.52300.x.

    Article  PubMed  Google Scholar 

  125. Steen RG, Emudianughe T, Hankins GM, et al. Brain imaging findings in pediatric patients with sickle cell disease. Radiology. 2003;228(1):216–25. https://doi.org/10.1148/radiol.2281020943.

    Article  PubMed  Google Scholar 

  126. Scott AW. Ophthalmic manifestations of sickle cell disease. South Med J. 2016;109(9):542–8. https://doi.org/10.14423/smj.0000000000000525.

    Article  PubMed  Google Scholar 

  127. Maharani A, Dawes P, Nazroo J, Tampubolon G, Pendleton N. Visual and hearing impairments are associated with cognitive decline in older people. Age Ageing. 2018;47(4):575–81. https://doi.org/10.1093/ageing/afy061.

    Article  PubMed  Google Scholar 

  128. Onakoya PA, Nwaorgu OG, Shokunbi WA. Sensorineural hearing loss in adults with sickle cell anaemia. Afr J Med Med Sci. 2002;31(1):21–4.

    CAS  PubMed  Google Scholar 

  129. Jakob F, Seefried L, Schwab M. Age and osteoporosis. Effects of aging on osteoporosis, the diagnostics and therapy [in German]. Internist (Berl). 2014;55(7):755–61. https://doi.org/10.1007/s00108-014-3468-z.

    Article  CAS  PubMed  Google Scholar 

  130. Dores GM, Devesa SS, Curtis RE, Linet MS, Morton LM. Acute leukemia incidence and patient survival among children and adults in the United States, 2001–2007. Blood. 2012;119(1):34–43. https://doi.org/10.1182/blood-2011-04-347872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mallappallil M, Friedman EA, Delano BG, McFarlane SI, Salifu MO. Chronic kidney disease in the elderly: evaluation and management. Clin Pract. 2014;11(5):525–35. https://doi.org/10.2217/cpr.14.46.

    Article  CAS  Google Scholar 

  132. Adam SS, Flahiff CM, Kamble S, Telen MJ, Reed SD, De Castro LM. Depression, quality of life, and medical resource utilization in sickle cell disease. Blood Adv. 2017;1(23):1983–92. https://doi.org/10.1182/bloodadvances.2017006940.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Byers AL, Yaffe K, Covinsky KE, Friedman MB, Bruce ML. High occurrence of mood and anxiety disorders among older adults: the National Comorbidity Survey replication. Arch Gen Psychiatry. 2010;67(5):489–96. https://doi.org/10.1001/archgenpsychiatry.2010.35.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Naik RP, Streiff MB, Haywood C Jr, Nelson JA, Lanzkron S. Venous thromboembolism in adults with sickle cell disease: a serious and under-recognized complication. Am J Med. 2013;126(5):443–9. https://doi.org/10.1016/j.amjmed.2012.12.016.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Tritschler T, Aujesky D. Venous thromboembolism in the elderly: a narrative review. Thromb Res. 2017;155:140–7. https://doi.org/10.1016/j.thromres.2017.05.015.

    Article  CAS  PubMed  Google Scholar 

  136. Reid MC, Eccleston C, Pillemer K. Management of chronic pain in older adults. BMJ (Clin Res Ed). 2015;350:h532–h532. https://doi.org/10.1136/bmj.h532.

    Article  Google Scholar 

  137. Zimmer Z, Rubin S. Life expectancy with and without pain in the US elderly population. J Gerontol Ser A. 2016;71(9):1171–6. https://doi.org/10.1093/gerona/glw028.

    Article  Google Scholar 

  138. Loeser RF. Age-related changes in the musculoskeletal system and the development of osteoarthritis. Clin Geriatr Med. 2010;26(3):371–86. https://doi.org/10.1016/j.cger.2010.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Golchin N, Frank SH, Vince A, Isham L, Meropol SB. Polypharmacy in the elderly. J Res Pharm Pract. 2015;4(2):85–8. https://doi.org/10.4103/2279-042x.155755.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med. 1988;319(26):1701–7. https://doi.org/10.1056/nejm198812293192604.

    Article  CAS  PubMed  Google Scholar 

  141. Pilleron S, Sarfati D, Janssen-Heijnen M, et al. Global cancer incidence in older adults, 2012 and 2035: a population-based study. Int J Cancer. 2019;144(1):49–58. https://doi.org/10.1002/ijc.31664.

    Article  CAS  PubMed  Google Scholar 

  142. Parker SG, McCue P, Phelps K, et al. What is comprehensive geriatric assessment (CGA)? An umbrella review. Age Ageing. 2018;47(1):149–55. https://doi.org/10.1093/ageing/afx166.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the contribution of people with SCD who participated in the clinical studies included in this review article and the investigators who led these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charity I. Oyedeji.

Ethics declarations

Funding

This study was funded by the Duke Center for Research to Advance Healthcare Equity (REACH Equity), which is supported by the National Institute on Minority Health and Health Disparities under award number U54MD012530 and the National Institute on Aging (NIA) Grants for Early Medical/Surgical Specialists' Transition to Aging Research (GEMSSTAR) award number 1R03AG074054-01 to CIO in the preparation of this manuscript. JJS received support from the Health Resources and Services Administration (HRSA) for the Education and Mentoring to Bring Access to Comprehensive Care (EMBRACE) Network (U1EMC42461-01) for the preparation of this manuscript.

Conflict of interest

Charity I. Oyedeji has received research funds from the NIA (National Institutes of Health [NIH]). Kimberly L. Hodulik declares that she has no conflicts of interest. Marilyn J. Telen has received research funds from the Doris Duke Charitable Foundation, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and the NHLBI (NIH), FDA, Forma Therapeutics, and CSL Behring, and has also served on an Advisory Board for Pfizer, Inc. and a Data Monitoring Committee for Novartis. John J. Strouse receives research funds from the NHLBI, Centers for Disease Control and Prevention (CDC), Takeda, and Agios, and has served on a scientific advisory board on gene therapy for sickle cell disease for Aruvant.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

No datasets were generated or analyzed during the current study.

Code availability

Not applicable.

Author contributions

We certify that all authors have made substantial contributions to all aspects of the work, including conception and planning of the work that led to the manuscript, drafting and/or critical revision of the manuscript, and approval of the final version.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyedeji, C.I., Hodulik, K.L., Telen, M.J. et al. Management of Older Adults with Sickle Cell Disease: Considerations for Current and Emerging Therapies. Drugs Aging 40, 317–334 (2023). https://doi.org/10.1007/s40266-023-01014-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-023-01014-8

Navigation