Skip to main content

Advertisement

Log in

Acute Kidney Injury Induced by Antimicrobial Agents in the Elderly: Awareness and Mitigation Strategies

  • Therapy in Practice
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

The use of antimicrobial agents has increased in recent years as treatments have diversified and resistant bacteria have appeared. With increased use of antimicrobial agents, elderly patients are prone to adverse drug reactions (ADRs) as a result of factors such as drug–drug interactions, polypharmacy, long-term use, and over- or under-dosage. In particular, elderly patients using antimicrobials are at increased risk to develop drug-induced acute kidney injury (AKI), which is the most common severe ADR in such patients. AKI is a serious problem that is associated with mortality amongst hospitalized patients. Antimicrobial-induced AKI can be classified into three different types: acute tubular necrosis (ATN), acute interstitial nephritis (AIN), and renal tubule lumen obstruction. AKI can generally be prevented by proper maintenance of fluid balance. To design dosage regimens that ensure efficient drug excretion via the kidney, it is necessary to accurately estimate renal function; however, the kidney undergoes age-dependent structural and functional alterations over time. Therefore, proper management of antimicrobial agents by an antimicrobial stewardship team may lead to decreased incidence of AKI. This article reviews antimicrobial-induced AKI and discusses potential strategies for increasing awareness of AKI and mitigating its clinical effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stavreva G, Pendicheva D, Pandurska A, Marev R. Detection of adverse drug reactions to antimicrobial drugs in hospitalized patients. Trakia J Sci. 2008;6(1):7–9.

    Google Scholar 

  2. Schetz M, Dasta J, Goldstein S, Golper T. Drug-induced acute kidney injury. Curr Opin Crit Care. 2005;11(6):555–65.

    PubMed  Google Scholar 

  3. Obialo CI, Crowell AK, Okonofua EC. Acute renal failure mortality in hospitalized African Americans: age and gender considerations. J Natl Med Assoc. 2002;94(3):127.

    PubMed Central  PubMed  Google Scholar 

  4. Feely J, Coakley D. Altered pharmacodynamics in the elderly. Clin Geriatr Med. 1990;6(2):269–83.

    CAS  PubMed  Google Scholar 

  5. Hanlon JT, Schmader KE, Koronkowski MJ, Weinberger M, Landsman PB, Samsa GP, et al. Adverse drug events in high risk older outpatients. J Am Geriatr Soc. 1997;45(8):945–8.

    CAS  PubMed  Google Scholar 

  6. Meyer B. Renal function in aging. J Am Geriatr Soc. 1989;37(8):791–800.

    CAS  PubMed  Google Scholar 

  7. Beck LH. Changes in renal function with aging. Clin Geriatr Med. 1998;14(2):199–209.

    CAS  PubMed  Google Scholar 

  8. Lindeman RD. Changes in renal function with aging. Drugs Aging. 1992;2(5):423–31.

    CAS  PubMed  Google Scholar 

  9. Epstein M. Effects of aging on the kidney. Fed Proc. 1979;1979:168–71.

    Google Scholar 

  10. Schentag JJ, Plaut ME, Cerra FB. Comparative nephrotoxicity of gentamicin and tobramycin: pharmacokinetic and clinical studies in 201 patients. Antimicrob Agents Chemother. 1981;19(5):859–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Ho PW, Pien FD, Kominami N. Massive amikacin overdose. Ann Intern Med. 1979;91(2):227–8.

    CAS  PubMed  Google Scholar 

  12. Kullar R, Davis SL, Levine DP, Rybak MJ. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: support for consensus guidelines suggested targets. Clin Infect Dis. 2011;52(8):975–81.

    CAS  PubMed  Google Scholar 

  13. Horey A, Mergenhagen KA, Mattappallil A. The relationship of nephrotoxicity to vancomycin trough serum concentrations in a veteran’s population: a retrospective analysis. Ann Pharmacother. 2012;46(11):1477–83.

    PubMed  Google Scholar 

  14. Mizokami F, Shibasaki M, Yoshizue Y, Noro T, Mizuno T, Furuta K. Pharmacodynamics of vancomycin in elderly patients aged 75 years or older with methicillin-resistant Staphylococcus aureus hospital-acquired pneumonia. Clin Intervent Aging. 2013;8:1015–21.

    CAS  Google Scholar 

  15. Nicolle LE, Strausbaugh LJ, Garibaldi RA. Infections and antibiotic resistance in nursing homes. Clin Microbiol Rev. 1996;9(1):1–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Strausbaugh LJ. Prevention and control of infection in long-term-care facilities: an overview. J Am Med Direct Assoc. 2000;1(2):62–8.

  17. Guidelines for the management of adults with hospital-acquired. Ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388–416.

    Google Scholar 

  18. Lipsky BA, Berendt AR, Cornia PB, Pile JC, Peters EJ, Armstrong DG, et al. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis. 2012;54(12).

  19. Martin JH, Norris R, Barras M, Roberts J, Morris R, Doogue M, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society Of Infectious Diseases Pharmacists. Clin Biochem Rev. 2010;31(1):21–4.

    PubMed Central  PubMed  Google Scholar 

  20. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44(supplement 2):S27–72.

    CAS  PubMed  Google Scholar 

  21. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. 2011;52(5):e103–20.

    PubMed  Google Scholar 

  22. Baddour LM, Wilson WR, Bayer AS, Fowler VG, Bolger AF, Levison ME, et al. Infective endocarditis diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the committee on rheumatic fever, endocarditis, and Kawasaki disease, council on cardiovascular disease in the young, and the councils on clinical cardiology, stroke, and cardiovascular surgery and anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation. 2005;111(23):e394–434.

    PubMed  Google Scholar 

  23. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intens Care Med. 2013;39(2):165–228.

    CAS  Google Scholar 

  24. Bates DW, Cullen DJ, Laird N, Petersen LA, Small SD, Servi D, et al. Incidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE Prevention Study Group. JAMA. 1995;274(1):29–34.

    CAS  PubMed  Google Scholar 

  25. Gijsen R, Hoeymans N, Schellevis FG, Ruwaard D, Satariano WA, van den Bos GA. Causes and consequences of comorbidity: a review. J Clin Epidemiol. 2001;54(7):661–74.

    CAS  PubMed  Google Scholar 

  26. Verbrugge LM, Lepkowski JM, Imanaka Y. Comorbidity and its impact on disability. Milbank Q. 1989;67(3–4):450–84.

    CAS  PubMed  Google Scholar 

  27. Boyd CM, Ritchie CS, Tipton EF, Studenski SA, Wieland D. From Bedside to Bench: summary from the American Geriatrics Society/National Institute on Aging Research Conference on Comorbidity and Multiple Morbidity in Older Adults. Aging Clin Exp Res. 2008;20(3):181–8.

    PubMed Central  PubMed  Google Scholar 

  28. Mizokami F, Koide Y, Noro T, Furuta K. Polypharmacy with common diseases in hospitalized elderly patients. Am J Geriatr Pharmacother. 2012;10(2):123–8.

    PubMed  Google Scholar 

  29. Hanlon JT, Pieper CF, Hajjar ER, Sloane RJ, Lindblad CI, Ruby CM, et al. Incidence and predictors of all and preventable adverse drug reactions in frail elderly persons after hospital stay. J Gerontol Ser A Biol Sci Med Sci. 2006;61(5):511–5.

    Google Scholar 

  30. Mylotte JM. Antimicrobial prescribing in long-term care facilities: prospective evaluation of potential antimicrobial use and cost indicators. Am J Infect Control. 1999;27(1):10–9.

    CAS  PubMed  Google Scholar 

  31. Pestotnik SL, Classen DC, Evans RS, Burke JP. Implementing antibiotic practice guidelines through computer-assisted decision support: clinical and financial outcomes. Ann Intern Med. 1996;124(10):884–90.

    CAS  PubMed  Google Scholar 

  32. Brennan TA, Leape LL, Laird NM, Hebert L, Localio AR, Lawthers AG, et al. Incidence of adverse events and negligence in hospitalized patients: results of the Harvard Medical Practice Study I. N Engl J Med. 1991;324(6):370–6.

    CAS  PubMed  Google Scholar 

  33. Khalili H, Bairami S, Kargar M. Antibiotics induced acute kidney injury: incidence, risk factors, onset time and outcome. Acta Med Iran. 2013;51(12):871–8.

    PubMed  Google Scholar 

  34. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet. 2000;38(1):41–57.

    CAS  PubMed  Google Scholar 

  35. Streetman DS. Metabolic basis of drug interactions in the intensive care unit. Crit Care Nurs Q. 2000;22(4):1–13.

    CAS  PubMed  Google Scholar 

  36. Pereira JM, Paiva JA. Antimicrobial drug interactions in the critically ill patients. Curr Clin Pharmacol. 2013;8(1):25–38.

    CAS  PubMed  Google Scholar 

  37. Nielsen EW, Dybwik K. Drug interactions in an intensive care unit. Tidsskr Norske Laegeforen Tidsskr Praktisk Med Ny Raekke. 2004;124(22):2907–8.

    Google Scholar 

  38. Sierra P, Castillo J, Gomez M, Sorribes V, Monterde J, Castano J. Potential and real drug interactions in critical care patients. Rev Espanola Anestesiol Reanim. 1997;44(10):383–7.

    CAS  Google Scholar 

  39. Gandhi S, Fleet JL, Bailey DG, McArthur E, Wald R, Rehman F, et al. Calcium-channel blocker-clarithromycin drug interactions and acute kidney injury. JAMA. 2013;310(23):2544–53.

    CAS  PubMed  Google Scholar 

  40. Patel AM, Shariff S, Bailey DG, Juurlink DN, Gandhi S, Mamdani M, et al. Statin toxicity from macrolide antibiotic coprescription: a population-based cohort study. Ann Intern Med. 2013;158(12):869–76.

    PubMed  Google Scholar 

  41. Patel AM, Shariff S, Bailey DG, Juurlink DN, Gandhi S, Mamdani M, et al. Statin toxicity from macrolide antibiotic coprescription: a population-based cohort study. Ann Intern Med. 2013;158(12):869–76.

    PubMed  Google Scholar 

  42. Fogazzi G. Crystalluria: a neglected aspect of urinary sediment analysis. Nephrol Dial Transpl. 1996;11(2):379–87.

    CAS  Google Scholar 

  43. Tulkens PM. Nephrotoxicity of aminoglycoside antibiotics. Toxicol Lett. 1989;46(1):107–23.

    CAS  PubMed  Google Scholar 

  44. Boyer A, Gruson D, Bouchet S, Clouzeau B, Hoang-Nam B, Vargas F, et al. Aminoglycosides in septic shock. Drug Saf. 2013;36(4):217–30.

    CAS  PubMed  Google Scholar 

  45. Moore RD, Smith CR, Lipsky JJ, Mellits ED, Lietman PS. Risk factors for nephrotoxicity in patients treated with aminoglycosides. Ann Intern Med. 1984;100(3):352–7.

    CAS  PubMed  Google Scholar 

  46. Millan X, Muggia V, Ostrowsky B. Antimicrobial agents, drug adverse reactions and interactions, and cancer. Infectious complications in cancer patients. New York: Springer; 2014. p. 413–62.

    Google Scholar 

  47. Mingeot-Leclercq M-P, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother. 1999;43(5):1003–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Baciewicz AM, Sokos DR, Cowan RI. Aminoglycoside-associated nephrotoxicity in the elderly. Ann Pharmacother. 2003;37(2):182–6.

    CAS  PubMed  Google Scholar 

  49. Nicolau DP, Freeman CD, Belliveau PP, Nightingale CH, Ross JW, Quintiliani R. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob Agents Chemother. 1995;39(3):650–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Zappitelli M, Moffett BS, Hyder A, Goldstein SL. Acute kidney injury in non-critically ill children treated with aminoglycoside antibiotics in a tertiary healthcare centre: a retrospective cohort study. Nephrol Dial Transpl. 2011;26(1):144–50.

    Google Scholar 

  51. Hatala R, Dinh T, Cook DJ. Once-daily aminoglycoside dosing in immunocompetent adults: a meta-analysis. Ann Intern Med. 1996;124(8):717–25.

    CAS  PubMed  Google Scholar 

  52. Barza M, Ioannidis JP, Cappelleri JC, Lau J. Single or multiple daily doses of aminoglycosides: a meta-analysis. BMJ. 1996;312(7027):338–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Streetman DS, Nafziger AN, Destache CJ, Bertino AS Jr. Individualized pharmacokinetic monitoring results in less aminoglycoside-associated nephrotoxicity and fewer associated costs. Pharmacotherapy. 2001;21(4):443–51.

    CAS  PubMed  Google Scholar 

  54. Slaughter RL, Cappelletty DM. Economic impact of aminoglycoside toxicity and its prevention through therapeutic drug monitoring. Pharmacoeconomics. 1998;14(4):385–94.

    CAS  PubMed  Google Scholar 

  55. McCormack JP, Jewesson PJ. A critical reevaluation of the “therapeutic range” of aminoglycosides. Clin Infect Dis. 1992;14(1):320–39.

    CAS  PubMed  Google Scholar 

  56. Patterson RM, Ackerman GL. Renal tubular acidosis due to amphotericin B nephrotoxicity. Arch Intern Med. 1971;127(2):241–4.

    CAS  PubMed  Google Scholar 

  57. Douglas JB, Healy JK. Nephrotoxic effects of amphotericin B, including renal tubular acidosis. Am J Med. 1969;46(1):154–62.

    CAS  PubMed  Google Scholar 

  58. Girois SB, Chapuis F, Decullier E, Revol BG. Adverse effects of antifungal therapies in invasive fungal infections: review and meta-analysis. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2006;25(2):138–49.

    CAS  Google Scholar 

  59. Carlson MA, Condon RE. Nephrotoxicity of amphotericin B. J Am Coll Surg. 1994;179(3):361–81.

    CAS  PubMed  Google Scholar 

  60. Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis. 2008;46(3):327–60.

    CAS  PubMed  Google Scholar 

  61. Dupont B. Overview of the lipid formulations of amphotericin B. J Antimicrob Chemother. 2002;49(suppl 1):31–6.

    CAS  PubMed  Google Scholar 

  62. Boswell GW, Buell D, Bekersky I. Am Bisome (liposomal amphotericin B): a comparative review. J Clin Pharmacol. 1998;38(7):583–92.

    CAS  PubMed  Google Scholar 

  63. Schafer-Korting M. Pharmacokinetic optimisation of oral antifungal therapy. Clin Pharmacokinet. 1993;25(4):329–41.

    CAS  PubMed  Google Scholar 

  64. Traunmuller F, Popovic M, Konz KH, Smolle-Juttner FM, Joukhadar C. Efficacy and safety of current drug therapies for invasive aspergillosis. Pharmacology. 2011;88(3–4):213–24.

    PubMed  Google Scholar 

  65. Chen SC, Sorrell TC. Antifungal agents. Med J Austr. 2007;187(7):404–9.

    Google Scholar 

  66. Walker RJ, Duggin GG. Drug nephrotoxicity. Annu Rev Pharmacol Toxicol. 1988;28(1):331–45.

    CAS  PubMed  Google Scholar 

  67. Butler WT, Bennett JE, Alling DW, Wertlake PT, Utz JP, Hill GJ. Nephrotoxicity of amphotericin B early and late effects in 81 patients. Ann Intern Med. 1964;61(2):175–87.

    CAS  PubMed  Google Scholar 

  68. Pathak A, Pien FD, Carvalho L. Amphotericin B use in a community hospital, with special emphasis on side effects. Clin Infect Dis. 1998;26(2):334–8.

    CAS  PubMed  Google Scholar 

  69. Walsh TJ, Hiemenz JW, Seibel NL, Perfect JR, Horwith G, Lee L, et al. Amphotericin B lipid complex for invasive fungal infections: analysis of safety and efficacy in 556 cases. Clin Infect Dis. 1998;26(6):1383–96.

    CAS  PubMed  Google Scholar 

  70. Linden P, Williams P, Chan KM. Efficacy and safety of amphotericin B lipid complex injection (ABLC) in solid-organ transplant recipients with invasive fungal infections. Clin Transpl. 2000;14(4):329–39.

    CAS  Google Scholar 

  71. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011:ciq146.

  72. Hidayat LK, Hsu DI, Quist R, Shriner KA, Wong-Beringer A. High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med. 2006;166(19):2138–44.

    PubMed  Google Scholar 

  73. Ingram PR, Lye DC, Tambyah PA, Goh WP, Tam VH, Fisher DA. Risk factors for nephrotoxicity associated with continuous vancomycin infusion in outpatient parenteral antibiotic therapy. J Antimicrob Chemother. 2008;62(1):168–71.

    CAS  PubMed  Google Scholar 

  74. Jeffres MN, Isakow W, Doherty JA, Micek ST, Kollef MH. A retrospective analysis of possible renal toxicity associated with vancomycin in patients with health care-associated methicillin-resistant Staphylococcus aureus pneumonia. Clin Ther. 2007;29(6):1107–15.

    CAS  PubMed  Google Scholar 

  75. Lodise TP, Lomaestro B, Graves J, Drusano G. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother. 2008;52(4):1330–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Van Hal S, Paterson D, Lodise T. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother. 2013;57(2):734–44.

    PubMed Central  PubMed  Google Scholar 

  77. Toyoguchi T, Takahashi S, Hosoya J, Nakagawa Y, Watanabe H. Nephrotoxicity of vancomycin and drug interaction study with cilastatin in rabbits. Antimicrob Agents Chemother. 1997;41(9):1985–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Oktem F, Arslan MK, Ozguner F, Candir O, Yilmaz HR, Ciris M, et al. In vivo evidences suggesting the role of oxidative stress in pathogenesis of vancomycin-induced nephrotoxicity: protection by erdosteine. Toxicology. 2005;215(3):227–33.

    PubMed  Google Scholar 

  79. Celik I, Cihangiroglu M, Ilhan N, Akpolat N, Akbulut HH. Protective effects of different antioxidants and amrinone on vancomycin-induced nephrotoxicity. Basic Clin Pharmacol Toxicol. 2005;97(5):325–32.

    CAS  PubMed  Google Scholar 

  80. Cetin H, Olgar S, Oktem F, Ciris M, Uz E, Aslan C, et al. Novel evidence suggesting an anti-oxidant property for erythropoietin on vancomycin-induced nephrotoxicity in a rat model. Clin Exp Pharmacol Physiol. 2007;34(11):1181–5.

    CAS  PubMed  Google Scholar 

  81. Hodoshima N, Nakano Y, Izumi M, Mitomi N, Nakamura Y, Aoki M, et al. Protective effect of inactive ingredients against nephrotoxicity of vancomycin hydrochloride in rats. Drug Metab Pharmacokinet. 2004;19(1):68–75.

    CAS  PubMed  Google Scholar 

  82. Elyasi S, Khalili H, Hatamkhani S, Dashti-Khavidaki S. Prevention of vancomycin induced nephrotoxicity: a review of preclinical data. Eur J Clin Pharmacol. 2013;69(4):747–54.

    PubMed  Google Scholar 

  83. Wai AO, Lo AM, Abdo A, Marra F. Vancomycin-induced acute interstitial nephritis. Ann Pharmacother. 1998;32(11):1160–4.

    CAS  PubMed  Google Scholar 

  84. Codding CE, Ramseyer L, Allon M, Pitha J, Rodriguez M. Tubulointerstitial nephritis due to vancomycin. Am J Kidney Dis Off J Natl Kidney Found. 1989;14(6):512–5.

    CAS  Google Scholar 

  85. Michail S, Vaiopoulos G, Nakopoulou L, Revenas C, Aroni K, Karam P, et al. Henoch–Schoenlein purpura and acute interstitial nephritis after intravenous vancomycin administration in a patient with a Staphylococcal infection: case report. Scand J Rheumatol. 1998;27(3):233–5.

    CAS  PubMed  Google Scholar 

  86. Plakogiannis R, Nogid A. Acute interstitial nephritis associated with coadministration of vancomycin and ceftriaxone: case series and review of the literature. Pharmacotherapy. 2007;27(10):1456–61.

    CAS  PubMed  Google Scholar 

  87. Vandecasteele SJ, De Vriese AS. Recent changes in vancomycin use in renal failure. Kidney Int. 2010;77(9):760–4.

    CAS  PubMed  Google Scholar 

  88. Wong-Beringer A, Joo J, Tse E, Beringer P. Vancomycin-associated nephrotoxicity: a critical appraisal of risk with high-dose therapy. Int J Antimicrob Agents. 2011;37(2):95–101.

    CAS  PubMed  Google Scholar 

  89. Hazlewood KA, Brouse SD, Pitcher WD, Hall RG. Vancomycin-associated nephrotoxicity: grave concern or death by character assassination? Am J Med. 2010;123(2):182.e1– e7.

  90. Lodise TP, Patel N, Lomaestro BM, Rodvold KA, Drusano GL. Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin Infect Dis. 2009;49(4):507–14.

    CAS  PubMed  Google Scholar 

  91. Kleinknecht D, Kanfer A, Morel-Maroger L, Méry JP. Immunologically mediated drug-induced acute renal failure. Contrib Nephrol. 1977;10:42–52.

    Google Scholar 

  92. Hung C-C, Kuo M-C, Chang J-M, Chen H-C. Fluoroquinolone-induced acute interstitial nephritis in immunocompromised patients: two case reports. Nephrol Dial Transpl. 2006;21(1):237–8.

    Google Scholar 

  93. Reece R, Nicholls A. Ciprofloxacin-induced acute interstitial nephritis. Nephrol Dial Transpl. 1996;11(2):393.

  94. Lim S, Alam MG. Ciprofloxacin-induced acute interstitial nephritis and autoimmune hemolytic anemia. Renal Fail. 2003;25(4):647–51.

    Google Scholar 

  95. Bailey J, Trott S, Philbrick J. Ciprofloxacin-lnduced acute interstitial nephritis. Am J Nephrol. 1992;12(4):271–3.

    CAS  PubMed  Google Scholar 

  96. Allon M, Lopez EJ, Min K-W. Acute renal failure due to ciprofloxacin. Arch Intern Med. 1990;150(10):2187–9.

    CAS  PubMed  Google Scholar 

  97. Poole G, Stradling P, Worlledge S. Potentially serious side-effects of high-dose twice-weekly rifampicin. Postgrad Med J. 1971;47(553):742–7.

    PubMed Central  Google Scholar 

  98. Singh N, Ganguli A, Prakash A. Drug-induced kidney diseases. J Assoc Phys India. 2003;51:970–86.

    CAS  Google Scholar 

  99. Prakash J, Kumar N, Saxena R, Verma U. Acute renal failure complicating rifampicin therapy. J Assoc Phys India. 2001;49:877–80.

    CAS  Google Scholar 

  100. De Vriese AS, Robbrecht DL, Vanholder RC, Vogelaers DP, Lameire NH. Rifampicin-associated acute renal failure: pathophysiologic, immunologic, and clinical features. Am J Kidney Dis. 1998;31(1):108–15.

    PubMed  Google Scholar 

  101. Covic A, Goldsmith D, Segall L, Stoicescu C, Lungu S, Volovat C, et al. Rifampicin-induced acute renal failure: a series of 60 patients. Nephrol Dial Transpl. 1998;13(4):924–9.

    CAS  Google Scholar 

  102. Saltissi D, Pusey C, Rainford DJ. Antibiotic-induced interstitial nephritis? Br Med J. 1979;2(6181):50.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Linton AL, Clark WF, Driedger AA, Turnbull DI, Lindsay RM. Acute interstitial nephritis due to drugs review of the literature with a report of nine cases. Ann Intern Med. 1980;93(5):735–41.

    CAS  PubMed  Google Scholar 

  104. Smith EJ, Light JA, Filo RS, Yum MN. Interstitial nephritis caused by trimethoprim–sulfamethoxazole in renal transplant recipients. JAMA. 1980;244(4):360–1.

    CAS  PubMed  Google Scholar 

  105. Perazella MA. Drug-induced renal failure: update on new medications and unique mechanisms of nephrotoxicity. Am J Med Sci. 2003;325(6):349–62.

    PubMed  Google Scholar 

  106. Bean B, Aeppli D. Adverse effects of high-dose intravenous acyclovir in ambulatory patients with acute herpes zoster. J Infect Dis. 1985:362–5.

  107. Sawyer MH, Webb DE, Balow JE, Straus SE. Acyclovir-induced renal failure: clinical course and histology. Am J Med. 1988;84(6):1067–71.

    CAS  PubMed  Google Scholar 

  108. Eck P, Silver SM, Clark EC. Acute renal failure and coma after a high dose of oral acyclovir. N Engl J Med. 1991;325(16):1178.

    CAS  PubMed  Google Scholar 

  109. Deaths NCEiP, Stewart J. Adding insult to injury: a review of the care of patients who died in hospital with a primary diagnosis of acute kidney injury (acute renal failure): a report by the National Confidential Enquiry Into Patient Outcome and Death. 2009. http://www.ncepod.org.uk/2009report1/Downloads/AKI_report.pdf. Accessed 10 October 2014.

  110. Borthwick E, Ferguson A. Perioperative acute kidney injury: risk factors, recognition, management, and outcomes. BMJ. 2010;341(5):c3365.

    PubMed  Google Scholar 

  111. Shen WC, Chiang YC, Chen HY, Chen TH, Yu FL, Tang CH, et al. Nephrotoxicity of vancomycin in patients with methicillin-resistant Staphylococcus aureus bacteraemia. Nephrology (Carlton, Vic). 2011;16(8):697–703.

  112. Kubin CJ, Ellman TM, Phadke V, Haynes LJ, Calfee DP, Yin MT. Incidence and predictors of acute kidney injury associated with intravenous polymyxin B therapy. J Infect. 2012;65(1):80–7.

    PubMed  Google Scholar 

  113. Horey A, Mergenhagen KA, Mattappallil A. The Relationship of nephrotoxicity to vancomycin trough serum concentrations in a veteran’s population: a retrospective analysis. Ann Pharmacother. 2012;46(11):1477–83.

    PubMed  Google Scholar 

  114. Meaney CJ, Hynicka LM, Tsoukleris MG. Vancomycin-associated nephrotoxicity in adult medicine patients: incidence, outcomes, and risk factors. Pharmacotherapy. 2014.

  115. Minejima E, Choi J, Beringer P, Lou M, Tse E, Wong-Beringer A. Applying new diagnostic criteria for acute kidney injury to facilitate early identification of nephrotoxicity in vancomycin-treated patients. Antimicrob Agents Chemother. 2011;55(7):3278–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Fuchs TC, Hewitt P. Biomarkers for drug-induced renal damage and nephrotoxicity-an overview for applied toxicology. AAPS J. 2011;13(4):615–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–8.

  118. Wheeler DS, Devarajan P, Ma Q, Harmon K, Monaco M, Cvijanovich N, et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med. 2008;36(4):1297–303.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Mishra J, Ma Q, Kelly C, Mitsnefes M, Mori K, Barasch J, et al. Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr Nephrol (Berlin, Germany). 2006;21(6):856–63.

  120. Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Dobrzycki S. Neutrophil-gelatinase-associated lipocalin and renal function after percutaneous coronary interventions. Am J Nephrol. 2006;26(3):287–92.

    CAS  PubMed  Google Scholar 

  121. Barreto R, Elia C, Sola E, Moreira R, Ariza X, Rodriguez E, et al. Urinary neutrophil gelatinase-associated lipocalin predicts kidney outcome and death in patients with cirrhosis and bacterial infections. J Hepatol. 2014;61(1):35–42.

    CAS  PubMed  Google Scholar 

  122. Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006;70(1):199–203.

    CAS  PubMed  Google Scholar 

  123. Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol JASN. 2005;16(10):3046–52.

    CAS  Google Scholar 

  124. Hall IE, Yarlagadda SG, Coca SG, Wang Z, Doshi M, Devarajan P, et al. IL-18 and urinary NGAL predict dialysis and graft recovery after kidney transplantation. J Am Soc Nephrol JASN. 2010;21(1):189–97.

    CAS  Google Scholar 

  125. Ling W, Zhaohui N, Ben H, Leyi G, Jianping L, Huili D, et al. Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography. Nephron Clin Pract. 2008;108(3):c176–81.

    PubMed  Google Scholar 

  126. Haase M, Bellomo R, Story D, Davenport P, Haase-Fielitz A. Urinary interleukin-18 does not predict acute kidney injury after adult cardiac surgery: a prospective observational cohort study. Crit Care (London, England). 2008;12(4):R96.

  127. Portilla D. Energy metabolism and cytotoxicity. Semin Nephrol. 2003;23(5):432–8.

    CAS  PubMed  Google Scholar 

  128. Yamamoto T, Noiri E, Ono Y, Doi K, Negishi K, Kamijo A, et al. Renal L-type fatty acid-binding protein in acute ischemic injury. J Am Soc Nephrol JASN. 2007;18(11):2894–902.

  129. Portilla D, Dent C, Sugaya T, Nagothu KK, Kundi I, Moore P, et al. Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2008;73(4):465–72.

    CAS  PubMed  Google Scholar 

  130. Matsui K, Kamijo-Ikemori A, Sugaya T, Yasuda T, Kimura K. Usefulness of urinary biomarkers in early detection of acute kidney injury after cardiac surgery in adults. Circ J Off J Jpn Circ Soc. 2012;76(1):213–20.

    CAS  Google Scholar 

  131. Nakamura T, Sugaya T, Koide H. Urinary liver-type fatty acid-binding protein in septic shock: effect of polymyxin B-immobilized fiber hemoperfusion. Shock (Augusta, GA). 2009;31(5):454–9.

  132. Nakamura T, Sugaya T, Node K, Ueda Y, Koide H. Urinary excretion of liver-type fatty acid-binding protein in contrast medium-induced nephropathy. Am J Kidney Dis Off J Natl Kidney Found. 2006;47(3):439–44.

    CAS  Google Scholar 

  133. Bagshaw SM, Delaney A, Haase M, Ghali WA, Bellomo R. Loop diuretics in the management of acute renal failure: a systematic review and meta-analysis. Crit Care Resuscit J Austr Acad Crit Care Med. 2007;9(1):60–8.

    Google Scholar 

  134. Kelly AM, Dwamena B, Cronin P, Bernstein SJ, Carlos RC. Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy. Ann Intern Med. 2008;148(4):284–94.

    PubMed  Google Scholar 

  135. Nigwekar SU, Navaneethan SD, Parikh CR, Hix JK. Atrial natriuretic peptide for management of acute kidney injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol CJASN. 2009;4(2):261–72.

    CAS  Google Scholar 

  136. Friedrich JO, Adhikari N, Herridge MS, Beyene J. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med. 2005;142(7):510–24.

    CAS  PubMed  Google Scholar 

  137. Prowle JR, Bellomo R. Continuous renal replacement therapy: recent advances and future research. Nat Rev Nephrol. 2010;6(9):521–9.

    PubMed  Google Scholar 

  138. Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009;76(4):422–7.

    PubMed  Google Scholar 

  139. Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care (London, England). 2008;12(3):R74.

  140. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.

    CAS  PubMed  Google Scholar 

  141. Cantarovich F, Rangoonwala B, Lorenz H, Verho M, Esnault VL. High-dose furosemide for established ARF: a prospective, randomized, double-blind, placebo-controlled, multicenter trial. Am J Kidney Dis Off J Natl Kidney Found. 2004;44(3):402–9.

    CAS  Google Scholar 

  142. Lassnigg A, Donner E, Grubhofer G, Presterl E, Druml W, Hiesmayr M. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol JASN. 2000;11(1):97–104.

    CAS  Google Scholar 

  143. Lombardi R, Ferreiro A, Servetto C. Renal function after cardiac surgery: adverse effect of furosemide. Renal Fail. 2003;25(5):775–86.

    CAS  Google Scholar 

  144. Solomon R, Werner C, Mann D, D’Elia J, Silva P. Effects of saline, mannitol, and furosemide to prevent acute decreases in renal function induced by radiocontrast agents. N Engl J Med. 1994;331(21):1416–20.

    CAS  PubMed  Google Scholar 

  145. Heppner HJ, Cornel S, Peter W, Philipp B, Katrin S. Infections in the elderly. Crit Care Clin. 2013;29(3):757–74.

    PubMed  Google Scholar 

  146. Lindeman RD, Goldman R. Anatomic and physiologic age changes in the kidney. Exp Gerontol. 1986;21(4–5):379–406.

    CAS  PubMed  Google Scholar 

  147. McLachlan MS, Guthrie JC, Anderson CK, Fulker MJ. Vascular and glomerular changes in the ageing kidney. J Pathol. 1977;121(2):65–78.

    CAS  PubMed  Google Scholar 

  148. Gourtsoyiannis N, Prassopoulos P, Cavouras D, Pantelidis N. The thickness of the renal parenchyma decreases with age: a CT study of 360 patients. AJR Am J Roentgenol. 1990;155(3):541–4.

    CAS  PubMed  Google Scholar 

  149. Darmady EM, Offer J, Woodhouse MA. The parameters of the ageing kidney. J Pathol. 1973;109(3):195–207.

    CAS  PubMed  Google Scholar 

  150. Tauchi H, Tsuboi K, Okutomi J. Age changes in the human kidney of the different races. Gerontologia. 1971;17(2):87–97.

    CAS  PubMed  Google Scholar 

  151. Hollenberg NK, Adams DF, Solomon HS, Rashid A, Abrams HL, Merrill JP. Senescence and the renal vasculature in normal man. Circ Res. 1974;34(3):309–16.

    CAS  PubMed  Google Scholar 

  152. Davies DF, Shock NW. Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J Clin Investig. 1950;29(5):496–507.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Lindeman RD, Tobin J, Shock NW. Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc. 1985;33(4):278–85.

    CAS  PubMed  Google Scholar 

  154. Rowe JW, Andres R, Tobin JD, Norris AH, Shock NW. The effect of age on creatinine clearance in men: a cross-sectional and longitudinal study. J Gerontol. 1976;31(2):155–63.

    CAS  PubMed  Google Scholar 

  155. Reckelhoff JF, Manning RD Jr. Role of endothelium-derived nitric oxide in control of renal microvasculature in aging male rats. Am J Physiol. 1993;265(5 Pt 2):R1126–31.

    CAS  PubMed  Google Scholar 

  156. Rowe JW, Shock NW, DeFronzo RA. The influence of age on the renal response to water deprivation in man. Nephron. 1976;17(4):270–8.

    CAS  PubMed  Google Scholar 

  157. Qiao X, Chen X, Wu D, Ding R, Wang J, Hong Q, et al. Mitochondrial pathway is responsible for aging-related increase of tubular cell apoptosis in renal ischemia/reperfusion injury. J Gerontol Ser A Biol Sci Med Sci. 2005;60(7):830–9.

    Google Scholar 

  158. Chou JS, Reiser IW, Porush JG. Aging and urinary excretion of epidermal growth factor. Ann Clin Lab Sci. 1997;27(2):116–22.

  159. Tran KT, Rusu SD, Satish L, Wells A. Aging-related attenuation of EGF receptor signaling is mediated in part by increased protein tyrosine phosphatase activity. Exp Cell Res. 2003;289(2):359–67.

    CAS  PubMed  Google Scholar 

  160. Xu X, Bennett SA, Ingram RL, Sonntag WE. Decreases in growth hormone receptor signal transduction contribute to the decline in insulin-like growth factor I gene expression with age. Endocrinology. 1995;136(10):4551–7.

    CAS  PubMed  Google Scholar 

  161. Coca SG. Acute kidney injury in elderly persons. Am J Kidney Dis Off J Natl Kidney Found. 2010;56(1):122–31.

    Google Scholar 

  162. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.

    CAS  PubMed  Google Scholar 

  163. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997;127(5):990S–1S.

    CAS  PubMed  Google Scholar 

  164. Simonsen O, Grubb A, Thysell H. The blood serum concentration of cystatin C (gamma-trace) as a measure of the glomerular filtration rate. Scand J Clin Lab Investig. 1985;45(2):97–101.

    CAS  Google Scholar 

  165. Tanaka A, Suemaru K, Otsuka T, Ido K, Nishimiya T, Sakai I, et al. Estimation of the initial dose setting of vancomycin therapy with use of cystatin C as a new marker of renal function. Therap Drug Monit. 2007;29(2):261–4.

    CAS  Google Scholar 

  166. Okamoto G, Sakamoto T, Kimura M, Ukishima Y, Sonoda A, Mori N, et al. Serum cystatin C as a better marker of vancomycin clearance than serum creatinine in elderly patients. Clin Biochem. 2007;40(7):485–90.

    CAS  PubMed  Google Scholar 

  167. Dellit TH, Owens RC, McGowan JE Jr, Gerding DN, Weinstein RA, Burke JP, et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis. 2007;44(2):159–77.

    PubMed  Google Scholar 

  168. America SfHEo, America IDSo. Policy statement on antimicrobial stewardship by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), and the Pediatric Infectious Diseases Society (PIDS). Policy Statement. 2012;33(4):322–7.

  169. Evans RS, Pestotnik SL, Classen DC, Clemmer TP, Weaver LK, Orme JF Jr, et al. A computer-assisted management program for antibiotics and other antiinfective agents. N Engl J Med. 1998;338(4):232–8.

    CAS  PubMed  Google Scholar 

  170. Cappelletty D, Jacobs D. Evaluating the impact of a pharmacist’s absence from an antimicrobial stewardship team. Am J Health Syst Pharm. 2013;70(12):1065–9.

    PubMed  Google Scholar 

Download references

Disclosure of funding and financial disclosures

There was no funding for this paper. No authors have conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiro Mizokami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizokami, F., Mizuno, T. Acute Kidney Injury Induced by Antimicrobial Agents in the Elderly: Awareness and Mitigation Strategies. Drugs Aging 32, 1–12 (2015). https://doi.org/10.1007/s40266-014-0232-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-014-0232-y

Keywords

Navigation