Skip to main content
Log in

Pharmacological Management of Glucose Dysregulation in Patients Treated with Second-Generation Antipsychotics

  • Therapy in Practice
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Fasting hyperglycemia, impaired glucose tolerance, prediabetes, and diabetes are frequently present in patients treated with second-generation antipsychotics (SGAPs) for schizophrenia, bipolar disorder, and other severe mental illnesses. These drugs are known to produce weight gain, which may lead to insulin resistance, glucose intolerance, and metabolic syndrome, which constitute important risk factors for the emergence of diabetes. The aim of this review was to formulate therapeutic guidelines for the management of diabetes in patients treated with SGAPs, based on the association between SGAP-induced weight gain and glucose dysregulation. A  systematic search in PubMed from inception to March 2020 for randomized controlled trials (RCTs) of diabetes or prediabetes in patients treated with SGAPs was performed. PubMed was also searched for the most recent clinical practice guidelines of interventions for co-morbid conditions associated with diabetes mellitus (DM) (arterial hypertension and dyslipidemia), lifestyle interventions and switching from high metabolic liability SGAPs to safer SGAPs. The search identified 14 RCTs in patients treated with SGAPs. Drug therapy using metformin as first-line therapy and glucagon-like peptide-1 receptor agonists (GLP-1 RAs) or perhaps sodium–glucose cotransporter-2 (SGLT2) inhibitors as add-on therapy, might be preferred in these patients as well, as they favorably influence glucose metabolism and body mass index, and provide cardio-renal benefits in general to the DM population, although for the SGLT-2 inhibitors there are no RCTs in this specific patient category so far. Metformin is also useful for treatment of prediabetes. Arterial hypertension should be treated with angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers, and statins should be used for correction of dyslipidemia. The outcome of lifestyle-changing interventions has been disappointing. Switching from clozapine, olanzapine, or quetiapine to lower cardiometabolic-risk SGAPs, like aripiprazole, brexpiprazole, cariprazine, lurasidone, or ziprasidone, has been recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nordentoft M, Wahlbeck K, Hällgren J, Westman J, Osby U, Alinaghizadeh H, Gissler M, Laursen TM. Excess mortality, causes of death and life expectancy in 270,770 patients with recent onset of mental disorders in Denmark, Finland and Sweden. PloS One. 2013;8(1):e55176.

    CAS  Google Scholar 

  2. Laursen TM, Wahlbeck K, Hällgren J, Westman J, Ösby U, Alinaghizadeh H, Gissler M, Nordentoft M. Life expectancy and death by diseases of the circulatory system in patients with bipolar disorder or schizophrenia in the Nordic countries. PloS One. 2013;8(6):e67133.

    CAS  Google Scholar 

  3. Hjorthøj C, Stürup AE, McGrath JJ, Nordentoft M. Years of potential life lost and life expectancy in schizophrenia: a systematic review and meta-analysis. The Lancet Psychiatry. 2017;4(4):295–301.

    Google Scholar 

  4. Laursen TM, Munk-Olsen T, Vestergaard M. Life expectancy and cardiovascular mortality in persons with schizophrenia. Curr Opin Psychiatry. 2012;25(2):83–8.

    Google Scholar 

  5. Firth J, Siddiqi N, Koyanagi A, Siskind D, Rosenbaum S, Galletly C, Allan S, Caneo C, Carney R, Carvalho AF, Chatterton ML, Correll CU, Curtis J, Gaughran F, Heald A, Hoare E, Jackson SE, Kisely S, Lovell K, Maj M, McGorry PD, Mihalopoulos C, Myles H, O’Donoghue B, Pillinger T, Sarris J, Schuch FB, Shiers D, Smith L, Solmi M, Suetani S, Taylor J, Teasdale SB, Thornicroft G, Torous J, Usherwood T, Vancampfort D, Veronese N, Ward PB, Yung AR, Killackey E, Stubbs B. The Lancet Psychiatry Commission: a blueprint for protecting physical health in people with mental illness. Lancet Psychiatry. 2019;6(8):675–712.

    Google Scholar 

  6. Manu P, Correll CU, van Winkel R, Wampers M, De Hert M. Prediabetes in patients treated with antipsychotic drugs. J Clin Psychiatry. 2012;73(4):460–6.

    CAS  Google Scholar 

  7. Manu P, Ionescu-Tirgoviste C, Tsang J, Napolitano BA, Lesser ML, Correll CU. Dysmetabolic Signals in “Metabolically Healthy” Obesity. Obes Res Clin Pract. 2012;6(1):e9–20.

    Google Scholar 

  8. Pillinger T, McCutcheon RA, Vano L, Mizuno Y, Arumuham A, Hindley G, Beck K, Natesan S, Efthimiou O, Cipriani A, Howes OD. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: a systematic review and network meta-analysis. Lancet Psychiatry. 2020;7(1):64–77.

    Google Scholar 

  9. Galling B, Roldán A, Nielsen RE, Nielsen J, Gerhard T, Carbon M, Stubbs B, Vancampfort D, De Hert M, Olfson M, Kahl KG, Martin A, Guo JJ, Lane HY, Sung FC, Liao CH, Arango C, Correll CU. Type 2 diabetes mellitus in youth exposed to antipsychotics: a systematic review and meta-analysis. JAMA Psychiatry. 2016;73(3):247–59.

    Google Scholar 

  10. De Hert M, Kalnicka D, van Winkel R, Wampers M, Hanssens L, Van Eyck D, Scheen A, Peuskens J. Treatment with rosuvastatin for severe dyslipidemia in patients with schizophrenia and schizoaffective disorder. J Clin Psychiatry. 2006;67(12):1889–96.

    Google Scholar 

  11. Chen J, Huang XF, Shao R, Chen C, Deng C. Molecular mechanisms of antipsychotic drug-induced diabetes. Front Neurosci. 2017;11:643.

    Google Scholar 

  12. Manu P, Correll CU, Wampers M, van Winkel R, Yu W, Shiffeldrim D, Kane JM, De Hert M. Insulin secretion in patients receiving clozapine, olanzapine, quetiapine and risperidone. Schizophr Res. 2013;143(2–3):358–62.

    Google Scholar 

  13. Stubbs B, Vancampfort D, De Hert M, Mitchell AJ. The prevalence and predictors of type two diabetes mellitus in people with schizophrenia: a systematic review and comparative meta-analysis. Acta Psychiatr Scand. 2015;132(2):144–57.

    CAS  Google Scholar 

  14. Chung J, Miller BJ. Meta-analysis of comorbid diabetes and family history of diabetes in non-affective psychosis. Schizophr Res. 2020;216:41–7.

    Google Scholar 

  15. Manu P, Dima L, Shulman M, Vancampfort D, De Hert M, Correll CU. Weight gain and obesity in schizophrenia: epidemiology, pathobiology, and management. Acta Psychiatr Scand. 2015;132(2):97–108.

    CAS  Google Scholar 

  16. Hirsch L, Yang J, Bresee L, Jette N, Patten S, Pringsheim T. Second generation antipsychotics and metabolic side effects: a systematic review of population-based studies. Drug Safety. 2017;40:771–81.

    CAS  Google Scholar 

  17. Whicher CA, Price HC, Holt RIG. Mechanisms in endocrinology: antipsychotic medication and type 2 diabetes and impaired glucose regulation. Eur J Endocrinol. 2018;178(6):R245–58.

    CAS  Google Scholar 

  18. Valaiyapathi B, Gower B, Ashraf AP. Pathophysiology of type 2 diabetes in children and adolescents. Curr Diabetes Rev. 2018. https://doi.org/10.2174/1573399814666180608074510.

    Article  Google Scholar 

  19. Newcomer JW, Campos JA, Marcus RN, Breder C, Berman RM, Kerselaers W, Litalien GJ, Nys M, Carson WH, McQuade RD. A multicenter, randomized, double-blind study of the effects of aripiprazole in overweight subjects with schizophrenia or schizoaffective disorder switched from olanzapine. J Clin Psychiatry. 2008;69(7):1046–56.

    CAS  Google Scholar 

  20. Vuk A, Kuzman MR, Baretic M, Osvatic MM. Diabetic ketoacidosis associated with antipsychotic drugs: case reports and a review of literature. Psychiatria Danubina. 2017;29:121–35.

    CAS  Google Scholar 

  21. Polcwiartek C, Kragholm K, Rohde C, Hashemi N, Vang T, Nielsen J. Diabetic ketoacidosis and diabetes associated with antipsychotic exposure among a previously diabetes-naive population with schizophrenia: a nationwide nested case-control study. Diabetologia. 2017;60:1678–90.

    CAS  Google Scholar 

  22. Henderson DC. Atypical antipsychotic-induced diabetes mellitus: how strong is the evidence? CNS Drugs. 2002;16:77–89.

    CAS  Google Scholar 

  23. Rasmussen H, Ebdrup BH, Oranje B, Pinborg LH, Knudsen GM, Glenthøj B. Neocortical serotonin 2A receptor binding predicts quetiapine associated weight gain in antipsychotic-naive first-episode schizophrenia patients. Int J Neuropsychopharmacol. 2014;17(11):1729–36.

    CAS  Google Scholar 

  24. Henderson DC, Vincenzi B, Andrea NV, Ulloa M, Copeland PM. Pathophysiological mechanisms of increased cardiometabolic risk in people with schizophrenia and other severe mental illnesses. Lancet Psychiatry. 2015;2(5):452–64.

    Google Scholar 

  25. Correll CU, Lencz T, Malhotra AK. Antipsychotic drugs and obesity. Trends Mol Med. 2011;17(2):97–107.

    CAS  Google Scholar 

  26. Zhang JP, Lencz T, Zhang RX, Nitta M, Maayan L, John M, Robinson DG, Fleischhacker WW, Kahn RS, Ophoff RA, Kane JM, Malhotra AK, Correll CU. Pharmacogenetic associations of antipsychotic drug-related weight gain: a systematic review and meta-analysis. Schizophr Bull. 2016;42(6):1418–37.

    Google Scholar 

  27. Matsui-Sakata A, Ohtani H, Sawada Y. Receptor occupancy-based analysis of the contributions of various receptors to antipsychotics-induced weight gain and diabetes mellitus. Drug Metab Pharmacokinet. 2005;20:368–78.

    CAS  Google Scholar 

  28. Kim SF, Huang AS, Snowman AM, Teuscher C, Snyder SH. Antipsychotic drug-induced weight gain mediated by histamine H1 receptor-linked activation of hypothalamic AMP-kinase. PNAS. 2007;104(3):456–3459.

    Google Scholar 

  29. Deng C. Effects of antipsychotic medications on appetite, weight, and insulin resistance. Endocrinol Metab Clin N Am. 2013;42:545–63.

    Google Scholar 

  30. He M, Zhang Q, Deng C, Wang H, Lian J, Huang X-F. Hypothalamic histamine H1 receptor-AMPK signaling time-dependently mediates olanzapine-induced hyperphagia and weight gain in female rats. Psychoneuroendocrinology. 2014;42:153–64.

    Google Scholar 

  31. Lord CC, Wyler SC, Wan R, Castorena CM, Ahmed N, Mathew D, Lee S, Liu C, Elmquist JK. The atypical antipsychotic olanzapine causes weight gain by targeting serotonin receptor 2C. J Clin Invest. 2017;127:3402–6.

    Google Scholar 

  32. Weston-Green K, Huang X-F, Deng C. Alterations to melanocortinergic, GABAergic and cannabinoid neurotransmission associated with olanzapine-induced weight gain. PLoS One. 2012;7:e33548.

    CAS  Google Scholar 

  33. Lam DD, Przydzial MJ, Ridley SH, Yeo GS, Rochford JJ, O’Rahilly S, Heisler LK. Serotonin 5-HT2C receptor agonist promotes hypophagia via downstream activation of melanocortin 4 receptors. Endocrinology. 2008;149(3):1323–8.

    CAS  Google Scholar 

  34. Varlamov O, Kievit P, Phu K, Reddy AP, Roberts CT Jr, Bethea CL. Preliminary examination of olanzapine and diet interactions on metabolism in a female Macaque. J Endocrinol Diabetes. 2014;1(2):9.

    Google Scholar 

  35. Nielsen MØ, Rostrup E, Wulff S, Glenthøj B, Ebdrup BH. Striatal reward activity and antipsychotic-associated weight change in patients with schizophrenia undergoing initial treatment. JAMA Psychiatry. 2016;73(2):121–8.

    Google Scholar 

  36. Lian J, Huang X-F, Pai N, Deng C. Betahistine ameliorates olanzapine-induced weight gain through modulation of histaminergic, NPY and AMPK pathways. Psychoneuroendocrinology. 2014;48:77–86.

    CAS  Google Scholar 

  37. Zhang Q, He M, Deng C, Wang H, Lian J, Huang XF. Hypothalamic ghrelin signalling mediates olanzapine-induced hyperphagia and weight gain in female rats. Int J Int J Neuropsychopharmacol. 2014;17(5):807–18.

    CAS  Google Scholar 

  38. Hägg S, Söderberg S, Ahrén B, Olsson T, Mjörndal T. Leptin concentrations are increased in subjects treated with clozapine or conventional antipsychotics. J Clin Psychiatry. 2001;62(11):843–8.

    Google Scholar 

  39. Stubbs B, Wang AK, Vancampfort D, Miller BJ. Are leptin levels increased among people with schizophrenia versus controls? A systematic review and comparative meta-analysis. Psychoneuroendocrinology. 2016;63:144–54.

    CAS  Google Scholar 

  40. Ebdrup BH, Knop FK, Madsen A, Mortensen HB, Søgaard B, Holst JJ, Szecsi PB, Lublin H. Glucometabolic hormones and cardiovascular risk markers in antipsychotic-treated patients. J Clin Psychiatry. 2014;75(9):e899–905.

    CAS  Google Scholar 

  41. Starrenburg FC, Bogers JP. How can antipsychotics cause Diabetes Mellitus? Insights based on receptor-binding profiles, humoral factors and transporter proteins. Eur Psychiatry. 2009;24(3):164–70.

    CAS  Google Scholar 

  42. Wampers M, Hanssens L, van Winkel R, Heald A, Collette J, Peuskens J, Reginster JY, Scheen A, De Hert M. Differential effects of olanzapine and risperidone on plasma adiponectin levels over time: results from a 3-month prospective open-label study. Eur Neuropsychopharmacol. 2012;22:17–26.

    CAS  Google Scholar 

  43. Klemettila J-P, Kampman O, Seppala N, Viikki M, Hamalainen M, Moilanen E, Leinonen E. Cytokine and adipokine alterations in patients with schizophrenia treated with clozapine. Psychiatry Res. 2014;218:277–83.

    CAS  Google Scholar 

  44. Bai YM, Chen TT, Yang W-S, Chi Y-C, Lin C-C, Liou Y-J, Wang YC, Su TP, Chou P, Chen JY. Association of adiponectin and metabolic syndrome among patients taking atypical antipsychotics for schizophrenia: a cohort study. Schizophr Res. 2009;111(1–3):1–8.

    Google Scholar 

  45. van Winkel R, De Hert M, Wampers M, Van Eyck D, Hanssens L, Scheen A, Peuskens J. Major changes in glucose metabolism, including new-onset diabetes, within 3 months after initiation of or switch to atypical antipsychotic medication in patients with schizophrenia and schizoaffective disorder. J Clin Psychiatry. 2008;69(3):472–9.

    Google Scholar 

  46. Grajales D, Ferreira V, Valverde ÁM. Second-generation antipsychotics and dysregulation of glucose metabolism: beyond weight gain. Cells. 2019;8:11.

    Google Scholar 

  47. Engl J, Laimer M, Niederwanger A, Kranebitter M, Starzinger M, Pedrini M, Fleischhacker WW, Patsch JR, Ebenbichler CF. Olanzapine impairs glycogen synthesis and insulin signaling in L6 skeletal muscle cells. Mol Psychiatry. 2005;10:1089–96.

    CAS  Google Scholar 

  48. Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383:1068–83.

    CAS  Google Scholar 

  49. Hahn M, Chintoh A, Giacca A, Xu L, Lam L, Mann S, Fletcher P, Guenette M, Cohn T, Wolever T, Arenovich T, Remington G. Atypical antipsychotics and effects of muscarinic, serotonergic, dopaminergic and histaminergic receptor binding on insulin secretion in vivo: an animal model. Schizophr Res. 2011;131:90–5.

    Google Scholar 

  50. Silvestre JS, Prous J. Research on adverse drug events. I. Muscarinic M3 receptor binding affinity could predict the risk of antipsychotics to induce type 2 diabetes. Methods Findi Exp Clin Pharmacol. 2005;27:289–304.

    CAS  Google Scholar 

  51. Contreras-Shannon V, Heart DL, Paredes RM, Navaira E, Catano G, Maffi SK, Walss-Bass C. Clozapine-induced mitochondria alterations and inflammation in brain and insulin-responsive cells. PLoS One. 2013;8(3):e59012.

    CAS  Google Scholar 

  52. Smith GC, Zhang ZY, Mulvey T, Petersen N, Lach S, Xiu P, Phillips A, Han W, Wang MW, Shepherd PR. Clozapine directly increases insulin and glucagon secretion from islets: implications for impairment of glucose tolerance. Schizophr Res. 2014;157(1–3):128–33.

    CAS  Google Scholar 

  53. Teasdale SB, Ward PB, Samaras K, Firth J, Stubbs B, Tripodi E, Burrows TL. Dietary intake of people with severe mental illness: systematic review and meta-analysis. Br J Psychiatry. 2019;214(5):251–9.

    Google Scholar 

  54. Teasdale SB, Ward PB, Rosenbaum S, Samaras K, Stubbs B. Solving a weighty problem: systematic review and meta-analysis of nutrition interventions in severe mental illness. Br J Psychiatry. 2017;210(2):110–8.

    Google Scholar 

  55. American Diabetes Association. Facilitating behavior change and well-being to improve health outcomes: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(suppl 1):S48–65.

    Google Scholar 

  56. Marteene W, Winckel K, Hollingworth S, Kisely S, Gallagher E, Hahn M, Ebdrup BH, Firth J, Siskind D. Strategies to counter antipsychotic-associated weight gain in patients with schizophrenia. Expert Opin Drug Saf. 2019;18(12):1149–60.

    CAS  Google Scholar 

  57. Stubbs B, Vancampfort D, Hallgren M, Firth J, Veronese N, Solmi M, Brand S, Cordes J, Malchow B, Gerber M, Schmitt A, Correll CU, De Hert M, Gaughran F, Schneider F, Kinnafick F, Falkai P, Möller HJ, Kahl KG. EPA guidance on physical activity as a treatment for severe mental illness: a meta-review of the evidence and Position Statement from the European Psychiatric Association (EPA), supported by the International Organization of Physical Therapists in Mental Health (IOPTMH). Eur Psychiatry. 2018;54:124–44.

    Google Scholar 

  58. Speyer H, Christian BNH, Birk M, Karlsen M, Storch Jakobsen A, Pedersen K, Hjorthøj C, Pisinger C, Gluud C, Mors O, Krogh J, Nordentoft M. The CHANGE trial: no superiority of lifestyle coaching plus care coordination plus treatment as usual compared to treatment as usual alone in reducing risk of cardiovascular disease in adults with schizophrenia spectrum disorders and abdominal obesity. World Psychiatry. 2016;15(2):155–65.

    Google Scholar 

  59. Holt RI, Hind D, Gossage-Worrall R, Bradburn MJ, Saxon D, McCrone P, Morris TA, Etherington A, Shiers D, Barnard K, Swaby L, Edwardson C, Carey ME, Davies MJ, Dickens CM, Doherty Y, French P, Greenwood KE, Kalidindi S, Khunti K, Laugharne R, Pendlebury J, Rathod S, Siddiqi N, Wright S, Waller G, Gaughran F, Barnett J, Northern A. Structured lifestyle education to support weight loss for people with schizophrenia, schizoaffective disorder and first episode psychosis: the STEPWISE RCT. Health Technol Assess. 2018;22(65):1–160.

    Google Scholar 

  60. Speyer H, Jakobsen AS, Westergaard C, Nørgaard HCB, Jørgensen KB, Pisinger C, Krogh J, Hjorthøj C, Nordentoft M, Gluud C, Correll CU. Lifestyle interventions for weight management in people with serious mental illness: a systematic review with meta-analysis, trial sequential analysis, and meta-regression analysis exploring the mediators and moderators of treatment effects. Psychother Psychosom. 2019;88(6):350–62.

    Google Scholar 

  61. Huhn M, Nikolakopoulou A, Schneider-Thoma J, Krause M, Samara M, Peter N, Arndt T, Bäckers L, Rothe P, Cipriani A, Davis J, Salanti G, Leucht S. Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: a systematic review and network meta-analysis. Lancet. 2019;394(10202):939–51.

    CAS  Google Scholar 

  62. De Hert M, Detraux J, van Winkel R, Yu W, Correll CU. Metabolic and cardiovascular adverse effects associated with antipsychotic drugs. Nat Rev Endocrinol. 2011;8(2):114–26.

    Google Scholar 

  63. Ayyagari R, Thomason D, Mu F, Philbin M, Carroll B. Impact of antipsychotic treatment switching in patients with schizophrenia, bipolar disorder, and major depressive disorder. CNS Spectr. 2020;25(2):276.

    Google Scholar 

  64. Vancampfort D, Firth J, Correll CU, Solmi M, Siskind D, De Hert M, Carney R, Koyanagi A, Carvalho AF, Gaughran F, Stubbs B. The impact of pharmacological and non-pharmacological interventions to improve physical health outcomes in people with schizophrenia: a meta-review of meta-analyses of randomized controlled trials. World Psychiatry. 2019;18(1):53–66.

    Google Scholar 

  65. Stroup TS, McEvoy JP, Ring KD, Hamer RH, LaVange LM, Swartz MS, Rosenheck RA, Perkins DO, Nussbaum AM, Lieberman JA, Schizophrenia Trials Network. A randomized trial examining the effectiveness of switching from olanzapine, quetiapine, or risperidone to aripiprazole to reduce metabolic risk: comparison of antipsychotics for metabolic problems (CAMP). Am J Psychiatry. 2011;168(9):947–56.

    Google Scholar 

  66. Correll CU, Sikich L, Reeves G, Johnson J, Keeton C, Spanos M, Kapoor S, Bussell K, Miller L, Chandrasekhar T, Sheridan EM, Pirmohamed S, Reinblatt SP, Alderman C, Scheer A, Borner I, Bethea TC, Edwards S, Hamer RM, Riddle MA. Metformin add-on vs. antipsychotic switch vs. continued antipsychotic treatment plus healthy lifestyle education in overweight or obese youth with severe mental illness: results from the IMPACT trial. World Psychiatry. 2020;19(1):69–80.

    Google Scholar 

  67. Ventriglio A, Baldessarini RJ, Vitrani G, Bonfitto I, Cecere AC, Rinaldi A, Petito A, Bellomo A, Ventriglio A, et al. Metabolic syndrome in psychotic disorder patients treated with oral and long-acting injected antipsychotics. Front Psychiatry. 2019;9:744.

    Google Scholar 

  68. Solmi M, Murru A, Pacchiarotti I, Undurraga J, Veronese N, Fornaro M, Stubbs B, Monaco F, Vieta E, Seeman MV, Correll CU, Carvalho AF, Solmi M, et al. Safety, tolerability, and risks associated with first-and second-generation antipsychotics: a state-of-the-art clinical review. Ther Clin Risk Manag. 2017;13:757–77.

    CAS  Google Scholar 

  69. American Diabetes Association. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S98–110.

    Google Scholar 

  70. Lally J, O’ Loughlin A, Stubbs B, Guerandel A, O’Shea D, Gaughran F. Pharmacological management of diabetes in severe mental illness: a comprehensive clinical review of efficacy, safety and tolerability. Expert Rev Clin Pharmacol. 2018;11(4):411–24.

    CAS  Google Scholar 

  71. Hundal RS, Krssak M, Dufour S, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000;49:2063–9.

    CAS  Google Scholar 

  72. Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333:550–4.

    CAS  Google Scholar 

  73. Madiraju AK, Qiu Y, Perry RJ, et al. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med. 2018;24(9):1384–94.

    CAS  Google Scholar 

  74. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–85.

    CAS  Google Scholar 

  75. Foretz M, Hébrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, Sakamoto K, Andreelli F, Viollet B. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest. 2010;120:2355–69.

    CAS  Google Scholar 

  76. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP- activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74.

    CAS  Google Scholar 

  77. Koffert JP, Mikkola K, Virtanen KA, Andersson AD, Faxius L, Hällsten K, Heglind M, Guiducci L, Pham T, Silvola JMU, Virta J, Eriksson O, Kauhanen SP, Saraste A, Enerbäck S, Iozzo P, Parkkola R, Gomez MF, Nuutila P. Metformin treatment significantly enhances intestinal glucose uptake in patients with type 2 diabetes: results from a randomized clinical trial. Diabetes Res Clin Pract. 2017;131:208–16.

    CAS  Google Scholar 

  78. Wu T, Xie C, Wu H, Jones KL, Horowitz M, Rayner CK. Metformin reduces the rate of small intestinal glucose absorption in type 2 diabetes. Diabetes Obes Metab. 2017;19:290–3.

    CAS  Google Scholar 

  79. Napolitano A, Miller S, Nicholls AW, Baker D, Van Horn S, Thomas E, Rajpal D, Spivak A, Brown JR, Nunez DJ. Novel gut- based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS One. 2014. https://doi.org/10.1371/journal.pone.0100778.

    Article  Google Scholar 

  80. Maida A, Lamont BJ, Cao X, Drucker DJ. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor- α in mice. Diabetologia. 2011;54:339–49.

    CAS  Google Scholar 

  81. Buse JB, DeFronzo RA, Rosenstock J, et al. The primary glucose- lowering effect of metformin resides in the gut, not the circulation: results from short- term pharmacokinetic and 12-week dose- ranging studies. Diabetes Care. 2016;39:198–205.

    CAS  Google Scholar 

  82. McCreight LJ, Bailey CJ, Pearson ER. Metformin and the gastrointestinal tract. Diabetologia. 2016;59(3):426–35.

    CAS  Google Scholar 

  83. Remington GJ, Teo C, Wilson V, Chintoh A, Guenette M, Ahsan Z, Giacca A, Hahn MK. Metformin attenuates olanzapine-induced hepatic, but not peripheral insulin resistance. J Endocrinol. 2015;227(2):71–81.

    CAS  Google Scholar 

  84. Luo C, Wang X, Huang H, Mao X, Zhou H, Liu Z. Effect of metformin on antipsychotic-induced metabolic dysfunction: the potential role of gut-brain axis. Front Pharmacol. 2019;10:371.

    CAS  Google Scholar 

  85. Shpakov AO, Derkach KV. Molecular Mechanisms Of The Effects Of Metformin On The Functional Activity Of Brain Neurons. Neurosci Behav Physiol. 2018;48:969–77.

    CAS  Google Scholar 

  86. Coll AP, Chen M, Taskar P, Rimmington D, Patel S, Tadross J, et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature. 2019;578(7795):444–8.

    Google Scholar 

  87. Gerstein HC, Pare G, Hess S, Ford RJ, Sjaarda J, Raman K, McQueen M, Lee S, Haenel H, Steinberg GR. ORIGIN investigators growth differentiation factor 15 as a novel biomarker for metformin. Diabetes Care. 2017;40(2):280–3.

    CAS  Google Scholar 

  88. Tsai VWW, Husaini Y, Sainsbury A, Brown DA, Breit SN. The MIC-1/GDF15-GFRAL pathway in energy homeostasis: implications for obesity, cachexia, and other associated diseases. Cell Metab. 2018;28(3):353–68.

    CAS  Google Scholar 

  89. Yang L, Chang CC, Sun Z, Madsen D, Zhu H, Padkjær SB, Wu X, Huang T, Hultman K, Paulsen SJ, Wang J, Bugge A, Frantzen JB, Nørgaard P, Jeppesen JF, Yang Z, Secher A, Chen H, Li X, John LM, Shan B, He Z, Gao X, Su J, Hansen KT, Yang W, Jørgensen SB. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med. 2017;23(10):1158–66.

    CAS  Google Scholar 

  90. Xiong Y, Walker K, Min X, Hale C, Tran T, Komorowski R, Yang J, Davda J, Nuanmanee N, Kemp D, Wang X, Liu H, Miller S, Lee KJ, Wang Z, Véniant MM. Long-acting MIC-1/GDF15 molecules to treat obesity: evidence from mice to monkeys. Sci Transl Med. 2017;9:1–10.

    Google Scholar 

  91. Chrysovergis K, Wang X, Kosak J, Lee SH, Kim JS, Foley JF, Travlos G, Singh S, Baek SJ, Eling TE. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. Int J Obes (Lond). 2014;38(12):1555–64.

    CAS  Google Scholar 

  92. Out M, Kooy A, Lehert P, Schalkwijk CA, Stehouwer CDA. Long-term treatment with metformin in type 2 diabetes and methylmalonic acid: post hoc analysis of a randomized controlled 4.3 year trial. J Diabetes Complications. 2018;32:171–8.

    Google Scholar 

  93. Taylor J, Stubbs B, Hewitt C, Ajjan RA, Alderson SL, Gilbody S, Holt RI, Hosali P, Hughes T, Kayalackakom T, Kellar I, Lewis H, Mahmoodi N, McDermid K, Smith RD, Wright JM, Siddiqi N. The effectiveness of pharmacological and non-pharmacological interventions for improving glycaemic control in adults with severe mental illness: a systematic review and meta-analysis. PLoS One. 2017;12(1):e0168549.

    Google Scholar 

  94. de Silva VA, Suraweera C, Ratnatunga SS, Dayabandara M, Wanniarachchi N, Hanwella R. Metformin in prevention and treatment of antipsychotic induced weight gain: a systematic review and meta-analysis. BMC Psychiatry. 2016;16(1):341.

    Google Scholar 

  95. Siskind DJ, Leung J, Russell AW, Wysoczanski D, Kisely S. Metformin for clozapine associated obesity: a systematic review and meta-analysis. PLoS One. 2016;11(6):e0156208.

    Google Scholar 

  96. Zhuo C, Xu Y, Liu S, Li J, Zheng Q, Gao X, Li S, Jing R, Song X, Yue W, Zhou C, Upthegrove R. Topiramate and metformin are effective add-on treatments in controlling antipsychotic-induced weight gain: a systematic review and network meta-analysis. Front Pharmacol. 2018;28(9):1393.

    Google Scholar 

  97. Van Gaal L, Scheen A. Weight management in type 2 diabetes: current and emerging approaches to treatment. Diabetes Care. 2015;38(6):1161–72.

    Google Scholar 

  98. Liu Z, Zheng W, Gao S, Qin Z, Li G, Ning Y. Metformin for treatment of clozapine-induced weight gain in adult patients with schizophrenia: a meta-analysis. Shanghai Arch Psychiatry. 2015;27(6):331–40.

    CAS  Google Scholar 

  99. Praharaj SK, Jana AK, Goyal N, Sinha VK. Metformin for olanzapine-induced weight gain: a systematic review and meta-analysis. Br J Clin Pharmacol. 2011;71(3):377–82.

    CAS  Google Scholar 

  100. Mizuno Y, Suzuki T, Nakagawa A, Yoshida K, Mimura M, Fleischhacker WW, Uchida H. Pharmacological strategies to counteract antipsychotic-induced weight gain and metabolic adverse effects in schizophrenia: a systematic review and meta-analysis. Schizophr Bull. 2014;40(6):1385–403.

    Google Scholar 

  101. Björkhem-Bergman L, Asplund AB, Lindh JD. Metformin for weight reduction in non-diabetic patients on antipsychotic drugs: a systematic review and meta-analysis. J Psychopharmacol. 2011;25(3):299–305.

    Google Scholar 

  102. Cernea S, Raz I. Therapy in the early stage: incretins. Diabetes Care. 2011;34(Suppl 2):S264–71.

    CAS  Google Scholar 

  103. Gallwitz B. Clinical Use of DPP-4 Inhibitors. Front Endocrinol (Lausanne). 2019;10:389.

    Google Scholar 

  104. Scirica BM, Braunwald E, Raz I, Cavender MA, Morrow DA, Jarolim P, Udell JA, Mosenzon O, Im K, Umez-Eronini AA, Pollack PS, Hirshberg B, Frederich R, Lewis BS, McGuire DK, Davidson J, Steg PG, Bhatt DL; SAVOR-TIMI 53 Steering Committee and Investigators. Heart failure, saxagliptin,and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation. 2014; 130:1579–1588.

  105. Fu AZ, Johnston SS, Ghannam A, Tsai K, Cappell K, Fowler R, Riehle E, Cole AL, Kalsekar I, Sheehan J. Association between hospitalization for heart failure and dipeptidyl peptidase 4 inhibitors in patients with type 2 diabetes: an observational study. Diabetes Care. 2016;39(5):726–34.

    CAS  Google Scholar 

  106. Filion KB, Azoulay L, Platt RW, Dahl M, Dormuth CR, Clemens KK, Hu N, Paterson JM, Targownik L, Turin TC, Udell JA, Ernst P, CNODES Investigators. A multicenter observational study of incretin-based drugs and heart failure. N Engl J Med. 2016; 374(12):1145–54.

  107. Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, Dagogo-Jack S, DeFronzo RA, Einhorn D, Fonseca VA, Garber JR, Garvey WT, Grunberger G, Handelsman Y, Hirsch IB, Jellinger PS, McGill JB, Mechanick JI, Rosenblit PD, Umpierrez GE. Consensus statement by the american association of clinical endocrinologists and american college of endocrinology on the comprehensive type 2 diabetes management algorithm—2019 executive summary. Endocr Pract. 2019;25(1):69–100.

    Google Scholar 

  108. Sherifali D, Nerenberg K, Pullenayegum E, Cheng JE, Gerstein HC. The effect of oral antidiabetic agents on A1C levels: a systematic review and metaanalysis. Diabetes Care. 2010;33:1859–64.

    CAS  Google Scholar 

  109. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs. 2015;75:33–59.

    CAS  Google Scholar 

  110. Carrizo E, Fernández V, Connell L, Sandia I, Prieto D, Mogollón J, Valbuena D, Fernández I, de Baptista EA, Baptista T. Extended release metformin for metabolic control assistance during prolonged clozapine administration: a 14 week, double-blind, parallel group, placebo-controlled study. Schizophr Res. 2009;113(1):19–26.

    Google Scholar 

  111. Raz I, Cernea S, Cahn A. SGLT2 inhibitors for primary prevention of cardiovascular events. J Diabetes. 2020;12(1):5–7.

    CAS  Google Scholar 

  112. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE, EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.

    CAS  Google Scholar 

  113. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.

    CAS  Google Scholar 

  114. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde AM, Sabatine MS, DECLARE–TIMI 58 investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019; 380(4):347–357.

  115. Cannon CP, McGuire DK, Pratley R, et al. Design and baseline characteristics of the eValuation of ERTugliflozin effIcacy and Safety CardioVascular outcomes trial (VERTIS-CV). Am Heart J. 2018;206:11–23.

    CAS  Google Scholar 

  116. Shyangdan DS, Uthman OA, Waugh N. SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. BMJ Open. 2016;134:752–72.

    Google Scholar 

  117. Storgaard H, Gluud LL, Bennett C, Grøndahl MF, Christensen MB, Knop FK, Vilsbøll T. Benefits and harms of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes: a systematic review and meta-analysis. PLoS One. 2016;11(11):e0166125.

    Google Scholar 

  118. Scheen AJ. Reduction in HbA1c with SGLT2 inhibitors vs. DPP-4 inhibitors as add-ons to metformin monotherapy according to baseline HbA1c: a systematic review of randomized controlled trials. Diabetes Metab. 2020; 2020:S1262–3636.

  119. Rajeev SP, Cuthbertson DJ, Wilding JP. Energy balance and metabolic changes with sodium-glucose co-transporter 2 inhibition. Diabetes Obes Metab. 2016;18(2):125–34.

    CAS  Google Scholar 

  120. Lee PC, Ganguly S, Goh SY. Weight loss associated with sodium-glucose cotransporter-2 inhibition: a review of evidence and underlying mechanisms. Obes Rev. 2018;19(12):1630–41.

    CAS  Google Scholar 

  121. Schork A, Saynisch J, Vosseler A, Jaghutriz BA, Heyne N, Peter A, Häring HU, Stefan N, Fritsche A, Artunc F. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovasc Diabetol. 2019;18(1):46.

    Google Scholar 

  122. Smith RC, Jin H, Li C, et al. Effects of pioglitazone on metabolic abnormalities, psychopathology, and cognitive function in schizophrenic patients treated with antipsychotic medication: a randomized double-blind study. Schizophr Res. 2013;143(1):18–24.

    Google Scholar 

  123. Henderson DC, Fan X, Sharma B, Borba CP, Boxill R, Freudenreich O, Cather C, Eden Evins A, Goff DC. A double-blind, placebo-controlled trial of rosiglitazone for clozapine-induced glucose metabolism impairment in patients with schizophrenia. Acta Psychiatr Scand. 2009;119(6):457–65.

    CAS  Google Scholar 

  124. Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018;27(4):740–56.

    CAS  Google Scholar 

  125. Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6):819–37.

    CAS  Google Scholar 

  126. Retnakaran R, Kramer CK, Choi H, Swaminathan B, Zinman B. Liraglutide and the preservation of pancreatic β-cell function in early type 2 diabetes: the LIBRA trial. Diabetes Care. 2014;37(12):3270–8.

    CAS  Google Scholar 

  127. Ishøy PL, Knop FK, Broberg BV, Bak N, Andersen UB, Jørgensen NR, Holst JJ, Glenthøj BY, Ebdrup BH. Effect of GLP-1 receptor agonist treatment on body weight in obese antipsychotic-treated patients with schizophrenia: a randomized, placebo-controlled trial. Diabetes Obes Metab. 2017;19(2):162–71.

    Google Scholar 

  128. Siskind DJ, Russell AW, Gamble C, Winckel K, Mayfield K, Hollingworth S, Hickman I, Siskind V, Kisely S. Treatment of clozapine-associated obesity and diabetes with exenatide in adults with schizophrenia: a randomized controlled trial (CODEX). Diabetes Obes Metab. 2018;20(4):1050–5.

    CAS  Google Scholar 

  129. Siskind D, Russell A, Gamble C, et al. Metabolic measures 12 months after a randomised controlled trial of treatment of clozapine associated obesity and diabetes with exenatide (CODEX). J Psychiatr Res. 2020;124:9–12.

    Google Scholar 

  130. Larsen JR, Vedtofte L, Jakobsen MSL, Jespersen HR, Jakobsen MI, Svensson CK, Koyuncu K, Schjerning O, Oturai PS, Kjaer A, Nielsen J, Holst JJ, Ekstrøm CT, Correll CU, Vilsbøll T, Fink-Jensen A. Effect of liraglutide treatment on prediabetes and overweight or obesity in clozapine- or olanzapine-treated patients with schizophrenia spectrum disorder: a randomized clinical trial. JAMA Psychiatry. 2017;74(7):719–28.

    Google Scholar 

  131. Svensson CK, Larsen JR, Vedtofte L, Jakobsen MSL, Jespersen HR, Jakobsen MI, Koyuncu K, Schjerning O, Nielsen J, Ekstrøm CT, Correll CU, Vilsbøll T, Fink-Jensen A. One-year follow-up on liraglutide treatment for prediabetes and overweight/obesity in clozapine- or olanzapine-treated patients. Acta Psychiatr Scand. 2019;139(1):26–36.

    CAS  Google Scholar 

  132. Siskind D, Hahn M, Correll CU, Fink-Jensen A, Russell AW, Bak N, Broberg BV, Larsen J, Ishøy PL, Vilsbøll T, Knop FK, Kisely S, Ebdrup BH. Glucagon-like peptide-1 receptor agonists for antipsychotic-associated cardio-metabolic risk factors: a systematic review and individual participant data meta-analysis. Diabetes Obes Metab. 2019;21(2):293–302.

    CAS  Google Scholar 

  133. Dar S, Tahrani AA, Piya MK. The role of GLP-1 receptor agonists as weight loss agents in patients with and without type 2 diabetes. Pract Diabetes. 2015;32(8):297–300.

    Google Scholar 

  134. Farr OM, Sofopoulos M Tsoukas MA, Dincer F, Thakkar B, Sahin-Efe A, Filippaios A, Bowers J, Srnka A, Gavrieli A, Ko BJ, Liakou C, Kanyuch N, Tseleni-Balafouta S, Mantzoros CS. GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: a crossover, randomised, placebo-controlled trial. Diabetologia. 2016; 59(5):954–65.

  135. Hunter K, Hölscher C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci. 2012;13:33.

    CAS  Google Scholar 

  136. Hayes MR, De Jonghe BC, Kanoski SE. Role of the glucagon-like-peptide-1 receptor in the control of energy balance. Physiol Behav. 2010;100(5):503–10.

    CAS  Google Scholar 

  137. Camkurt MA, Lavagnino L, Zhang XY, Teixeira AL. Liraglutide for psychiatric disorders: clinical evidence and challenges. Horm Mol Biol Clin Investig. 2018;36:2.

    Google Scholar 

  138. Gault VA, Hölscher C. GLP-1 receptor agonists show neuroprotective effects in animal models of diabetes. Peptides. 2018;100:101–7.

    CAS  Google Scholar 

  139. Home P, Riddle M, Cefalu WT, Bailey CJ, Bretzel RG, Del Prato S, Leroith D, Schernthaner G, van Gaal L, Raz I. Insulin therapy in people with type 2 diabetes: opportunities and challenges? Diabetes Care. 2014;37(6):1499–508.

    CAS  Google Scholar 

  140. Hodish I. Insulin therapy, weight gain and prognosis. Diabetes Obes Metab. 2018;20(9):2085–92.

    Google Scholar 

  141. Collins R, Armitage J, Parish S, Sleigh P, Peto R, Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet. 2003; 14; 361(9374):2005–16.

  142. Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ, Thomason MJ, Mackness MI, Charlton-Menys V, Fuller JH, CARDS investigators. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004; 21–27; 364(9435):685–96.

  143. Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ, Thomason MJ, Mackness MI, Charlton-Menys V, Fuller JH; CARDS investigators. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004; 21–27; 364(9435):685–96.

  144. ADA2020C. American Diabetes Association. Cardiovascular Disease And Risk Management: Standards Of Medical Care In Diabetes-2020. Diabetes Care. 2020; 43(Suppl 1):S111–34.

  145. Ojala K, Repo-Tiihonen E, Tiihonen J, Niskanen L. Statins are effective in treating dyslipidemia among psychiatric patients using second-generation antipsychotic agents. J Psychopharmacol. 2008;22(1):33–8.

    CAS  Google Scholar 

  146. Vincenzi B, Borba CP, Gray DA, Copeland PM, Wang X, Fan X, Aragam GG, Henderson DC. An exploratory study examining lipid-lowering medications in reducing fasting serum lipids in schizophrenia patients treated with atypical antipsychotics. Ann Clin Psychiatry. 2013;25(2):141–8.

    Google Scholar 

  147. Tse L, Procyshyn RM, Fredrikson DH, Boyda HN, Honer WG, Barr AM. Pharmacological treatment of antipsychotic-induced dyslipidemia and hypertension. Int Clin Psychopharmacol. 2014;29(3):125–37.

    Google Scholar 

  148. Nomura I, Kishi T, Ikuta T, Iwata N. Statin add-on therapy in the antipsychotic treatment of schizophrenia: a meta-analysis. Psychiatry Res. 2018;260:41–7.

    CAS  Google Scholar 

  149. Shen H, Li R, Yan R, Zhou X, Feng X, Zhao M, Xiao H. Adjunctive therapy with statins in schizophrenia patients: a meta-analysis and implications. Psychiatry Res. 2018;262:84–93.

    CAS  Google Scholar 

  150. Skrede S, Tvete IF, Tanum L, Steen VM, Bramness. Incident users of antipsychotic agents and future use of cholesterol-lowering drugs: an observational, pharmacoepidemiologic study. J Clin Psychiatry. 2015; 76(1):e111-6.

  151. Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol. 2018;34(5):575–84.

    Google Scholar 

  152. Cryer MJ, Horani T, DiPette DJ. Diabetes and hypertension: a comparative review of current guidelines. J Clin Hypertens (Greenw). 2016;18(2):95–100.

    Google Scholar 

  153. ACCORD Study Group, Cushman WC, Evans GW, Byington RP, Goff DC Jr, Grimm RH Jr, Cutler JA, Simons-Morton DG, Basile JN, Corson MA, Probstfield JL, Katz L, Peterson KA, Friedewald WT, Buse JB, Bigger JT, Gerstein HC, Ismail-Beigi F. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010; 362(17):1575–85.

  154. Thomopoulos C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence in hypertension: 10—should blood pressure management differ in hypertensive patients with and without diabetes mellitus? Overview and meta-analyses of randomized trials. J Hypertens. 2017; 35(5):922–944.

  155. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, Lackland DT, LeFevre ML, MacKenzie TD, Ogedegbe O, Smith SC Jr, Svetkey LP, Taler SJ, Townsend RR, Wright JT Jr, Narva AS, Ortiz E. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.

    CAS  Google Scholar 

  156. Ryan DH, Yockey SR. Weight loss and improvement in comorbidity: differences at 5%, 10%, 15%, and over. Curr Obes Rep. 2017;6(2):187–94.

    Google Scholar 

  157. Magkos F, Fraterrigo G, Yoshino J, Luecking C, Kirbach K, Kelly SC, de Las Fuentes L, He S, Okunade AL, Patterson BW, Klein S. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab. 2016;23(4):591–601.

    CAS  Google Scholar 

  158. Wing RR, Lang W, Wadden TA, Safford M, Knowler WC, Bertoni AG, Hill JO, Brancati FL, Peters A, Wagenknecht L, Look AHEAD Research Group. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011; 34(7):1481–6.

  159. Khera R, Murad MH, Chandar AK, Dulai PS, Wang Z, Prokop LJ, Loomba R, Camilleri M, Singh S. Association of pharmacological treatments for obesity with weight loss and adverse events: a systematic review and meta-analysis. JAMA. 2016;315(22):2424–34.

    CAS  Google Scholar 

  160. ADA2020D. American Diabetes Association. Prevention or delay of type 2 diabetes: standards of medical care in diabetes-2020. Diabetes Care. 2020; 43(Suppl 1):S32–6.

  161. Hostalek U, Gwilt M, Hildemann S. Therapeutic use of metformin in prediabetes and diabetes prevention. Drugs. 2015;75(10):1071–94.

    CAS  Google Scholar 

  162. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM, Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002; 346(6):393–403.

  163. Zinman B, Harris SB, Neuman J, Gerstein HC, Retnakaran RR, Raboud J, Qi Y, Hanley AJ. Low-dose combination therapy with rosiglitazone and metformin to prevent type 2 diabetes mellitus (CANOE trial): a double-blind randomised controlled study. Lancet. 2010;376(9735):103–11.

    CAS  Google Scholar 

  164. Hemmingsen B, Sonne DP, Metzendorf MI, Richter B. Dipeptidyl-peptidase (DPP)-4 inhibitors and glucagon-like peptide (GLP)-1 analogues for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk for the development of type 2 diabetes mellitus. Cochrane Database Syst Rev. 2017; 5(5):CD012204.

  165. Apovian CM, Okemah J, O’Neil PM. Body weight considerations in the management of type 2 diabetes. Adv Ther. 2019;36(1):44–58.

    Google Scholar 

  166. Aroda VR, Rosenstock J, Terauchi Y, et al. PIONEER 1: randomized clinical trial of the efficacy and safety of oral semaglutide monotherapy in comparison with placebo in patients with type 2 diabetes. Diabetes Care. 2019;42(9):1724–32.

    CAS  Google Scholar 

  167. DiNicolantonio JJ, Bhutani J, O’Keefe JH. Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Heart. 2015;2(1):e000327.

    Google Scholar 

  168. Zaccardi F, Dhalwani NN, Dales J, et al. Comparison of glucose-lowering agents after dual therapy failure in type 2 diabetes: a systematic review and network meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2018;20(4):985–97.

    CAS  Google Scholar 

  169. Yang W, Ersoy C2, Wang G, Ye S, Liu J, Miao H, Asirvatham A, Werther S, Kadu P, Chow F. Efficacy and safety of three-times-daily versus twice-daily biphasic insulin aspart 30 in patients with type 2 diabetes mellitus inadequately controlled with basal insulin combined with oral antidiabetic drugs. Diabetes Res Clin Pract. 2019; 150:158–166.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Dima.

Ethics declarations

Conflicts of Interest

Dr. Correll has been a consultant and/or advisor to or has received honoraria from: Acadia Pharmaceuticals Inc., Alkermes, Allergan, Angelini Pharma, Axsome Therapeutics Inc., Gedeon Richter, Gerson Lehrman Group, Intra-Cellular Therapies Inc., Janssen Pharmaceuticals, Inc./Johnson & Johnson, LB Pharma, Lundbeck, MedAvante-ProPhase Inc., Medscape, Neurocrine Biosciences, Noven Pharmaceuticals Inc., Otsuka Pharmaceutical Co., Pfizer Inc., Recordati, Rovi, Sumitomo Dainippon Pharma, Sunovion Pharmaceuticals Inc., Supernus Pharmaceuticals Inc., Takeda Pharmaceutical Co., and Teva Pharmaceutical Industries Ltd. He has provided expert testimony for Janssen Pharmaceuticals, Inc. and Otsuka Pharmaceutical Co. He served on a Data Safety Monitoring Board for Lundbeck, Rovi, Supernus Pharmaceuticals Inc, and Teva Pharmaceutical Industries Ltd. He received royalties from UpToDate and grant support from Janssen Pharmaceuticals, Inc. and Takeda Pharmaceutical Co. He is also a stock option holder of LB Pharma. Dr Cernea received payment for lectures from AstraZeneca, Boehringer Ingelheim, Berlin-Chemie Menarini, Eli Lilly, MSD, Novo Nordisk, Sanofi, Servier Pharma, for clinical trial Steering Committee meetings as National Lead Investigator for DECLARE-TIMI58 from TIMI Study Group, consultant fees for Advisory Board from AstraZeneca and support for travel to meetings from AstraZeneca, Boehringer Ingelheim, Eli Lilly, Sanofi, MSD, Novo Nordisk, Worwag Pharma. Drs Dima and Manu have nothing to declare.

Funding

The authors received no specific funding for this work.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability statements

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cernea, S., Dima, L., Correll, C.U. et al. Pharmacological Management of Glucose Dysregulation in Patients Treated with Second-Generation Antipsychotics. Drugs 80, 1763–1781 (2020). https://doi.org/10.1007/s40265-020-01393-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-020-01393-x

Navigation