Skip to main content
Log in

Safety of New Biologics (Vedolizumab and Ustekinumab) and Small Molecules (Tofacitinib) During Pregnancy: A Review

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Two new biological drugs (vedolizumab and ustekinumab) and one small molecule (tofacitinib) have been recently approved for the treatment of inflammatory bowel disease. Therefore, we must be familiar with the safety of these “new” drugs during pregnancy and breastfeeding. In the present article, we critically review available data on the safety of new biologics (vedolizumab and ustekinumab) and small molecules (tofacitinib) during pregnancy and breastfeeding, with special focus on women with inflammatory bowel disease. Bibliographical searches (MEDLINE) up to April 2020 were performed. The timing and mechanisms of placental transfer of vedolizumab and ustekinumab are expected to be similar to anti-TNF agents. Animal studies show no evidence of adverse effects on pre- or post-natal development after administration of vedolizumab and ustekinumab. Just a few studies including patients treated with vedolizumab or ustekinumab during pregnancy have been published, reporting uneventful pregnancies in most cases. The clinical programme of both drugs and post-marketing studies showed no new safety concerns. Due to the expected safety of vedolizumab and ustekinumab during pregnancy, it may be recommended to plan the final pregnancy dose approximately 8 or 12 weeks, respectively, before the estimated date of delivery. Live vaccines should be avoided for up to a year in children exposed in utero to vedolizumab or ustekinumab unless drug elimination has been documented. Miniscule amounts of vedolizumab and ustekinumab are transferred to breast milk, so breastfeeding is probably safe. There is no evidence of adverse effect of vedolizumab or ustekinumab paternal exposure. Regarding tofacitinib, it is reasonable to assume that this molecule crosses the placenta from the beginning of pregnancy. In animal studies, tofacitinib was feticidal and teratogenic in rats and rabbits, although at exposures many times greater than the standard human dose. Reported outcomes of pregnancy cases identified from tofacitinib randomised controlled trials, post-approval and non-interventional studies, and spontaneous adverse-event reporting appear similar to those observed in the general population. Nevertheless, at present, the use of tofacitinib during pregnancy should be avoided. Although no human studies have reported outcomes of breastfeeding with small molecules such as tofacitinib, this drug is present in lactating rat milk so, at present, breastfeeding should be avoided. Pregnancy among patients with paternal exposure to tofacitinib appears to be safe. In summary, we can conclude that new biologic agents (vedolizumab and ustekinumab) and small molecules (tofacitinib) should be used during pregnancy only if the benefits to the mother outweigh the risks to the mother and unborn child.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gisbert JP. Safety of immunomodulators and biologics for the treatment of inflammatory bowel disease during pregnancy and breast-feeding. Inflamm Bowel Dis. 2010;16(5):881–95.

    PubMed  Google Scholar 

  2. Gisbert JP, Chaparro M. Safety of anti-TNF agents during pregnancy and breastfeeding in women with inflammatory bowel disease. Am J Gastroenterol. 2013;108(9):1426–38.

    PubMed  CAS  Google Scholar 

  3. Chaparro M, Gisbert JP. How safe is infliximab therapy during pregnancy and lactation in inflammatory bowel disease? Expert Opin Drug Saf. 2014;13(12):1749–62.

    PubMed  CAS  Google Scholar 

  4. Mahadevan U, Cucchiara S, Hyams JS, Steinwurz F, Nuti F, Travis SP, et al. The London Position Statement of the World Congress of Gastroenterology on Biological Therapy for IBD with the European Crohn's and Colitis Organisation: pregnancy and pediatrics. Am J Gastroenterol. 2011;106(2):214–23 (quiz 24).

  5. van der Woude CJ, Ardizzone S, Bengtson MB, Fiorino G, Fraser G, Katsanos K, et al. The second European evidenced-based consensus on reproduction and pregnancy in inflammatory bowel disease. J Crohns Colitis. 2015;9(2):107–24.

    PubMed  Google Scholar 

  6. Nguyen GC, Seow CH, Maxwell C, Huang V, Leung Y, Jones J, et al. The Toronto Consensus Statements for the management of inflammatory bowel disease in pregnancy. Gastroenterology. 2016;150(3):734–757 e1.

    PubMed  Google Scholar 

  7. Casanova MJ, Chaparro M, Domenech E, Barreiro-de Acosta M, Bermejo F, Iglesias E, et al. Safety of thiopurines and anti-TNF-alpha drugs during pregnancy in patients with inflammatory bowel disease. Am J Gastroenterol. 2013;108(3):433–40.

    PubMed  CAS  Google Scholar 

  8. Gisbert JP, Chaparro M. Predictors of primary response to biologic treatment (anti-TNF, vedolizumab and ustekinumab) in patients with inflammatory bowel disease: from basic science to clinical practice. J Crohns Colitis. 2019. https://doi.org/10.1093/ecco-jcc/jjz195.

    Article  PubMed  Google Scholar 

  9. Gisbert JP, Domenech E. Vedolizumab in the treatment of Crohn's disease. Gastroenterol Hepatol. 2015;38(5):338–48.

    PubMed  Google Scholar 

  10. Gisbert JP, Chaparro M. Ustekinumab to treat Crohn's disease. Gastroenterol Hepatol. 2017;40(10):688–98.

    PubMed  Google Scholar 

  11. Panes J, Gisbert JP. Efficacy of tofacitinib treatment in ulcerative colitis. Gastroenterol Hepatol. 2019;42(6):403–12.

    PubMed  Google Scholar 

  12. Fernekorn U, Butcher EC, Behrends J, Hartz S, Kruse A. Functional involvement of P-selectin and MAdCAM-1 in the recruitment of alpha4beta7-integrin-expressing monocyte-like cells to the pregnant mouse uterus. Eur J Immunol. 2004;34(12):3423–33.

    PubMed  CAS  Google Scholar 

  13. Zelinkova Z, Berakova K, Podmanicky D, Kadleckova B. Placental MadCAM1 expression and potential consequences for the treatment with vedolizumab during pregnancy. Gastroenterology. 2017;152(Suppl. 1):S764–S765765.

    Google Scholar 

  14. Darribere T, Skalski M, Cousin HL, Gaultier A, Montmory C, Alfandari D. Integrins: regulators of embryogenesis. Biol Cell. 2000;92(1):5–25.

    PubMed  CAS  Google Scholar 

  15. Yang JT, Rayburn H, Hynes RO. Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development. 1995;121(2):549–60.

    PubMed  CAS  Google Scholar 

  16. Saji F, Samejima Y, Kamiura S, Koyama M. Dynamics of immunoglobulins at the feto-maternal interface. Rev Reprod. 1999;4(2):81–9.

    PubMed  CAS  Google Scholar 

  17. Bye WA, Jairath V, Travis SPL. Systematic review: the safety of vedolizumab for the treatment of inflammatory bowel disease. Aliment Pharmacol Ther. 2017;46(1):3–15.

    PubMed  CAS  Google Scholar 

  18. Mahadevan U, Wolf DC, Dubinsky M, Cortot A, Lee SD, Siegel CA, et al. Placental transfer of anti-tumor necrosis factor agents in pregnant patients with inflammatory bowel disease. Clin Gastroenterol Hepatol. 2013;11(3):286–92 (quiz e24).

  19. Chaparro M, Gisbert JP. Transplacental transfer of immunosuppressants and biologics used for the treatment of inflammatory bowel disease. Curr Pharm Biotechnol. 2011;12(5):765–73.

    PubMed  CAS  Google Scholar 

  20. Entyvio M. Food and Drug Administration. 2013. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/. Accessed Apr 2, 2020.

  21. U.S. Food and Drug Administration. Highlights of Prescribing Information; 2014. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125476s000lbl.pdf. Accessed Apr 2, 2020.

  22. Crawford D, Friedman M. Evaluation of the developmental toxicity of vedolizumab, an alpha4beta7 receptor antagonist, in rabbit and nonhuman primate. Int J Toxicol. 2019;38(5):395–404.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Mahadevan U, Vermeire S, Lasch K, Abhyankar B, Bhayat F, Blake A, et al. Vedolizumab exposure in pregnancy: outcomes from clinical studies in inflammatory bowel disease. Aliment Pharmacol Ther. 2017;45(7):941–50.

    PubMed  CAS  Google Scholar 

  24. Moens A, van Hoeve K, Humblet E, Rahier JF, Bossuyt P, Dewit S, et al. Outcome of pregnancies in female patients with inflammatory bowel diseases treated with vedolizumab. J Crohns Colitis. 2019;13(1):12–8.

    PubMed  Google Scholar 

  25. Moens A, van der Woude CJ, Julsgaard M, Humblet E, Sheridan J, Baumgart DC, et al. Pregnancy outcomes in inflammatory bowel disease patients treated with vedolizumab, anti-TNF or conventional therapy: results of the European CONCEIVE study. Aliment Pharmacol Ther. 2020;51(1):129–38.

    PubMed  CAS  Google Scholar 

  26. Winter RW. Editorial: effects of vedolizumab during pregnancy in the CONCEIVE study. Aliment Pharmacol Ther. 2020;51(2):307–8.

    PubMed  Google Scholar 

  27. Bar-Gil Shitrit A, Ben Ya'acov A, Livovsky DM, Cuker T, Farkash R, Hoyda A, et al. Exposure to vedolizumab in IBD pregnant women appears of low risk for mother and neonate: a first prospective comparison study. Am J Gastroenterol. 2019;114(7):1172–5.

    PubMed  Google Scholar 

  28. Rosario M, Dirks NL, Milch C, Parikh A, Bargfrede M, Wyant T, et al. A review of the clinical pharmacokinetics, pharmacodynamics, and immunogenicity of vedolizumab. Clin Pharmacokinet. 2017;56(11):1287–301.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Julsgaard M, Christensen LA, Gibson PR, Gearry RB, Fallingborg J, Hvas CL, et al. Concentrations of adalimumab and infliximab in mothers and newborns, and effects on infection. Gastroenterology. 2016;151(1):110–9.

    PubMed  CAS  Google Scholar 

  30. ClinicalTrials.gov. NCT02678052. OTIS Vedolizumab Pregnancy Exposure Registry; 2016. https://clinicaltrials.gov/ct2/show/NCT02678052.

  31. Mahadevan U, Martin C, Kane SV, Dubinsky M, Sands BE, Sandborn WJ. Do infant serum levels of biologic agents at birth correlate with risk of adverse outcomes? Results from the PIANO Registry. Gastroenterology. 2016;150:S91–S9292.

    Google Scholar 

  32. Julsgaard M, Kjeldsen J, Brock B, Baumgart DC. Letter: vedolizumab drug levels in cord and maternal blood in women with inflammatory bowel disease. Aliment Pharmacol Ther. 2018;48(3):386–8.

    PubMed  CAS  Google Scholar 

  33. Flanagan E, Gibson PR, Begun J, Ghaly S, Garg M, Andrews JM, et al. Letter: vedolizumab drug concentrations in neonates following intrauterine exposure. Aliment Pharmacol Ther. 2018;48(11–12):1328–30.

    PubMed  Google Scholar 

  34. Mahadevan U, Robinson C, Bernasko N, Boland B, Chambers C, Dubinsky M, et al. Inflammatory bowel disease in pregnancy clinical care pathway: a report from the American Gastroenterological Association IBD Parenthood Project Working Group. Am J Obstet Gynecol. 2019;220(4):308–23.

    PubMed  Google Scholar 

  35. Rosario M, Dirks NL, Gastonguay MR, Fasanmade AA, Wyant T, Parikh A, et al. Population pharmacokinetics-pharmacodynamics of vedolizumab in patients with ulcerative colitis and Crohn's disease. Aliment Pharmacol Ther. 2015;42(2):188–202.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Bryant RV, Sandborn WJ, Travis SP. Introducing vedolizumab to clinical practice: who, when, and how? J Crohns Colitis. 2015;9(4):356–66.

    PubMed  CAS  Google Scholar 

  37. Chang S, Hudesman D. First-line biologics or small molecules in inflammatory bowel disease: a practical guide for the clinician. Curr Gastroenterol Rep. 2020;22(2):7.

    PubMed  Google Scholar 

  38. Heller MM, Wu JJ, Murase JE. Fatal case of disseminated BCG infection after vaccination of an infant with in utero exposure to infliximab. J Am Acad Dermatol. 2011;65(4):870.

    PubMed  Google Scholar 

  39. Picardo S, Seow CH. A pharmacological approach to managing inflammatory bowel disease during conception, pregnancy and breastfeeding: biologic and oral small molecule therapy. Drugs. 2019;79(10):1053–63.

    PubMed  Google Scholar 

  40. Chaparro M, Verreth A, Lobaton T, Gravito-Soares E, Julsgaard M, Savarino E, et al. Long-term safety of in utero exposure to anti-TNFalpha drugs for the treatment of inflammatory bowel disease: results from the multicenter European TEDDY Study. Am J Gastroenterol. 2018;113(3):396–403.

    PubMed  CAS  Google Scholar 

  41. Wyant T, Leach T, Sankoh S, Wang Y, Paolino J, Pasetti MF, et al. Vedolizumab affects antibody responses to immunisation selectively in the gastrointestinal tract: randomised controlled trial results. Gut. 2015;64(1):77–83.

    PubMed  CAS  Google Scholar 

  42. Beaulieu DB, Ananthakrishnan AN, Martin C, Cohen RD, Kane SV, Mahadevan U. Use of biologic therapy by pregnant women with inflammatory bowel disease does not affect infant response to vaccines. Clin Gastroenterol Hepatol. 2018;16(1):99–105.

    PubMed  Google Scholar 

  43. Seow CH, Nguyen GC. "Just in time": when is it safe to administer live vaccines to infants exposed to anti-tumor necrosis factor agents in utero? Gastroenterology. 2016;151(6):1249–50.

    PubMed  Google Scholar 

  44. Ben-Horin S, Yavzori M, Kopylov U, Picard O, Fudim E, Eliakim R, et al. Detection of infliximab in breast milk of nursing mothers with inflammatory bowel disease. J Crohns Colitis. 2011;5(6):555–8.

    PubMed  Google Scholar 

  45. European Medicines Agency. European Public Assessment Report [EPAR] for Entyvio. London: European Medicines Agency; 2014.

    Google Scholar 

  46. Julsgaard M, Kjeldsen J, Bibby BM, Brock B, Baumgart DC. Vedolizumab concentrations in the breast milk of nursing mothers with inflammatory bowel disease. Gastroenterology. 2018;154(3):752–4.e1.

    PubMed  Google Scholar 

  47. Lahat A, Shitrit AB, Naftali T, Milgrom Y, Elyakim R, Goldin E, et al. Vedolizumab levels in breast milk of nursing mothers with inflammatory bowel disease. J Crohns Colitis. 2018;12(1):120–3.

    PubMed  Google Scholar 

  48. Ungar B, Kopylov U, Waterman M, Haj-Natour O, Yavzori M, Picard O, et al. Early vedolizumab drug levels and induction success in patients with inflammatory bowel disease. United Eur Gastroenterol J. 2016;4(Suppl. 5):A3.

    Google Scholar 

  49. Feagan BG, Sandborn WJ, Gasink C, Jacobstein D, Lang Y, Friedman JR, et al. Ustekinumab as induction and maintenance therapy for Crohn's disease. N Engl J Med. 2016;375(20):1946–60.

    PubMed  CAS  Google Scholar 

  50. Sands BE, Sandborn WJ, Panaccione R, O'Brien CD, Zhang H, Johanns J, et al. Ustekinumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2019;381(13):1201–14.

    PubMed  CAS  Google Scholar 

  51. Ledee-Bataille N, Dubanchet S, Coulomb-L'hermine A, Durand-Gasselin I, Frydman R, Chaouat G. A new role for natural killer cells, interleukin (IL)-12, and IL-18 in repeated implantation failure after in vitro fertilization. Fertil Steril. 2004;81(1):59–655.

    PubMed  CAS  Google Scholar 

  52. Wieringa JW, Driessen GJ, Van Der Woude CJ. Pregnant women with inflammatory bowel disease: the effects of biologicals on pregnancy, outcome of infants, and the developing immune system. Expert Rev Gastroenterol Hepatol. 2018;12(8):811–8.

    PubMed  CAS  Google Scholar 

  53. Karmakar S, Dhar R, Das C. Inhibition of cytotrophoblastic (JEG-3) cell invasion by interleukin 12 involves an interferon gamma-mediated pathway. J Biol Chem. 2004;279(53):55297–307.

    PubMed  CAS  Google Scholar 

  54. Neta GI, von Ehrenstein OS, Goldman LR, Lum K, Sundaram R, Andrews W, et al. Umbilical cord serum cytokine levels and risks of small-for-gestational-age and preterm birth. Am J Epidemiol. 2010;171(8):859–67.

    PubMed  PubMed Central  Google Scholar 

  55. Raghupathy R, Al-Azemi M, Azizieh F. Intrauterine growth restriction: cytokine profiles of trophoblast antigen-stimulated maternal lymphocytes. Clin Dev Immunol. 2012;2012:734865.

    PubMed  Google Scholar 

  56. Cai JY, Li MJ. Interleukin 23 regulates the functions of human decidual immune cells during early pregnancy. Biochem Biophys Res Commun. 2016;469(3):340–4.

    PubMed  CAS  Google Scholar 

  57. Cai J, Li M, Huang Q, Fu X, Wu H. Differences in cytokine expression and STAT3 activation between healthy controls and patients of unexplained recurrent spontaneous abortion (URSA) during early pregnancy. PLoS ONE. 2016;11(9):e0163252.

    PubMed  PubMed Central  Google Scholar 

  58. Martin PL, Sachs C, Imai N, Tsusaki H, Oneda S, Jiao Q, et al. Development in the cynomolgus macaque following administration of ustekinumab, a human anti-IL-12/23p40 monoclonal antibody, during pregnancy and lactation. Birth Defects Res B Dev Reprod Toxicol. 2010;89(5):351–63.

    PubMed  CAS  Google Scholar 

  59. Description from FDA NDA review document. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/125261s000_OtherR.pdf.

  60. Mugheddu C, Atzori L, Lappi A, Murgia S, Rongioletti F. Biologics exposure during pregnancy and breastfeeding in a psoriasis patient. Dermatol Ther. 2019;32(3):e12895.

    PubMed  Google Scholar 

  61. Gotestam Skorpen C, Hoeltzenbein M, Tincani A, Fischer-Betz R, Elefant E, Chambers C, et al. The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann Rheum Dis. 2016;75(5):795–810.

    PubMed  Google Scholar 

  62. Rowan CR, Cullen G, Mulcahy HE, Keegan D, Byrne K, Murphy DJ, et al. Ustekinumab drug levels in maternal and cord blood in a woman with Crohn's disease treated until 33 weeks of gestation. J Crohns Colitis. 2018;12(3):376–8.

    PubMed  Google Scholar 

  63. Klenske E, Osaba L, Nagore D, Rath T, Neurath MF, Atreya R. Drug levels in the maternal serum, cord blood and breast milk of a ustekinumab-treated patient with Crohn's disease. J Crohns Colitis. 2019;13(2):267–9.

    PubMed  Google Scholar 

  64. Matro R, Martin CF, Wolf D, Shah SA, Mahadevan U. Exposure concentrations of infants breastfed by women receiving biologic therapies for inflammatory bowel diseases and effects of breastfeeding on infections and development. Gastroenterology. 2018;155(3):696–704.

    PubMed  Google Scholar 

  65. Sandborn WJ, Su C, Sands BE, D'Haens GR, Vermeire S, Schreiber S, et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2017;376(18):1723–36.

    PubMed  CAS  Google Scholar 

  66. Mahadevan U, Dubinsky MC, Su C, Lawendy N, Jones TV, Marren A, et al. Outcomes of pregnancies with maternal/paternal exposure in the tofacitinib safety databases for ulcerative colitis. Inflamm Bowel Dis. 2018;24(12):2494–500.

    PubMed  PubMed Central  Google Scholar 

  67. Agrawal M, Kim ES, Colombel JF. JAK inhibitors safety in ulcerative colitis: practical implications. J Crohns Colitis. 2020. https://doi.org/10.1093/ecco-jcc/jjaa017.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pfizer Inc. Xeljanz prescribing information; 2016. https://labeling.pfizer.com/ShowLabeling.aspx?id=959. Accessed Apr 02, 2020.

  69. Pfizer Inc. Xeljanz Full Prescribing Information 2019 (updated 7/2019). https://labeling.pfizer.com/ShowLabeling.aspx?id=959#data.

  70. Clowse ME, Feldman SR, Isaacs JD, Kimball AB, Strand V, Warren RB, et al. Pregnancy outcomes in the tofacitinib safety databases for rheumatoid arthritis and psoriasis. Drug Saf. 2016;39(8):755–62.

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Centers for Disease Control and Prevention. Update on overall prevalence of major birth defects—Atlanta, Georgia, 1978–2005. MMWR Morb Mortal Wkly Rep. 2008;57(1):1–5.

    Google Scholar 

  72. Dowty ME, Lin J, Ryder TF, Wang W, Walker GS, Vaz A, et al. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a janus kinase inhibitor, in humans. Drug Metab Dispos. 2014;42(4):759–73.

    PubMed  Google Scholar 

  73. Mahadevan U, Robinson C, Bernasko N, Boland B, Chambers C, Dubinsky M, et al. Inflammatory bowel disease in pregnancy clinical care pathway: a report from the American Gastroenterological Association IBD Parenthood Project Working Group. Gastroenterology. 2019;156(5):1508–24.

    PubMed  Google Scholar 

  74. Tofacitinib: prescribing information [Internet]. https://www.accessdata.fda.gov/drugs atfda docs/label/2018/203214s018lbl.pdf.

  75. Ben-David G, Sheiner E, Hallak M, Levy A. Pregnancy outcome in women with psoriasis. J Reprod Med. 2008;53(3):183–7.

    PubMed  Google Scholar 

  76. Gerosa M, Argolini LM, Artusi C, Chighizola CB. The use of biologics and small molecules in pregnant patients with rheumatic diseases. Expert Rev Clin Pharmacol. 2018;11(10):987–98.

    PubMed  CAS  Google Scholar 

  77. Wilcox AJ, Baird DD, Weinberg CR. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med. 1999;340(23):1796–9.

    PubMed  CAS  Google Scholar 

  78. Fletcher AP. Spontaneous adverse drug reaction reporting vs event monitoring: a comparison. J R Soc Med. 1991;84(6):341–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Sheridan J, Cullen G, Doherty G. Letter: vedolizumab in pregnancy. J Crohns Colitis. 2017;11(8):1025–6.

    PubMed  Google Scholar 

  80. Julsgaard M, Kjeldsen J, Baumgart DC. Vedolizumab safety in pregnancy and newborn outcomes. Gut. 2017;66(10):1866–7.

    PubMed  Google Scholar 

  81. Andrulonis R, Ferris LK. Treatment of severe psoriasis with ustekinumab during pregnancy. J Drugs Dermatol. 2012;11(10):1240.

    PubMed  Google Scholar 

  82. Fotiadou C, Lazaridou E, Sotiriou E, Ioannides D. Spontaneous abortion during ustekinumab therapy. J Dermatol Case Rep. 2012;6(4):105–7.

    PubMed  PubMed Central  Google Scholar 

  83. Sheeran C, Nicolopoulos J. Pregnancy outcomes of two patients exposed to ustekinumab in the first trimester. Australas J Dermatol. 2014;55(3):235–6.

    PubMed  Google Scholar 

  84. Rocha K, Piccinin MC, Kalache LF, Reichert-Faria A, Silva de Castro CC. Pregnancy during ustekinumab treatment for severe psoriasis. Dermatology. 2015;231(2):103–4.

    PubMed  Google Scholar 

  85. Alsenaid A, Prinz JC. Inadvertent pregnancy during ustekinumab therapy in a patient with plaque psoriasis and impetigo herpetiformis. J Eur Acad Dermatol Venereol. 2016;30(3):488–90.

    PubMed  CAS  Google Scholar 

  86. Galli-Novak E, Mook SC, Buning J, Schmidt E, Zillikens D, Thaci D, et al. Successful pregnancy outcome under prolonged ustekinumab treatment in a patient with Crohn's disease and paradoxical psoriasis. J Eur Acad Dermatol Venereol. 2016;30(12):e191–e192192.

    PubMed  CAS  Google Scholar 

  87. Lund T, Thomsen SF. Use of TNF-inhibitors and ustekinumab for psoriasis during pregnancy: a patient series. Dermatol Ther. 2017. https://doi.org/10.1111/dth.12454.

    Article  PubMed  Google Scholar 

  88. Cortes X, Borras-Blasco J, Antequera B, Fernandez-Martinez S, Castera E, Martin S, et al. Ustekinumab therapy for Crohn's disease during pregnancy: a case report and review of the literature. J Clin Pharm Ther. 2017;42(2):234–6.

    PubMed  CAS  Google Scholar 

  89. Venturin C, Nancey S, Danion P, Uzzan M, Chauvenet M, Bergoin C, et al. Fetal death in utero and miscarriage in a patient with Crohn's disease under therapy with ustekinumab: case-report and review of the literature. BMC Gastroenterol. 2017;17(1):80.

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Watson N, Wu K, Farr P, Reynolds NJ, Hampton PJ. Ustekinumab exposure during conception and pregnancy in patients with chronic plaque psoriasis: a case series of 10 pregnancies. Br J Dermatol. 2019;180(1):195–6.

    PubMed  CAS  Google Scholar 

  91. Galluzzo M, D'Adamio S, Bianchi L, Talamonti M. Psoriasis in pregnancy: case series and literature review of data concerning exposure during pregnancy to ustekinumab. J Dermatol Treat. 2019;30(1):40–4.

    CAS  Google Scholar 

  92. Megna M, Villani A, Balato N, Balato A. Letter to the editor submitted in response to "psoriasis in pregnancy: case series and literature review of data concerning exposure during pregnancy to ustekinumab". J Dermatol Treat. 2019;30(3):309.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JPG wrote the first draft of the manuscript and critically reviewed the final version. MC complemented draft sections and critically reviewed the final version.

Corresponding author

Correspondence to Javier P. Gisbert.

Ethics declarations

Funding

None.

Conflict of interest

Dr. Gisbert has served as a speaker, a consultant and advisory member for or has received research funding from MSD, Abbvie, Hospira, Pfizer, Kern Pharma, Biogen, Takeda, Janssen, Roche, Sandoz, Celgene, Ferring, Faes Farma, Shire Pharmaceuticals, Dr. Falk Pharma, Tillotts Pharma, Chiesi, Casen Fleet, Gebro Pharma, Otsuka Pharmaceutical, Vifor Pharma. Dr. Chaparro has served as a speaker, or has received research or education funding from MSD, Abbvie, Hospira, Pfizer, Takeda, Janssen, Ferring, Shire Pharmaceuticals, Dr. Falk Pharma, Tillotts Pharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gisbert, J.P., Chaparro, M. Safety of New Biologics (Vedolizumab and Ustekinumab) and Small Molecules (Tofacitinib) During Pregnancy: A Review. Drugs 80, 1085–1100 (2020). https://doi.org/10.1007/s40265-020-01346-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-020-01346-4

Navigation