Skip to main content
Log in

Centrally Acting Agents for Obesity: Past, Present, and Future

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

For many years, obesity was believed to be a condition of overeating that could be resolved through counseling and short-term drug treatment. Obesity was not recognized as a chronic disease until 1985 by the scientific community, and 2013 by the medical community. Pharmacotherapy for obesity has advanced remarkably since the first class of drugs, amphetamines, were approved for short-term use. Most amphetamines were removed from the obesity market due to adverse events and potential for addiction, and it became apparent that obesity pharmacotherapies were needed that could safely be administered over the long term. This review of central nervous system (CNS) acting anti-obesity drugs evaluates current therapies such as phentermine/topiramate, which act through multiple neurotransmitter pathways to reduce appetite. In the synergistic mechanism of bupropion/naltrexone, naltrexone blocks the feed-back inhibitory circuit of bupropion to give greater weight loss. Lorcaserin, a selective agonist of a serotonin receptor that regulates food intake, and the glucagon-like-peptide-1 (GLP-1) receptor agonist liraglutide are reviewed. Future drugs include tesofensine, a potent triple reuptake inhibitor in Phase III trials for obesity, and semaglutide, an oral GLP-1 analog approved for diabetes and currently in trials for obesity. Another potential new pharmacotherapy, setmelanotide, is a melanocortin-4 receptor agonist, which is still in an early stage of development. As our understanding of the communication between the CNS, gut, adipose tissue, and other organs evolves, it is anticipated that obesity drug development will move toward new centrally acting combinations and then to drugs acting on peripheral target tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Elsevier Ltd. The Lancet, 2008;372:1906–1913 [117]

Similar content being viewed by others

References

  1. Health implications of obesity. National institutes of health consensus development conference statement. Ann Intern Med. 1985;103(1):147–51.

    Article  Google Scholar 

  2. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    Article  PubMed  CAS  Google Scholar 

  3. Williamson DA, Ravussin E, Wong ML, Wagner A, Dipaoli A, Caglayan S, et al. Microanalysis of eating behavior of three leptin deficient adults treated with leptin therapy. Appetite. 2005;45(1):75–80.

    Article  PubMed  CAS  Google Scholar 

  4. Nathanson M. The Central Action of beta-aminopropylbenzene (Benzedrine) clinical observations. JAMA. 1937;108:528–31.

  5. Lesses MF, Myerson A. Human autonomic pharmacology. XVI. Benzedrine sulfate as an aid in the treatment of obesity. 1938. Obes Res. 1994;2(3):286–92.

    Article  PubMed  CAS  Google Scholar 

  6. Harris SC, Ivy AC, Searle LM. The mechanism of amphetamine-induced loss of weight; a consideration of the theory of hunger and appetite. J Am Med Assoc. 1947;134(17):1468–75.

    Article  PubMed  CAS  Google Scholar 

  7. Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR. New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol. 2007;47:681–98.

    Article  PubMed  CAS  Google Scholar 

  8. Scoville BA. Review of amphetamine-like drugs by the Food and Drug Administration. Washington: DC US Government Printing Office; 1976.

    Google Scholar 

  9. Byrne-Quinn E, Grover RF. Aminorex (Menocil) and amphetamine: acute and chronic effects on pulmonary and systemic haemodynamics in the calf. Thorax. 1972;27(1):127–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Michelakis ED, Weir EK. Anorectic drugs and pulmonary hypertension from the bedside to the bench. Am J Med Sci. 2001;321(4):292–9.

    Article  PubMed  CAS  Google Scholar 

  11. Gurtner HP. Pulmonary hypertension, “plexogenic pulmonary arteriopathy” and the appetite depressant drug aminorex: post or propter? Bull Eur Physiopathol Respir. 1979;15(5):897–923.

  12. Weintraub M. Long-term weight control: the National Heart, Lung, and Blood Institute funded multimodal intervention study. Clin Pharmacol Ther. 1992;51(5):581–5.

    Article  PubMed  CAS  Google Scholar 

  13. Abenhaim L, Moride Y, Brenot F, Rich S, Benichou J, Kurz X, et al. Appetite-suppressant drugs and the risk of primary pulmonary hypertension. International Primary Pulmonary Hypertension Study Group. N Engl J Med. 1996;335(9):609–16.

    Article  PubMed  CAS  Google Scholar 

  14. Connolly HM, Crary JL, McGoon MD, Hensrud DD, Edwards BS, Edwards WD, et al. Valvular heart disease associated with fenfluramine-phentermine. N Engl J Med. 1997;337(9):581–8.

    Article  PubMed  CAS  Google Scholar 

  15. Rothman RB, Baumann MH. Serotonergic drugs and valvular heart disease. Expert Opin Drug Saf. 2009;8(3):317–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, et al. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature. 1995;374(6522):542–6.

    Article  PubMed  CAS  Google Scholar 

  17. Greenway F, Herber D, Raum W, Herber D, Morales S. Double-blind, randomized, placebo-controlled clinical trials with non-prescription medications for the treatment of obesity. Obes Res. 1999;7(4):370–8.

    Article  PubMed  CAS  Google Scholar 

  18. Greenway FL. Clinical studies with phenylpropanolamine: a metaanalysis. Am J Clin Nutr. 1992;55(1 Suppl):203S–5S.

    Article  PubMed  CAS  Google Scholar 

  19. Kernan WN, Viscoli CM, Brass LM, Broderick JP, Brott T, Feldmann E, et al. Phenylpropanolamine and the risk of hemorrhagic stroke. N Engl J Med. 2000;343(25):1826–32.

    Article  PubMed  CAS  Google Scholar 

  20. Domingue JN. Phenylpropanolamine contained in cold remedies and risk of hemorrhagic stroke. Neurology. 2007;69(3):320 (author reply -1).

  21. Astrup A, Greenway FL, Ling W, Pedicone L, Lachowicz J, Strader CD, et al. Randomized controlled trials of the D1/D5 antagonist ecopipam for weight loss in obese subjects. Obesity (Silver Spring). 2007;15(7):1717–31.

    Article  CAS  Google Scholar 

  22. Simiand J, Keane M, Keane PE, Soubrie P. SR 141716, a CB1 cannabinoid receptor antagonist, selectively reduces sweet food intake in marmoset. Behav Pharmacol. 1998;9(2):179–81.

    PubMed  CAS  Google Scholar 

  23. Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rossner S, Group RI-ES. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet. 2005;365(9468):1389–97.

  24. Tam J, Szanda G, Drori A, Liu Z, Cinar R, Kashiwaya Y, et al. Peripheral cannabinoid-1 receptor blockade restores hypothalamic leptin signaling. Mol Metab. 2017;6(10):1113–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tam J, Hinden L, Drori A, Udi S, Azar S, Baraghithy S. The therapeutic potential of targeting the peripheral endocannabinoid/CB1 receptor system. Eur J Intern Med. 2018;49:23–9.

    Article  PubMed  CAS  Google Scholar 

  26. Kim SH, Lee YM, Jee SH, Nam CM. Effect of sibutramine on weight loss and blood pressure: a meta-analysis of controlled trials. Obes Res. 2003;11(9):1116–23.

    Article  PubMed  CAS  Google Scholar 

  27. James WP, Astrup A, Finer N, Hilsted J, Kopelman P, Rossner S, et al. Effect of sibutramine on weight maintenance after weight loss: a randomised trial. STORM study group. Sibutramine trial of obesity reduction and maintenance. Lancet. 2000;356(9248):2119-25.

  28. James WP, Caterson ID, Coutinho W, Finer N, Van Gaal LF, Maggioni AP, et al. Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N Engl J Med. 2010;363(10):905–17.

    Article  PubMed  CAS  Google Scholar 

  29. The amphetamine appetite suppressant saga. Prescrire Int. 2004;13(69):26–9.

    Google Scholar 

  30. Chen K. Ephedrine and related substances. Medicine. 1930;9:1–119.

    Article  CAS  Google Scholar 

  31. Greenway FL. The safety and efficacy of pharmaceutical and herbal caffeine and ephedrine use as a weight loss agent. Obes Rev. 2001;2(3):199–211.

    Article  PubMed  CAS  Google Scholar 

  32. Haller CA, Benowitz NL. Adverse cardiovascular and central nervous system events associated with dietary supplements containing ephedra alkaloids. N Engl J Med. 2000;343(25):1833–8.

    Article  PubMed  CAS  Google Scholar 

  33. Shekelle PG, Hardy ML, Morton SC, Maglione M, Mojica WA, Suttorp MJ, et al. Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta-analysis. JAMA. 2003;289(12):1537–45.

    PubMed  CAS  Google Scholar 

  34. Dong Z, Xu L, Liu H, Lv Y, Zheng Q, Li L. Comparative efficacy of five long-term weight loss drugs: quantitative information for medication guidelines. Obes Rev. 2017;18(12):1377–85.

    Article  PubMed  CAS  Google Scholar 

  35. Munro JF, MacCuish AC, Wilson EM, Duncan LJ. Comparison of continuous and intermittent anorectic therapy in obesity. Br Med J. 1968;1(5588):352–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci. 2005;8(5):571–8.

    Article  PubMed  CAS  Google Scholar 

  37. Greenway FL, Whitehouse MJ, Guttadauria M, Anderson JW, Atkinson RL, Fujioka K, et al. Rational design of a combination medication for the treatment of obesity. Obesity (Silver Spring). 2009;17(1):30–9.

    Article  CAS  Google Scholar 

  38. Greenway FL, Dunayevich E, Tollefson G, Erickson J, Guttadauria M, Fujioka K, et al. Comparison of combined bupropion and naltrexone therapy for obesity with monotherapy and placebo. J Clin Endocrinol Metab. 2009;94(12):4898–906.

    Article  PubMed  CAS  Google Scholar 

  39. Smith SR, Fujioka K, Gupta AK, Billes SK, Burns C, Kim D, et al. Combination therapy with naltrexone and bupropion for obesity reduces total and visceral adiposity. Diabetes Obes Metab. 2013;15(9):863–6.

    Article  PubMed  CAS  Google Scholar 

  40. Greenway FL, Fujioka K, Plodkowski RA, Mudaliar S, Guttadauria M, Erickson J, et al. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled. Phase III trial. Lancet. 2010;376(9741):595–605.

    Article  PubMed  CAS  Google Scholar 

  41. Apovian CM, Aronne L, Rubino D, Still C, Wyatt H, Burns C, et al. A randomized, Phase III trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II). Obesity (Silver Spring). 2013;21(5):935–43.

    Article  PubMed Central  CAS  Google Scholar 

  42. Wadden TA, Foreyt JP, Foster GD, Hill JO, Klein S, O’Neil PM, et al. Weight loss with naltrexone SR/bupropion SR combination therapy as an adjunct to behavior modification: the COR-BMOD trial. Obesity (Silver Spring). 2011;19(1):110–20.

    Article  CAS  Google Scholar 

  43. Hollander P, Gupta AK, Plodkowski R, Greenway F, Bays H, Burns C, et al. Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diabetes Care. 2013;36(12):4022–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. McElroy SL, Guerdjikova AI, Kim DD, Burns C, Harris-Collazo R, Landbloom R, et al. Naltrexone/Bupropion combination therapy in overweight or obese patients with major depressive disorder: results of a pilot study. Prim Care Companion CNS Disord. 2013. https://doi.org/10.4088/PCC.12m01494.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kolotkin RL, Chen S, Klassen P, Gilder K, Greenway FL. Patient-reported quality of life in a randomized placebo-controlled trial of naltrexone/bupropion for obesity. Clin Obes. 2015;5(5):237–44.

    Article  PubMed  CAS  Google Scholar 

  46. Hong K, Herrmann K, Dybala C, Halseth AE, Lam H, Foreyt JP. Naltrexone/Bupropion extended release-induced weight loss is independent of nausea in subjects without diabetes. Clin Obes. 2016;6(5):305–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Dalton M, Finlayson G, Walsh B, Halseth AE, Duarte C, Blundell JE. Early improvement in food cravings are associated with long-term weight loss success in a large clinical sample. Int J Obes (Lond). 2017;41(8):1232–6.

    Article  PubMed Central  CAS  Google Scholar 

  48. 2017 [cited; Contrave Prescribing Instructions]. https://contrave.com/wp-content/uploads/2017/05/Contrave_PI.pdf. Accessed 16 Feb 2018.

  49. Nissen SE, Wolski KE, Prcela L, Wadden T, Buse JB, Bakris G, et al. Effect of naltrexone-bupropion on major adverse cardiovascular events in overweight and obese patients with cardiovascular risk factors: a randomized clinical trial. JAMA. 2016;315(10):990–1004.

    Article  PubMed  CAS  Google Scholar 

  50. Fujioka K, Plodkowski R, O’Neil PM, Gilder K, Walsh B, Greenway FL. The relationship between early weight loss and weight loss at 1 year with naltrexone ER/bupropion ER combination therapy. Int J Obes (Lond). 2016;40(9):1369–75.

    Article  CAS  Google Scholar 

  51. Coomans CP, Geerling JJ, van den Berg SA, van Diepen HC, Garcia-Tardon N, Thomas A, et al. The insulin sensitizing effect of topiramate involves KATP channel activation in the central nervous system. Br J Pharmacol. 2013;170(4):908–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. White HS, Brown SD, Woodhead JH, Skeen GA, Wolf HH. Topiramate modulates GABA-evoked currents in murine cortical neurons by a nonbenzodiazepine mechanism. Epilepsia. 2000;41(Suppl 1):S17–20.

    Article  PubMed  CAS  Google Scholar 

  53. Gibbs JW 3rd, Sombati S, DeLorenzo RJ, Coulter DA. Cellular actions of topiramate: blockade of kainate-evoked inward currents in cultured hippocampal neurons. Epilepsia. 2000;41(Suppl 1):S10–6.

    Article  PubMed  CAS  Google Scholar 

  54. Picard F, Deshaies Y, Lalonde J, Samson P, Richard D. Topiramate reduces energy and fat gains in lean (Fa/?) and obese (fa/fa) Zucker rats. Obes Res. 2000;8(9):656–63.

    Article  PubMed  CAS  Google Scholar 

  55. Richard D, Picard F, Lemieux C, Lalonde J, Samson P, Deshaies Y. The effects of topiramate and sex hormones on energy balance of male and female rats. Int J Obes Relat Metab Disord. 2002;26(3):344–53.

    Article  PubMed  CAS  Google Scholar 

  56. Ben-Menachem E, Axelsen M, Johanson EH, Stagge A, Smith U. Predictors of weight loss in adults with topiramate-treated epilepsy. Obes Res. 2003;11(4):556–62.

    Article  PubMed  CAS  Google Scholar 

  57. Bray GA, Hollander P, Klein S, Kushner R, Levy B, Fitchet M, et al. A 6-month randomized, placebo-controlled, dose-ranging trial of topiramate for weight loss in obesity. Obes Res. 2003;11(6):722–33.

    Article  PubMed  CAS  Google Scholar 

  58. Aronne LJ, Wadden TA, Peterson C, Winslow D, Odeh S, Gadde KM. Evaluation of phentermine and topiramate versus phentermine/topiramate extended-release in obese adults. Obesity (Silver Spring). 2013;21(11):2163–71.

    Article  CAS  Google Scholar 

  59. Gadde KM, Allison DB, Ryan DH, Peterson CA, Troupin B, Schwiers ML, et al. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled. Phase III trial. Lancet. 2011;377(9774):1341–52.

    PubMed  CAS  Google Scholar 

  60. Garvey WT, Ryan DH, Look M, Gadde KM, Allison DB, Peterson CA, et al. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, Phase III extension study. Am J Clin Nutr. 2012;95(2):297–308.

    Article  PubMed  CAS  Google Scholar 

  61. Garvey WT, Ryan DH, Henry R, Bohannon NJ, Toplak H, Schwiers M, et al. Prevention of type 2 diabetes in subjects with prediabetes and metabolic syndrome treated with phentermine and topiramate extended release. Diabetes Care. 2014;37(4):912–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Garvey WT, Ryan DH, Bohannon NJ, Kushner RF, Rueger M, Dvorak RV, et al. Weight-loss therapy in type 2 diabetes: effects of phentermine and topiramate extended release. Diabetes Care. 2014;37(12):3309–16.

    Article  PubMed  CAS  Google Scholar 

  63. Allison DB, Gadde KM, Garvey WT, Peterson CA, Schwiers ML, Najarian T, et al. Controlled-release phentermine/topiramate in severely obese adults: a randomized controlled trial (EQUIP). Obesity (Silver Spring). 2012;20(2):330–42.

    Article  CAS  Google Scholar 

  64. Winslow DH, Bowden CH, DiDonato KP, McCullough PA. A randomized, double-blind, placebo-controlled study of an oral, extended-release formulation of phentermine/topiramate for the treatment of obstructive sleep apnea in obese adults. Sleep. 2012;35(11):1529–39.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mines D, Tennis P, Curkendall SM, Li DK, Peterson C, Andrews EB, et al. Topiramate use in pregnancy and the birth prevalence of oral clefts. Pharmacoepidemiol Drug Saf. 2014;23(10):1017–25.

    Article  PubMed  CAS  Google Scholar 

  66. Kolotkin RL, Gadde KM, Peterson CA, Crosby RD. Health-related quality of life in two randomized controlled trials of phentermine/topiramate for obesity: What mediates improvement? Qual Life Res. 2016;25(5):1237–44.

    Article  PubMed  Google Scholar 

  67. Li J, Reaven NL, Funk SE, McGaughey K, Neovius M. 4-year cost trajectories in real-world patients matched to the metabolic profiles of trial subjects before/after treatment with phentermine-topiramate. Drugs Real World Outcomes. 2015;2(2):143–51.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Finkelstein EA, Kruger E, Karnawat S. Cost-effectiveness analysis of qsymia for weight loss. Pharmacoeconomics. 2015;33(7):699–706.

    Article  PubMed  Google Scholar 

  69. Roth BL, Willins DL, Kristiansen K, Kroeze WK. 5-Hydroxytryptamine2-family receptors (5-hydroxytryptamine2A, 5-hydroxytryptamine2B, 5-hydroxytryptamine2C): where structure meets function. Pharmacol Ther. 1998;79(3):231–57.

    Article  PubMed  CAS  Google Scholar 

  70. [cited; http://www.diabetesincontrol.com/fda-approves-lorcaserin-belviq-for-treatment-of-obesity/. Accessed 16 Feb 2018.

  71. Smith SR, Prosser WA, Donahue DJ, Morgan ME, Anderson CM, Shanahan WR, et al. Lorcaserin (APD356), a selective 5-HT(2C) agonist, reduces body weight in obese men and women. Obesity (Silver Spring). 2009;17(3):494–503.

    Article  CAS  Google Scholar 

  72. Smith SR, Weissman NJ, Anderson CM, Sanchez M, Chuang E, Stubbe S, et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N Engl J Med. 2010;363(3):245–56.

    Article  PubMed  CAS  Google Scholar 

  73. Fidler MC, Sanchez M, Raether B, Weissman NJ, Smith SR, Shanahan WR, et al. A one-year randomized trial of lorcaserin for weight loss in obese and overweight adults: the BLOSSOM trial. J Clin Endocrinol Metab. 2011;96(10):3067–77.

    Article  PubMed  CAS  Google Scholar 

  74. O’Neil PM, Smith SR, Weissman NJ, Fidler MC, Sanchez M, Zhang J, et al. Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: the BLOOM-DM study. Obesity (Silver Spring). 2012;20(7):1426–36.

    Article  CAS  Google Scholar 

  75. Smith SR, O’Neil PM, Astrup A, Finer N, Sanchez-Kam M, Fraher K, et al. Early weight loss while on lorcaserin, diet and exercise as a predictor of week 52 weight-loss outcomes. Obesity (Silver Spring). 2014;22(10):2137–46.

    Article  CAS  Google Scholar 

  76. Shram MJ, Schoedel KA, Bartlett C, Shazer RL, Anderson CM, Sellers EM. Evaluation of the abuse potential of lorcaserin, a serotonin 2C (5-HT2C) receptor agonist, in recreational polydrug users. Clin Pharmacol Ther. 2011;89(5):683–92.

    Article  PubMed  CAS  Google Scholar 

  77. Hurt RT, Croghan IT, Schroeder DR, Hays JT, Choi DS, Ebbert JO. Combination varenicline and lorcaserin for tobacco dependence treatment and weight gain prevention in overweight and obese smokers: a pilot study. Nicotine Tob Res. 2017;19(8):994–8.

    PubMed  Google Scholar 

  78. Smith SR, Garvey WT, Greenway FL, Zhou S, Fain R, Pilson R, et al. Coadministration of lorcaserin and phentermine for weight management: a 12-week, randomized, pilot safety study. Obesity (Silver Spring). 2017;25(5):857–65.

    Article  PubMed Central  CAS  Google Scholar 

  79. Rebello CJ, Nikonova EV, Zhou S, Aronne LJ, Fujioka K, Garvey WT, et al. Effect of lorcaserin alone and in combination with phentermine on food cravings after 12-week treatment: a randomized substudy. Obesity (Silver Spring). 2018;26(2):332–9.

    Article  CAS  Google Scholar 

  80. Farr OM, Upadhyay J, Gavrieli A, Camp M, Spyrou N, Kaye H, et al. Lorcaserin administration decreases activation of brain centers in response to food cues and these emotion- and salience-related changes correlate with weight loss effects: a 4-week-long randomized, placebo-controlled. Double-blind clinical trial. Diabetes. 2016;65(10):2943–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Martin CK, Redman LM, Zhang J, Sanchez M, Anderson CM, Smith SR, et al. Lorcaserin, a 5-HT(2C) receptor agonist, reduces body weight by decreasing energy intake without influencing energy expenditure. J Clin Endocrinol Metab. 2011;96(3):837–45.

    Article  PubMed  CAS  Google Scholar 

  82. Nesto R, Fain R, Li Y, Shanahan W. Evaluation of lorcaserin on progression of prediabetes to type 2 diabetes and reversion to euglycemia. Postgrad Med. 2016;128(4):364–70.

    Article  PubMed  Google Scholar 

  83. Kolotkin RL, Crosby RD, Wang Z. Health-related quality of life in randomized controlled trials of lorcaserin for obesity management: what mediates improvement? Clin Obes. 2017;7(6):347–53.

    Article  PubMed  CAS  Google Scholar 

  84. Weissman NJ, Smith SR, Fain R, Hall N, Shanahan WR. Effects of lorcaserin on pre-existing valvulopathy: a pooled analysis of Phase III trials. Obesity (Silver Spring). 2017;25(1):39–44.

    Article  CAS  Google Scholar 

  85. Lord CC, Wyler SC, Wan R, Castorena CM, Ahmed N, Mathew D, et al. The atypical antipsychotic olanzapine causes weight gain by targeting serotonin receptor 2C. J Clin Invest. 2017;127(9):3402–6.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hurren KM, Dunham MW. Pharmacokinetic drug evaluation of extended release lorcaserin for the treatment of obesity. Expert Opin Drug Metab Toxicol. 2017;13(8):891–6.

    Article  PubMed  CAS  Google Scholar 

  87. Madsbad S. Exenatide and liraglutide: different approaches to develop GLP-1 receptor agonists (incretin mimetics)–preclinical and clinical results. Best Pract Res Clin Endocrinol Metab. 2009;23(4):463–77.

    Article  PubMed  CAS  Google Scholar 

  88. van Bloemendaal L, Ten Kulve JS, la Fleur SE, Ijzerman RG, Diamant M. Effects of glucagon-like peptide 1 on appetite and body weight: focus on the CNS. J Endocrinol. 2014;221(1):T1–16.

    Article  PubMed  CAS  Google Scholar 

  89. Astrup A, Rossner S, Van Gaal L, Rissanen A, Niskanen L, Al Hakim M, et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet. 2009;374(9701):1606–16.

    Article  PubMed  CAS  Google Scholar 

  90. Astrup A, Carraro R, Finer N, Harper A, Kunesova M, Lean ME, et al. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int J Obes (Lond). 2012;36(6):843–54.

    Article  CAS  Google Scholar 

  91. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373(1):11–22.

    Article  PubMed  CAS  Google Scholar 

  92. le Roux CW, Astrup A, Fujioka K, Greenway F, Lau DCW, Van Gaal L, et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet. 2017;389(10077):1399–409.

    Article  PubMed  CAS  Google Scholar 

  93. Wadden TA, Hollander P, Klein S, Niswender K, Woo V, Hale PM, et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE Maintenance randomized study. Int J Obes (Lond). 2013;37(11):1443–51.

    Article  CAS  Google Scholar 

  94. Davies MJ, Bergenstal R, Bode B, Kushner RF, Lewin A, Skjoth TV, et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial. JAMA. 2015;314(7):687–99.

    Article  PubMed  CAS  Google Scholar 

  95. Blackman A, Foster GD, Zammit G, Rosenberg R, Aronne L, Wadden T, et al. Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive sleep apnea: the SCALE Sleep Apnea randomized clinical trial. Int J Obes (Lond). 2016;40(8):1310–9.

    Article  CAS  Google Scholar 

  96. Davies MJ, Aronne LJ, Caterson ID, Thomsen AB, Jacobsen PB, Marso SP, et al. Liraglutide and cardiovascular outcomes in adults with overweight or obesity: a post hoc analysis from SCALE randomized controlled trials. Diabetes Obes Metab. 2018;20(3):734–39.

    Article  PubMed  CAS  Google Scholar 

  97. Steinberg WM, Buse JB, Ghorbani MLM, Orsted DD, Nauck MA, Committee LS, et al. Amylase, lipase, and acute pancreatitis in people with type 2 diabetes treated with liraglutide: results from the LEADER randomized trial. Diabetes Care. 2017;40(7):966–72.

    Article  PubMed  Google Scholar 

  98. Kolotkin RL, Gabriel Smolarz B, Meincke HH, Fujioka K. Improvements in health-related quality of life over 3 years with liraglutide 3.0 mg compared with placebo in participants with overweight or obesity. Clin Obes. 2018;8(1):1–10.

  99. le Roux C, Aroda V, Hemmingsson J, Cancino AP, Christensen R, Pi-Sunyer X. Comparison of efficacy and safety of liraglutide 3.0 mg in individuals with BMI above and below 35 kg/m2: a post hoc analysis. Obes Facts. 2017;10(6):531–44.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ard J, Cannon A, Lewis CE, Lofton H, Vang Skjoth T, Stevenin B, et al. Efficacy and safety of liraglutide 3.0 mg for weight management are similar across races: subgroup analysis across the SCALE and Phase II randomized trials. Diabetes Obes Metab. 2016;18(4):430–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  101. O’Neil PM, Aroda VR, Astrup A, Kushner R, Lau DCW, Wadden TA, et al. Neuropsychiatric safety with liraglutide 3.0 mg for weight management: results from randomized controlled phase 2 and 3a trials. Diabetes Obes Metab. 2017;19(11):1529–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Fujioka K, O’Neil PM, Davies M, Greenway F, D CWL, Claudius B, et al. Early weight loss with liraglutide 3.0 mg predicts 1-year weight loss and is associated with improvements in clinical markers. Obesity (Silver Spring). 2016;24(11):2278-88.

  103. Halawi H, Khemani D, Eckert D, O’Neill J, Kadouh H, Grothe K, et al. Effects of liraglutide on weight, satiation, and gastric functions in obesity: a randomised, placebo-controlled pilot trial. Lancet Gastroenterol Hepatol. 2017;2(12):890–9.

    Article  PubMed  Google Scholar 

  104. Jensterle M, Pirs B, Goricar K, Dolzan V, Janez A. Genetic variability in GLP-1 receptor is associated with inter-individual differences in weight lowering potential of liraglutide in obese women with PCOS: a pilot study. Eur J Clin Pharmacol. 2015;71(7):817–24.

    Article  PubMed  CAS  Google Scholar 

  105. Robert SA, Rohana AG, Shah SA, Chinna K, Wan Mohamud WN, Kamaruddin NA. Improvement in binge eating in non-diabetic obese individuals after 3 months of treatment with liraglutide—a pilot study. Obes Res Clin Pract. 2015;9(3):301-4.

  106. Inoue K, Maeda N, Kashine S, Fujishima Y, Kozawa J, Hiuge-Shimizu A, et al. Short-term effects of liraglutide on visceral fat adiposity, appetite, and food preference: a pilot study of obese Japanese patients with type 2 diabetes. Cardiovasc Diabetol. 2011;1(10):109.

    Article  CAS  Google Scholar 

  107. Iepsen EW, Lundgren JR, Hartmann B, Pedersen O, Hansen T, Jorgensen NR, et al. GLP-1 receptor agonist treatment increases bone formation and prevents bone loss in weight-reduced obese women. J Clin Endocrinol Metab. 2015;100(8):2909–17.

    Article  PubMed  CAS  Google Scholar 

  108. Lambadiari V, Pavlidis G, Kousathana F, Varoudi M, Vlastos D, Maratou E, et al. Effects of 6-month treatment with the glucagon like peptide-1 analogue liraglutide on arterial stiffness, left ventricular myocardial deformation and oxidative stress in subjects with newly diagnosed type 2 diabetes. Cardiovasc Diabetol. 2018;17(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Larsen JR, Vedtofte L, Jakobsen MSL, Jespersen HR, Jakobsen MI, Svensson CK, et al. Effect of liraglutide treatment on prediabetes and overweight or obesity in clozapine- or olanzapine-treated patients with schizophrenia spectrum disorder: a randomized clinical trial. JAMA Psychiatry. 2017;74(7):719–28.

    Article  PubMed  PubMed Central  Google Scholar 

  110. FDA. 2014 [cited; Liraglutide label]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/206321Orig1s000lbl.pdf. Accessed 16 Feb 2018.

  111. Tran KL, Park YI, Pandya S, Muliyil NJ, Jensen BD, Huynh K, et al. Overview of glucagon-like peptide-1 receptor agonists for the treatment of patients with type 2 diabetes. Am Health Drug Benefits. 2017;10(4):178–88.

    PubMed  PubMed Central  Google Scholar 

  112. Bessesen DH, Van Gaal LF. Progress and challenges in anti-obesity pharmacotherapy. Lancet Diabetes Endocrinol. 2018;6(3):237–48.

    Article  PubMed  Google Scholar 

  113. Lehr T, Staab A, Tillmann C, Nielsen EO, Trommeshauser D, Schaefer HG, et al. Contribution of the active metabolite M1 to the pharmacological activity of tesofensine in vivo: a pharmacokinetic-pharmacodynamic modelling approach. Br J Pharmacol. 2008;153(1):164–74.

    Article  PubMed  CAS  Google Scholar 

  114. Thatte U. NS-2330 (Neurosearch). Curr Opin Investig Drugs. 2001;2(11):1592–4.

    PubMed  CAS  Google Scholar 

  115. Hauser RA, Salin L, Juhel N, Konyago VL. Randomized trial of the triple monoamine reuptake inhibitor NS 2330 (tesofensine) in early Parkinson’s disease. Mov Disord. 2007;22(3):359–65.

    Article  PubMed  Google Scholar 

  116. Astrup A, Meier DH, Mikkelsen BO, Villumsen JS, Larsen TM. Weight loss produced by tesofensine in patients with Parkinson’s or Alzheimer’s disease. Obesity (Silver Spring). 2008;16(6):1363–9.

    Article  CAS  Google Scholar 

  117. Astrup A, Madsbad S, Breum L, Jensen TJ, Kroustrup JP, Larsen TM. Effect of tesofensine on bodyweight loss, body composition, and quality of life in obese patients: a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372(9653):1906–13.

    Article  PubMed  CAS  Google Scholar 

  118. Axel AM, Mikkelsen JD, Hansen HH. Tesofensine, a novel triple monoamine reuptake inhibitor, induces appetite suppression by indirect stimulation of alpha1 adrenoceptor and dopamine D1 receptor pathways in the diet-induced obese rat. Neuropsychopharmacology. 2010;35(7):1464–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Hansen HH, Jensen MM, Overgaard A, Weikop P, Mikkelsen JD. Tesofensine induces appetite suppression and weight loss with reversal of low forebrain dopamine levels in the diet-induced obese rat. Pharmacol Biochem Behav. 2013;110:265–71.

    Article  PubMed  CAS  Google Scholar 

  120. Appel L, Bergstrom M, Buus Lassen J, Langstrom B. Tesofensine, a novel triple monoamine re-uptake inhibitor with anti-obesity effects: dopamine transporter occupancy as measured by PET. Eur Neuropsychopharmacol. 2014;24(2):251–61.

    Article  PubMed  CAS  Google Scholar 

  121. Sjodin A, Gasteyger C, Nielsen AL, Raben A, Mikkelsen JD, Jensen JK, et al. The effect of the triple monoamine reuptake inhibitor tesofensine on energy metabolism and appetite in overweight and moderately obese men. Int J Obes (Lond). 2010;34(11):1634–43.

    Article  CAS  Google Scholar 

  122. Gilbert JA, Gasteyger C, Raben A, Meier DH, Astrup A, Sjodin A. The effect of tesofensine on appetite sensations. Obesity (Silver Spring). 2012;20(3):553–61.

    Article  CAS  Google Scholar 

  123. Schoedel KA, Meier D, Chakraborty B, Manniche PM, Sellers EM. Subjective and objective effects of the novel triple reuptake inhibitor tesofensine in recreational stimulant users. Clin Pharmacol Ther. 2010;88(1):69–78.

    Article  PubMed  CAS  Google Scholar 

  124. Bentzen BH, Grunnet M, Hyveled-Nielsen L, Sundgreen C, Lassen JB, Hansen HH. Anti-hypertensive treatment preserves appetite suppression while preventing cardiovascular adverse effects of tesofensine in rats. Obesity (Silver Spring). 2013;21(5):985–92.

    Article  CAS  Google Scholar 

  125. Marso SP, Holst AG, Vilsboll T. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2017;376(9):891–2.

    PubMed  Google Scholar 

  126. Davies M, Pieber TR, Hartoft-Nielsen ML, Hansen OKH, Jabbour S, Rosenstock J. Effect of oral semaglutide compared with placebo and subcutaneous semaglutide on glycemic control in patients with type 2 diabetes: a randomized clinical trial. JAMA. 2017;318(15):1460–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Kuhnen P, Clement K, Wiegand S, Blankenstein O, Gottesdiener K, Martini LL, et al. Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. N Engl J Med. 2016;375(3):240–6.

    Article  PubMed  CAS  Google Scholar 

  128. Banting W. Letter on corpulence, addressed to the public. London: Harris and Sons; 1863.

    Google Scholar 

  129. Sjostrom L, Rissanen A, Andersen T, Boldrin M, Golay A, Koppeschaar HP, et al. Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients. European Multicentre Orlistat Study Group. Lancet. 1998;352(9123):167–72.

    Article  PubMed  CAS  Google Scholar 

  130. Sari R, Balci MK, Cakir M, Altunbas H, Karayalcin U. Comparison of efficacy of sibutramine or orlistat versus their combination in obese women. Endocr Res. 2004;30(2):159–67.

    Article  PubMed  CAS  Google Scholar 

  131. Hollander P, Bays HE, Rosenstock J, Frustaci ME, Fung A, Vercruysse F, et al. Coadministration of canagliflozin and phentermine for weight management in overweight and obese individuals without diabetes: a randomized clinical trial. Diabetes Care. 2017;40(5):632–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by 1 U54 GM104940 from the National Institute of General Medical Sciences of the National Institutes of Health which funds the Louisiana Clinical and Translational Science Center and in part on work that was supported by the National Institutes of Health under an award (T32 A T004094) from the National Center for Complementary and Integrative Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank L. Greenway.

Ethics declarations

Conflict of interest

Frank Greenway has served on the advisory boards for BAROnova, Eisai Inc., Curves, Novo Nordisk, Microbiome Therapeutics, Orexigen, Pamlab, PlenSat, Zaluvida and Zafgen. He has consulted for Basic Research, General Nutrition Corporation, Neothetics, Takeda, and Tech Enterprises.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulter, A.A., Rebello, C.J. & Greenway, F.L. Centrally Acting Agents for Obesity: Past, Present, and Future. Drugs 78, 1113–1132 (2018). https://doi.org/10.1007/s40265-018-0946-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-018-0946-y

Navigation