Skip to main content
Log in

Anti-PD-1 Antibodies as a Therapeutic Strategy in Classical Hodgkin Lymphoma

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Classical Hodgkin lymphoma (cHL) is defined by malignant Reed–Sternberg (RS) cells that recruit non-malignant immune cells into a supportive tumour microenvironment. In cHL, this is driven, in part, by genomic alterations of the 9p24.1 locus encoding the immune checkpoint ligands PD-L1 and PD-L2. Therapeutic anti-PD-1 antibodies have been developed that competitively inhibit the interaction between PD-1 and its ligands. Clinical trials of anti-PD-1 antibodies in cHL demonstrate high overall response rates but relapses still occur and new clinical challenges exist for toxicity management and response assessment. This review discusses the biological and clinical features of anti-PD-1 antibody therapy in cHL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scott DW, Gascoyne RD. The tumour microenvironment in B cell lymphomas. Nat Rev Cancer. 2014;14(8):517–34.

    Article  CAS  PubMed  Google Scholar 

  2. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 2016;375(18):1767–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 2015;6:6692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.

    Article  CAS  PubMed  Google Scholar 

  6. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, Haining WN, et al. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med. 2017;214(4):895–904.

    Article  CAS  PubMed  Google Scholar 

  8. Lau J, Cheung J, Navarro A, Lianoglou S, Haley B, Totpal K, et al. Tumour and host cell PD-L1 is required to mediate suppression of anti-tumour immunity in mice. Nat Commun. 2017;8:14572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roemer MG, Advani RH, Ligon AH, Natkunam Y, Redd RA, Homer H, et al. PD-L1 and PD-L2 genetic alterations define classical hodgkin lymphoma and predict outcome. J Clin Oncol. 2016;34(23):2690–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O’Donnell E, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Green MR, Rodig S, Juszczynski P, Ouyang J, Sinha P, O’Donnell E, et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res. 2012;18(6):1611–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362(10):875–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tan KL, Scott DW, Hong F, Kahl BS, Fisher RI, Bartlett NL, et al. Tumor-associated macrophages predict inferior outcomes in classic Hodgkin lymphoma: a correlative study from the E2496 Intergroup trial. Blood. 2012;120(16):3280–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chan FC, Mottok A, Gerrie AS, Power MM, Savage KJ, Nijland M, et al. A novel prognostic model based on tumor microenvironment biology in relapse biopsies predicts post-autologous stem cell transplantation outcomes in classical Hodgkin lymphoma. Blood. 2016;128(22):1093.

    Google Scholar 

  15. Borchmann P, Haverkamp H, Lohri A, Mey U, Kreissl S, Greil R, et al. Progression-free survival of early interim PET-positive patients with advanced stage Hodgkin’s lymphoma treated with BEACOPP escalated alone or in combination with rituximab (HD18): an open-label, international, randomised phase 3 study by the German Hodgkin Study Group. Lancet Oncol. 2017;18(4):454–63.

    Article  CAS  PubMed  Google Scholar 

  16. Aldinucci D, Celegato M, Casagrande N. Microenvironmental interactions in classical Hodgkin lymphoma and their role in promoting tumor growth, immune escape and drug resistance. Cancer Lett. 2016;380(1):243–52.

    Article  CAS  PubMed  Google Scholar 

  17. Weichselbaum RR, Liang H, Deng L, Fu YX. Radiotherapy and immunotherapy: a beneficial liaison? Nat Rev Clin Oncol. 2017;14(6):365–79.

    Article  CAS  PubMed  Google Scholar 

  18. Connors JM. Risk assessment in the management of newly diagnosed classical Hodgkin lymphoma. Blood. 2015;125(11):1693–702.

    Article  CAS  PubMed  Google Scholar 

  19. Radford J, Illidge T, Barrington S. PET-directed therapy for Hodgkin’s lymphoma. N Engl J Med. 2015;373(4):392.

    Article  CAS  PubMed  Google Scholar 

  20. Andre MP, Girinsky T, Federico M, Reman O, Fortpied C, Gotti M, et al. Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma: final results of the randomized EORTC/LYSA/FIL H10 Trial. J Clin Oncol. 2017;35(16):1786–94.

    Article  PubMed  Google Scholar 

  21. Johnson P, Federico M, Kirkwood A, Fossa A, Berkahn L, Carella A, et al. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N Engl J Med. 2016;374(25):2419–29.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zinzani PL, Broccoli A, Gioia DM, Castagnoli A, Ciccone G, Evangelista A, et al. Interim positron emission tomography response-adapted therapy in advanced-stage Hodgkin lymphoma: final results of the Phase II part of the HD0801 study. J Clin Oncol. 2016;34(12):1376–85.

    Article  CAS  PubMed  Google Scholar 

  23. Gerrie AS, Power MM, Shepherd JD, Savage KJ, Sehn LH, Connors JM. Chemoresistance can be overcome with high-dose chemotherapy and autologous stem-cell transplantation for relapsed and refractory Hodgkin lymphoma. Ann Oncol. 2014;25(11):2218–23.

    Article  CAS  PubMed  Google Scholar 

  24. Kuruvilla J, Keating A, Crump M. How I treat relapsed and refractory Hodgkin lymphoma. Blood. 2011;117(16):4208–17.

    Article  CAS  PubMed  Google Scholar 

  25. Rancea M, von Tresckow B, Monsef I, Engert A, Skoetz N. High-dose chemotherapy followed by autologous stem cell transplantation for patients with relapsed or refractory Hodgkin lymphoma: a systematic review with meta-analysis. Crit Rev Oncol Hematol. 2014;92(1):1–10.

    Article  PubMed  Google Scholar 

  26. Anderlini P, Saliba R, Acholonu S, Okoroji GJ, Ledesma C, Andersson BS, et al. Donor leukocyte infusions in recurrent Hodgkin lymphoma following allogeneic stem cell transplant: 10-year experience at the M. D. Anderson Cancer Center. Leuk Lymphoma. 2012;53(6):1239–41.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Greaves PJ, Gribben JG. Demonstration of durable graft versus lymphoma effects in Hodgkin’s lymphoma. J Clin Oncol. 2011;29(8):952–3.

    Article  PubMed  Google Scholar 

  28. Rashidi A, Ebadi M, Cashen AF. Allogeneic hematopoietic stem cell transplantation in Hodgkin lymphoma: a systematic review and meta-analysis. Bone Marrow Transplant. 2016;51(4):521–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hansen HP, Engels HM, Dams M, Paes Leme AF, Pauletti BA, Simhadri VL, et al. Protrusion-guided extracellular vesicles mediate CD30 trans-signalling in the microenvironment of Hodgkin’s lymphoma. J Pathol. 2014;232(4):405–14.

    Article  CAS  PubMed  Google Scholar 

  30. Sutherland MS, Sanderson RJ, Gordon KA, Andreyka J, Cerveny CG, Yu C, et al. Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J Biol Chem. 2006;281(15):10540–7.

    Article  CAS  PubMed  Google Scholar 

  31. Gardai SJ, Epp A, Law C-L. Brentuximab vedotin-mediated immunogenic cell death [abstract no. 2469]. Cancer Res. 2015;75(15 Suppl):2469.

    Article  Google Scholar 

  32. Okeley NM, Miyamoto JB, Zhang X, Sanderson RJ, Benjamin DR, Sievers EL, et al. Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin Cancer Res. 2010;16(3):888–97.

    Article  CAS  PubMed  Google Scholar 

  33. Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30(18):2183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen R, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, et al. Five-year survival and durability results of brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2016;128(12):1562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moskowitz CH, Nademanee A, Masszi T, Agura E, Holowiecki J, Abidi MH, et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;385(9980):1853–62.

    Article  CAS  PubMed  Google Scholar 

  36. Phase 3 frontline therapy trial in patients with advanced classical Hodgkin lymphoma. https://clinicaltrials.gov/show/NCT01712490. Accessed 18 May 2017.

  37. Scott LJ. Brentuximab vedotin: a review in CD30-positive Hodgkin lymphoma. Drugs. 2017;77(4):435–45.

    Article  CAS  PubMed  Google Scholar 

  38. Lee JY, Lee HT, Shin W, Chae J, Choi J, Kim SH, et al. Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Nat Commun. 2016;7:13354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Das R, Verma R, Sznol M, Boddupalli CS, Gettinger SN, Kluger H, et al. Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo. J Immunol. 2015;194(3):950–9.

    Article  CAS  PubMed  Google Scholar 

  40. Armand P, Shipp MA, Ribrag V, Michot JM, Zinzani PL, Kuruvilla J et al. Programmed death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol. doi:10.1200/JCO.2016.67.3467 (Epub 27 Jun 2016).

  41. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.

    Article  PubMed  Google Scholar 

  42. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165(1):35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD-1 BLOCKADE IN MElanoma. N Engl J Med. 2016;375(9):819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pitt JM, Vetizou M, Daillere R, Roberti MP, Yamazaki T, Routy B, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44(6):1255–69.

    Article  CAS  PubMed  Google Scholar 

  47. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9.

    Article  PubMed  Google Scholar 

  48. Timmerman JM, Engert A, Younes A, Santoro A, Armand P, Fanale MA, et al. Checkmate 205 update with minimum 12-month follow up: a phase 2 study of nivolumab in patients with relapsed/refractory classical Hodgkin lymphoma. Blood. 2016;128(22):1110.

    Google Scholar 

  49. Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S, et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17(9):1283–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zinzani PL, Engert A, Younes A, Santoro A, Ansell S, Timmerman JM, et al. Checkmate 205 Cohort C: Nivolumab in patients with classical Hodgkin lymphoma after prior brentuximab vedotin and autologous hematopoetic stem cell transplantation. Haematologica. 2016;101(S5):43–4.

    Google Scholar 

  51. Moskowitz CH, Zinzani PL, Fanale MA, Armand P, Johnson NA, Radford JA, et al. Pembrolizumab in relapsed/refractory classical hodgkin lymphoma: primary end point analysis of the Phase 2 Keynote-087 study. Blood. 2016;128(22):1107.

    Google Scholar 

  52. Chen R, Zinzani PL, Fanale MA, Armand P, Johnson NA, Brice P, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 2017;35(19):2125–32.

    Article  PubMed  Google Scholar 

  53. Armand P, Shipp MA, Ribrag V, Michot J-M, Zinzani PL, Kuruvilla J, et al. Pembrolizumab in patients with classical hodgkin lymphoma after brentuximab vedotin failure: long-term efficacy from the phase 1b Keynote-013 study. Blood. 2016;128(22):1108.

    Google Scholar 

  54. Study of pembrolizumab (MK-3475) vs. brentuximab vedotin in participants with relapsed or refractory classical Hodgkin lymphoma (MK-3475-204/KEYNOTE-204). https://clinicaltrials.gov/show/NCT02684292. Accessed 18 May 2017.

  55. Hamilton G, Rath B. Avelumab: combining immune checkpoint inhibition and antibody-dependent cytotoxicity. Expert Opin Biol Ther. 2017;17(4):515–23.

    Article  CAS  PubMed  Google Scholar 

  56. Reichert JM. Antibodies to watch in 2017. MAbs. 2017;9(2):167–81.

    Article  CAS  PubMed  Google Scholar 

  57. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007;27(1):111–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sasikumar P, Sudarshan NS, Gowda N, Samiulla DS, Ramachandra R, Chandrasekhar T, et al. Abstract 4861: oral immune checkpoint antagonists targeting PD-L1/VISTA or PD-L1/Tim3 for cancer therapy. Cancer Res. 2016;76(14 Supplement):4861.

    Article  Google Scholar 

  59. Study of atezolizumab in relapsed or refractory Hodgkin lymphoma. https://clinicaltrials.gov/show/NCT03120676. Accessed 18 May 2017.

  60. Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity. 2013;39(1):74–88.

    Article  CAS  PubMed  Google Scholar 

  61. Diefenbach CS, Hong F, David KA, Cohen J, Robertson M, Advani R, et al. A phase I study with an expansion cohort of the combination of ipilimumab and nivolumab and brentuximab vedotin in patients with relapsed/refractory Hodgkin lymphoma: a trial of the ECOG-ACRIN Cancer Research Group (E4412 Arms D and E). Blood. 2016;128(22):1106.

    Google Scholar 

  62. Herrera AF, Bartlett NL, Ramchandren R, Vose JM, Moskowitz AJ, Feldman TA, et al. Preliminary results from a phase 1/2 study of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2016;128(22):1105.

    Google Scholar 

  63. A study of nivolumab plus brentuximab vedotin versus brentuximab vedotin alone in patients with advanced stage classical hodgkin lymphoma, who are relapsed/ refractory or who are not eligible for autologous stem cell transplant. https://clinicaltrials.gov/show/NCT03138499. Accessed 18 May 2017.

  64. Ipilimumab, nivolumab, and brentuximab vedotin in treating patients with relapsed or refractory Hodgkin lymphoma. https://clinicaltrials.gov/show/NCT01896999. Accessed 18 May 2017.

  65. Ibrutinib and nivolumab in treating patients with relapsed or refractory classical Hodgkin lymphoma. https://clinicaltrials.gov/show/NCT02940301. Accessed 18 May 2017.

  66. Pembrolizumab and ibrutinib in treating patients with relapsed or refractory non-Hodgkin lymphoma. https://clinicaltrials.gov/show/NCT02950220. Accessed 18 May 2017.

  67. Safety & efficacy study of combination of pembrolizumab and lenalidomide, in patients with relapsed non-Hodgkin and Hodgkin lymphoma. https://clinicaltrials.gov/show/NCT02875067. Accessed 18 May 2017.

  68. Nivolumab and lenalidomide in treating patients with relapsed or refractory non-Hodgkin or Hodgkin lymphoma. https://clinicaltrials.gov/show/NCT03015896. Accessed 18 May 2017.

  69. A study to determine dose, safety, and efficacy of durvalumab as monotherapy and in combination therapy in subjects with lymphoma or chronic lymphocytic leukemia. https://clinicaltrials.gov/show/NCT02733042. Accessed 18 May 2017.

  70. Younes A, Ansell SM. Novel agents in the treatment of Hodgkin lymphoma: biological basis and clinical results. Semin Hematol. 2016;53(3):186–9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sagiv-Barfi I, Kohrt HE, Czerwinski DK, Ng PP, Chang BY, Levy R. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc Natl Acad Sci USA. 2015;112(9):E966–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Blazar BR, Carreno BM, Panoskaltsis-Mortari A, Carter L, Iwai Y, Yagita H, et al. Blockade of programmed death-1 engagement accelerates graft-versus-host disease lethality by an IFN-gamma-dependent mechanism. J Immunol. 2003;171(3):1272–7.

    Article  CAS  PubMed  Google Scholar 

  73. Michonneau D, Sagoo P, Breart B, Garcia Z, Celli S, Bousso P. The PD-1 axis enforces an anatomical segregation of CTL activity that creates tumor niches after allogeneic hematopoietic stem cell transplantation. Immunity. 2016;44(1):143–54.

    Article  CAS  PubMed  Google Scholar 

  74. Ni X, Song Q, Cassady K, Deng R, Jin H, Zhang M, et al. PD-L1 interacts with CD80 to regulate graft-versus-leukemia activity of donor CD8+ T cells. J Clin Invest. 2017;127(5):1960–77.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Saha A, O’Connor RS, Thangavelu G, Lovitch SB, Dandamudi DB, Wilson CB, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126(7):2642–60.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Merryman RW, Kim HT, Zinzani PL, Carlo-Stella C, Ansell SM, Perales MA, et al. Safety and efficacy of allogeneic hematopoietic stem cell transplant after PD-1 blockade in relapsed/refractory lymphoma. Blood. 2017;129(10):1380–8.

    Article  CAS  PubMed  Google Scholar 

  77. Armand P, Zinzani PL, Collins GP, Cohen JB, Halwani AS, Carlo-Stella C, et al. Outcomes of allogeneic hematopoietic stem cell transplantation (HSCT) after treatment with nivolumab for relapsed/refractory Hodgkin lymphoma. Blood. 2016;128(22):3502.

    Google Scholar 

  78. Herbaux C, Gauthier J, Brice P, Drumez E, Ysebaert L, Doyen H, et al. Efficacy and tolerability of nivolumab after allogeneic transplantation for relapsed Hodgkin’s lymphoma. Blood. 2017;129(18):2471–8.

    Article  CAS  PubMed  Google Scholar 

  79. Haverkos BM, Schowinksy J, Kaplan J, Kamdar M, Kanate AS, Saad A, et al. Checkpoint blockade for treatment of relapsed lymphoma following allogeneic hematopoietic cell transplant: use may be complicated by onset of severe acute graft versus host disease. Blood. 2016;128(22):1163.

    Google Scholar 

  80. Costa R, Carneiro BA, Agulnik M, Rademaker AW, Pai SG, Villaflor VM, et al. Toxicity profile of approved anti-PD-1 monoclonal antibodies in solid tumors: a systematic review and meta-analysis of randomized clinical trials. Oncotarget. 2017;8(5):8910–20.

    PubMed  Google Scholar 

  81. Kumar V, Chaudhary N, Garg M, Floudas CS, Soni P, Chandra AB. Current diagnosis and management of immune related adverse events (irAEs) induced by immune checkpoint inhibitor therapy. Front Pharmacol. 2017;8:49.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Weber JS, Postow M, Lao CD, Schadendorf D. Management of adverse events following treatment with anti-programmed death-1 agents. Oncologist. 2016;21(10):1230–40.

    Article  PubMed  Google Scholar 

  83. Boutros C, Tarhini A, Routier E, Lambotte O, Ladurie FL, Carbonnel F, et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol. 2016;13(8):473–86.

    Article  CAS  PubMed  Google Scholar 

  84. Cheson BD, Pfistner B, Juweid ME, Gascoyne RD, Specht L, Horning SJ, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86.

    Article  PubMed  Google Scholar 

  85. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18(3):e143–52.

    Article  PubMed  Google Scholar 

  87. Cheson BD, Ansell S, Schwartz L, Gordon LI, Advani R, Jacene HA, et al. Refinement of the Lugano Classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016;128(21):2489–96.

    Article  CAS  PubMed  Google Scholar 

  88. Younes A, Hilden P, Coiffier B, Hagenbeek A, Salles G, Wilson W et al. International Working Group consensus response evaluation criteria in lymphoma (RECIL 2017). Ann Oncol. doi:10.1093/annonc/mdx097 (Epub 3 Apr 2017).

  89. Maruyama D, Hatake K, Kinoshita T, Fukuhara N, Choi I, Taniwaki M, et al. A multicenter phase II study of nivolumab in Japanese patients with relapsed or refractory classical Hodgkin lymphoma. Cancer Sci. 2017;108(5):1007–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Benjamini O, Lavie D, Dann EJ, Perry C, Rouvio O, Shvetz O, et al. Real-life experience of nivolumab in heavily pretreated relapsed and refractory classical Hodgkin lymphoma. Blood. 2016;128(22):3008.

    Google Scholar 

  91. Vivar KL, Deschaine M, Messina J, Divine JM, Rabionet A, Patel N, et al. Epidermal programmed cell death-ligand 1 expression in TEN associated with nivolumab therapy. J Cutan Pathol. 2017;44(4):381–4.

    Article  PubMed  Google Scholar 

  92. March KL, Samarin MJ, Sodhi A, Owens RE. Pembrolizumab-induced myasthenia gravis: a fatal case report. J Oncol Pharm Pract. doi:10.1177/1078155216687389 (Epub 1 Jan 2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Kuruvilla.

Ethics declarations

Funding

None.

Conflict of interest

John Kuruvilla has received research funding from Roche, and has acted as a consultant for and received honoraria from BMS, Celgene, Merck and Roche. Michael Jain declares no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, M.D., Kuruvilla, J. Anti-PD-1 Antibodies as a Therapeutic Strategy in Classical Hodgkin Lymphoma. Drugs 77, 1645–1655 (2017). https://doi.org/10.1007/s40265-017-0796-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-017-0796-z

Navigation