Skip to main content
Log in

Drug-Induced Dyskinesia, Part 1: Treatment of Levodopa-Induced Dyskinesia

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Dyskinesias encompass a variety of different hyperkinetic phenomenologies, particularly chorea, dystonia, stereotypies, and akathisia. Levodopa-induced dyskinesia (LID) is one of the main types of drug-induced dyskinesia, occurring in patients with Parkinson’s disease (PD) who have been treated with levodopa for long time, but this side effect may be encountered even within a few weeks or months after initiation of levodopa therapy. Based on the temporal pattern in relationship to levodopa dosing, LIDs are divided into “peak-dose dyskinesia,” “diphasic dyskinesia,” and “wearing off” or “off-period” dyskinesia, of which peak-dose dyskinesia is the most common, followed by off-period, and then diphasic dyskinesia. Treatment strategy includes identifying the kind of dyskinesia and tailoring treatment accordingly. Peak-dose dyskinesia is treated mainly by reducing individual doses of levodopa and adding amantadine and dopamine agonists, whereas off-period dystonia often responds to baclofen and botulinum toxin injections. Diphasic dyskinesias, occurring particularly in patients with young-onset PD, are the most difficult to treat. While fractionation of levodopa dosage is the most frequently utilized strategy, many patients require deep brain stimulation to control their troublesome motor fluctuations and LIDs. A variety of emerging (experimental) drugs currently in development promise to provide better control of LIDs and other levodopa-related complications in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Loonen AJMAJ. New insights into the mechanism of drug-induced dyskinesia. CNS Spectr. 2013;18(1):15.

    Article  PubMed  Google Scholar 

  2. Walters AS, McHale D, Sage JI, Hening WA, Bergen M. A blinded study of the suppressibility of involuntary movements in Huntington’s chorea, tardive dyskinesia, and l-dopa-induced chorea. Clin Neuropharmacol. 1990;13(3):236–40.

    Article  CAS  PubMed  Google Scholar 

  3. Ramirez-Castaneda J, Jankovic J. l-Dopa dyskinesias. In: Friedman JH, editor. Medication induced movement disorders. Cambridge University Press; 2015. p. 110–81.

  4. Pilleri M, Antonini A. Therapeutic strategies to prevent and manage dyskinesias in Parkinson’s disease. Expert Opin Drug Saf. 2015;14(2):281–94.

    Article  CAS  PubMed  Google Scholar 

  5. Xie T, Guan R, Staisch J, Towle VL, Warnke P. Respiratory dyskinesia in a patient with Parkinson disease successfully treated with STN DBS. Neurology. 2015;85(5):479–80.

    Article  PubMed  Google Scholar 

  6. Jankovic J. Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations. Mov Disord. 2005;20(11):S11–6.

    Article  PubMed  Google Scholar 

  7. Prashanth LK, Fox S, Meissner WG. l-Dopa-induced dyskinesia-clinical presentation, genetics, and treatment. Int Rev Neurobiol. 2011;98:31–54.

    Article  CAS  PubMed  Google Scholar 

  8. Encarnacion EV, Hauser RA. Levodopa-induced dyskinesias in Parkinson’s disease: etiology, impact on quality of life, and treatments. Eur Neurol. 2008;60(2):57–66.

    Article  CAS  PubMed  Google Scholar 

  9. Wickremaratchi MM, Knipe MD, Sastry BS, Morgan E, Jones A, Salmon R, et al. The motor phenotype of Parkinson’s disease in relation to age at onset. Mov Disord. 2011;26(3):457–63.

    Article  PubMed  Google Scholar 

  10. Mehanna R, Moore S, Hou JG, Sarwar AI, Lai EC. Comparing clinical features of young onset, middle onset and late onset Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(5):530–4.

    Article  PubMed  Google Scholar 

  11. Jankovic J. Camptocormia, head drop and other bent spine syndromes: heterogeneous etiology and pathogenesis of Parkinsonian deformities. Mov Disord. 2010;25(5):527–8 (Epub 2010/04/29).

    Article  PubMed  Google Scholar 

  12. Parkinson Study Group. Impact of deprenyl and tocopherol treatment on Parkinson’s disease in DATATOP patients requiring levodopa. Parkinson Study Group. Ann Neurol. 1996;39(1):37–45.

    Article  Google Scholar 

  13. Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 2004;351(24):2498–508.

    Article  CAS  PubMed  Google Scholar 

  14. Parkinson Study Group. A randomized controlled trial comparing pramipexole with levodopa in early Parkinson’s disease: design and methods of the CALM-PD Study. Parkinson Study Group. Clin Neuropharmacol. 2000;23(1):34–44 (Epub 2000/02/22).

    Article  Google Scholar 

  15. Hely MA, Morris JG, Reid WG, Trafficante R. Sydney Multicenter Study of Parkinson’s disease: non-l-dopa-responsive problems dominate at 15 years. Mov Disord. 2005;20(2):190–9.

    Article  PubMed  Google Scholar 

  16. Van Gerpen JA, Kumar N, Bower JH, Weigand S, Ahlskog JE. Levodopa-associated dyskinesia risk among Parkinson disease patients in Olmsted County, Minnesota, 1976–1990. Arch Neurol. 2006;63(2):205–9 (Epub 2006/02/16).

    Article  PubMed  Google Scholar 

  17. Thenganatt MA, Jankovic J. Parkinson disease subtypes. JAMA Neurol. 2014;71(4):499–504.

    Article  PubMed  Google Scholar 

  18. Nicoletti A, Mostile G, Nicoletti G, Arabia G, Iliceto G, Lamberti P, et al. Clinical phenotype and risk of levodopa-induced dyskinesia in Parkinson’s disease. J Neurol. 2016;10:10.

    Google Scholar 

  19. Sharma JC, Bachmann CG, Linazasoro G. Classifying risk factors for dyskinesia in Parkinson’s disease. Parkinsonism Relat Disord. 2010;16(8):490–7 (Epub 2010/07/06).

    Article  CAS  PubMed  Google Scholar 

  20. Lee JY, Cho J, Lee EK, Park SS, Jeon BS. Differential genetic susceptibility in diphasic and peak-dose dyskinesias in Parkinson’s disease. Mov Disord. 2011;26(1):73–9.

    Article  PubMed  Google Scholar 

  21. Goetz CG, Stebbins GT, Chung KA, Hauser RA, Miyasaki JM, Nicholas AP, et al. Which dyskinesia scale best detects treatment response? Mov Disord. 2013;28(3):341–6.

    Article  CAS  PubMed  Google Scholar 

  22. Martinez-Martin P, Jeukens-Visser M, Lyons KE, Rodriguez-Blazquez C, Selai C, Siderowf A, et al. Health-related quality-of-life scales in Parkinson’s disease: critique and recommendations. Mov Disord. 2011;26(13):2371–80.

    Article  PubMed  Google Scholar 

  23. Papapetropoulos SS. Patient diaries as a clinical endpoint in Parkinson’s disease clinical trials. CNS Neurosci Ther. 2012;18(5):380–7.

    Article  PubMed  Google Scholar 

  24. Fahn S. The medical treatment of Parkinson disease from James Parkinson to George Cotzias. Mov Disord. 2015;30(1):4–18.

    Article  CAS  PubMed  Google Scholar 

  25. Brod LS, Aldred JL, Nutt JG. Are high doses of carbidopa a concern? A randomized, clinical trial in Parkinson’s disease. Mov Disord. 2012;27(6):750–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Linazasoro G, Antonini A, Maguire RP, Leenders KL. Pharmacological and PET studies in patient’s with Parkinson’s disease and a short duration-motor response: implications in the pathophysiology of motor complications. J Neural Transm. 2004;111(4):497–509.

    Article  CAS  PubMed  Google Scholar 

  27. Hong JY, Oh JS, Lee I, Sunwoo MK, Ham JH, Lee JE, et al. Presynaptic dopamine depletion predicts levodopa-induced dyskinesia in de novo Parkinson disease. Neurology. 2014;82(18):1597–604.

    Article  CAS  PubMed  Google Scholar 

  28. Jankovic J, Bressman S, Dauer W, Kang UJ. Clinical and scientific perspectives on movement disorders: Stanley Fahn’s contributions. Mov Disord. 2015;30(14):1862–9.

    Article  PubMed  Google Scholar 

  29. Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM. The pharmacology of l-DOPA-induced dyskinesia in Parkinson’s disease. Pharmacol Rev. 2013;65(1):171–222.

    Article  CAS  PubMed  Google Scholar 

  30. Bezard E, Brotchie JM, Gross CE. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci. 2001;2(8):577–88.

    Article  CAS  PubMed  Google Scholar 

  31. Olanow CW, Obeso JA, Stocchi F. Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. Lancet Neurol. 2006;5(8):677–87.

    Article  CAS  PubMed  Google Scholar 

  32. Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, et al. Pathophysiology of l-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol. 2015;132:96–168.

    Article  CAS  PubMed  Google Scholar 

  33. Lee J, Zhu WM, Stanic D, Finkelstein DI, Horne MH, Henderson J, et al. Sprouting of dopamine terminals and altered dopamine release and uptake in Parkinsonian dyskinaesia. Brain. 2008;131(Pt 6):1574–87.

    Article  PubMed  Google Scholar 

  34. LeWitt PA. Levodopa therapy for Parkinson’s disease: pharmacokinetics and pharmacodynamics. Mov Disord. 2015;30(1):64–72.

    Article  CAS  PubMed  Google Scholar 

  35. Tomiyama M. Adenosine receptors and dyskinesia in pathophysiology. Int Rev Neurobiol. 2014;119:117–26.

    Article  PubMed  Google Scholar 

  36. Nutt JG, Carter JH. Apomorphine can sustain the long-duration response to l-DOPA in fluctuating PD. Neurology. 2000;54(1):247–50.

    Article  CAS  PubMed  Google Scholar 

  37. Herz DM, Haagensen BN, Christensen MS, Madsen KH, Rowe JB, Lokkegaard A, et al. Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans. Brain. 2015;138(Pt 6):1658–66.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pahwa R, Tanner CM, Hauser RA, Sethi K, Isaacson S, Truong D, et al. Amantadine extended release for levodopa-induced dyskinesia in Parkinson’s disease (EASED Study). Mov Disord. 2015;30(6):788–95.

    Article  CAS  PubMed  Google Scholar 

  39. Lee JY, Seo S, Lee JS, Kim HJ, Kim YK, Jeon BS. Putaminal serotonergic innervation: monitoring dyskinesia risk in Parkinson disease. Neurology. 2015;85(10):853–60.

    Article  CAS  PubMed  Google Scholar 

  40. Huot P, Hutchison WD. Serotonin/dopamine transporter ratio as a predictor of l-dopa-induced dyskinesia. Neurology. 2015;85(10):840–1 (Epub 2015/08/09).

    Article  PubMed  Google Scholar 

  41. Fox SH, editor. Parkinson’s disease: motor symptoms; motor complications and current treatments. Orlando: AAN Breakthrough Course; 2016.

  42. Mazzucchi S, Frosini D, Bonuccelli U, Ceravolo R. Current treatment and future prospects of dopa-induced dyskinesias. Drugs Today. 2015;51(5):315–29.

    Article  CAS  PubMed  Google Scholar 

  43. Jankovic J, Poewe W. Therapies in Parkinson’s disease. Curr Opin Neurol. 2012;25(4):433–47.

    Article  CAS  PubMed  Google Scholar 

  44. Xie CL, Zhang YY, Wang XD, Chen J, Chen YH, Pa JL, et al. Levodopa alone compared with levodopa-sparing therapy as initial treatment for Parkinson’s disease: a meta-analysis. Neurol Sci. 2015;36(8):1319–29.

    Article  PubMed  Google Scholar 

  45. Gray R, Ives N, Rick C, Patel S, Gray A, Jenkinson C, et al. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet. 2014;384(9949):1196–205.

    Article  PubMed  CAS  Google Scholar 

  46. Haaxma CA, Horstink MW, Zijlmans JC, Lemmens WA, Bloem BR, Borm GF. Risk of disabling response fluctuations and dyskinesias for dopamine agonists versus levodopa in parkinson’s disease. J Parkinsons Dis. 2015;5(4):847–53.

    Article  CAS  PubMed  Google Scholar 

  47. Rascol O, Perez-Lloret S, Ferreira JJ. New treatments for levodopa-induced motor complications. Mov Disord. 2015;30(11):1451–60.

    Article  CAS  PubMed  Google Scholar 

  48. Nomoto M, Kubo S, Nagai M, Yamada T, Tamaoka A, Tsuboi Y, et al. A randomized controlled trial of subcutaneous apomorphine for parkinson disease: a repeat dose and pharmacokinetic study. Clin Neuropharmacol. 2015;38(6):241–7.

    Article  CAS  PubMed  Google Scholar 

  49. Gottwald MD, Aminoff MJ. Therapies for dopaminergic-induced dyskinesias in Parkinson disease. Ann Neurol. 2011;69(6):919–27.

    Article  CAS  PubMed  Google Scholar 

  50. Bajenaru O, Ene A, Popescu BO, Szasz JA, Sabau M, Muresan DF, et al. The effect of levodopa-carbidopa intestinal gel infusion long-term therapy on motor complications in advanced Parkinson’s disease: a multicenter Romanian experience. J Neural Transm. 2015;23:23.

    Google Scholar 

  51. Timpka J, Fox T, Fox K, Honig H, Odin P, Martinez-Martin P, et al. Improvement of dyskinesias with l-dopa infusion in advanced Parkinson’s disease. Acta Neurol Scand. 2015;11(10):12483.

    Google Scholar 

  52. Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG. Levodopa-induced dyskinesias. Mov Disord. 2007;22(10):1379–89.

    Article  PubMed  Google Scholar 

  53. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med. 2000;342(20):1484–91.

    Article  CAS  PubMed  Google Scholar 

  54. Fox SH, Katzenschlager R, Lim SY, Ravina B, Seppi K, Coelho M, et al. The movement disorder society evidence-based medicine review update: treatments for the motor symptoms of Parkinson’s disease. Mov Disord. 2011;26(3):23829.

    Google Scholar 

  55. Utsumi H, Okuma Y, Kano O, Suzuki Y, Iijima M, Tomimitsu H, et al. Evaluation of the efficacy of pramipexole for treating levodopa-induced dyskinesia in patients with Parkinson’s disease. Int Med. 2013;52(3):325–32.

    Article  CAS  Google Scholar 

  56. Holloway RG, Shoulson I, Fahn S, Kieburtz K, Lang A, Marek K, et al. Pramipexole vs levodopa as initial treatment for Parkinson disease: a 4-year randomized controlled trial. Arch Neurol. 2004;61(7):1044–53.

    PubMed  Google Scholar 

  57. Parkinson Study Group CCI. Long-term effect of initiating pramipexole vs levodopa in early Parkinson disease. Arch Neurol. 2009;66(5):563–70 (Epub 2009/05/13).

    Article  Google Scholar 

  58. Batla A, Stamelou M, Mencacci N, Schapira AH, Bhatia KP. Ropinirole monotherapy induced severe reversible dyskinesias in Parkinson’s disease. Mov Disord. 2013;28(8):1159–60. doi:10.1002/mds.25318 (Epub 2013 Feb 5).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hauser RA, Rascol O, Korczyn AD, Jon Stoessl A, Watts RL, Poewe W, et al. Ten-year follow-up of Parkinson’s disease patients randomized to initial therapy with ropinirole or levodopa. Mov Disord. 2007;22(16):2409–17.

    Article  PubMed  Google Scholar 

  60. Pahwa R, Stacy MA, Factor SA, Lyons KE, Stocchi F, Hersh BP, et al. Ropinirole 24-hour prolonged release: randomized, controlled study in advanced Parkinson disease. Neurology. 2007;68(14):1108–15.

    Article  CAS  PubMed  Google Scholar 

  61. Watts RL, Lyons KE, Pahwa R, Sethi K, Stern M, Hauser RA, et al. Onset of dyskinesia with adjunct ropinirole prolonged-release or additional levodopa in early Parkinson’s disease. Mov Disord. 2010;25(7):858–66.

    Article  PubMed  Google Scholar 

  62. Jankovic J, Watts RL, Martin W, Boroojerdi B. Transdermal rotigotine: double-blind, placebo-controlled trial in Parkinson disease. Arch Neurol. 2007;64(5):676–82.

    Article  PubMed  Google Scholar 

  63. Poewe WH, Rascol O, Quinn N, Tolosa E, Oertel WH, Martignoni E, et al. Efficacy of pramipexole and transdermal rotigotine in advanced Parkinson’s disease: a double-blind, double-dummy, randomised controlled trial. Lancet Neurol. 2007;6(6):513–20.

    Article  CAS  PubMed  Google Scholar 

  64. Giladi N, Ghys L, Surmann E, Boroojerdi B, Jankovic J. Effects of long-term treatment with rotigotine transdermal system on dyskinesia in patients with early-stage Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(12):1345–51.

    Article  PubMed  Google Scholar 

  65. Tintner R, Manian P, Gauthier P, Jankovic J. PLeuropulmonary fibrosis after long-term treatment with the dopamine agonist pergolide for parkinson disease. Arch Neurol. 2005;62(8):1290–5.

    Article  PubMed  Google Scholar 

  66. Hauser RA, Hsu A, Kell S, Espay AJ, Sethi K, Stacy M, et al. Extended-release carbidopa-levodopa (IPX066) compared with immediate-release carbidopa-levodopa in patients with Parkinson’s disease and motor fluctuations: a phase 3 randomised, double-blind trial. Lancet Neurol. 2013;12(4):346–56.

    Article  CAS  PubMed  Google Scholar 

  67. Pahwa R, Lyons KE, Hauser RA, Fahn S, Jankovic J, Pourcher E, et al. Randomized trial of IPX066, carbidopa/levodopa extended release, in early Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(2):142–8.

    Article  PubMed  Google Scholar 

  68. Fernandez HH, Vanagunas A, Odin P, Espay AJ, Hauser RA, Standaert DG, et al. Levodopa-carbidopa intestinal gel in advanced Parkinson’s disease open-label study: interim results. Parkinsonism Relat Disord. 2013;19(3):339–45.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Olanow CW, Kieburtz K, Odin P, Espay AJ, Standaert DG, Fernandez HH, et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol. 2014;13(2):141–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Antonini A, Yegin A, Preda C, Bergmann L, Poewe W. Global long-term study on motor and non-motor symptoms and safety of levodopa-carbidopa intestinal gel in routine care of advanced Parkinson’s disease patients; 12-month interim outcomes. Parkinsonism Relat Disord. 2015;21(3):231–5.

    Article  PubMed  Google Scholar 

  71. Calandrella D, Romito LM, Elia AE, Del Sorbo F, Bagella CF, Falsitta M, et al. Causes of withdrawal of duodenal levodopa infusion in advanced Parkinson disease. Neurology. 2015;84(16):1669–72.

    Article  CAS  PubMed  Google Scholar 

  72. Snow BJ, Macdonald L, McAuley D, Wallis W. The effect of amantadine on levodopa-induced dyskinesias in Parkinson’s disease: a double-blind, placebo-controlled study. Clin Neuropharmacol. 2000;23(2):82–5.

    Article  CAS  PubMed  Google Scholar 

  73. Ory-Magne F, Corvol JC, Azulay JP, Bonnet AM, Brefel-Courbon C, Damier P, et al. Withdrawing amantadine in dyskinetic patients with Parkinson disease: the AMANDYSK trial. Neurology. 2014;82(4):300–7.

    Article  CAS  PubMed  Google Scholar 

  74. Wolf E, Seppi K, Katzenschlager R, Hochschorner G, Ransmayr G, Schwingenschuh P, et al. Long-term antidyskinetic efficacy of amantadine in Parkinson’s disease. Mov Disord. 2010;25(10):1357–63.

    Article  PubMed  Google Scholar 

  75. Vijverman AC, Fox SH. New treatments for the motor symptoms of Parkinson’s disease. Expert Rev Clin Pharmacol. 2014;7(6):761–77.

    Article  CAS  PubMed  Google Scholar 

  76. Durif F, Debilly B, Galitzky M, Morand D, Viallet F, Borg M, et al. Clozapine improves dyskinesias in Parkinson disease: a double-blind, placebo-controlled study. Neurology. 2004;62(3):381–8.

    Article  CAS  PubMed  Google Scholar 

  77. Pahwa RR. Practice Parameter: treatment of Parkinson disease with motor fluctuations and dyskinesia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;66(7):983–95.

    Article  CAS  PubMed  Google Scholar 

  78. Hack N, Fayad SM, Monari EH, Akbar U, Hardwick A, Rodriguez RL, et al. An eight-year clinic experience with clozapine use in a Parkinson’s disease clinic setting. PloS One. 2014;9(3):e91545. doi:10.1371/journal.pone.0091545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Du H, Nie S, Chen G, Ma K, Xu Y, Zhang Z, et al. Levetiracetam ameliorates l-DOPA-induced dyskinesia in hemiparkinsonian rats inducing critical molecular changes in the striatum. Parkinsons Dis. 2015;253878(10):27.

    Google Scholar 

  80. Bezard E, Hill MP, Crossman AR, Brotchie JM, Michel A, Grimee R, et al. Levetiracetam improves choreic levodopa-induced dyskinesia in the MPTP-treated macaque. Eur J Pharmacol. 2004;485(1–3):159–64.

    Article  CAS  PubMed  Google Scholar 

  81. Hill MP, Ravenscroft P, Bezard E, Crossman AR, Brotchie JM, Michel A, et al. Levetiracetam potentiates the antidyskinetic action of amantadine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned primate model of Parkinson’s disease. J Pharmacol Exp Ther. 2004;310(1):386–94.

    Article  CAS  PubMed  Google Scholar 

  82. Tousi B, Subramanian T. The effect of levetiracetam on levodopa induced dyskinesia in patients with Parkinson’s disease. Parkinsonism Relat Disord. 2005;11(5):333–4.

    Article  PubMed  Google Scholar 

  83. Zesiewicz TA, Sullivan KL, Maldonado JL, Tatum WO, Hauser RA. Open-label pilot study of levetiracetam (Keppra) for the treatment of levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2005;20(9):1205–9.

    Article  PubMed  Google Scholar 

  84. Stathis P, Konitsiotis S, Tagaris G, Peterson D. Levetiracetam for the management of levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2011;26(2):264–70.

    Article  CAS  PubMed  Google Scholar 

  85. Lyons KE, Pahwa R. Efficacy and tolerability of levetiracetam in Parkinson disease patients with levodopa-induced dyskinesia. Clin Neuropharmacol. 2006;29(3):148–53.

    Article  CAS  PubMed  Google Scholar 

  86. Silverdale MA, Nicholson SL, Crossman AR, Brotchie JM. Topiramate reduces levodopa-induced dyskinesia in the MPTP-lesioned marmoset model of Parkinson’s disease. Mov Disord. 2005;20(4):403–9.

    Article  PubMed  Google Scholar 

  87. Kobylecki C, Cenci MA, Crossman AR, Ravenscroft P. Calcium-permeable AMPA receptors are involved in the induction and expression of l-DOPA-induced dyskinesia in Parkinson’s disease. J Neurochem. 2010;114(2):499–511.

    Article  CAS  PubMed  Google Scholar 

  88. Kobylecki C, Burn DJ, Kass-Iliyya L, Kellett MW, Crossman AR, Silverdale MA. Randomized clinical trial of topiramate for levodopa-induced dyskinesia in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(4):452–5.

    Article  PubMed  Google Scholar 

  89. Murata M, Hasegawa K, Kanazawa I, Fukasaka J, Kochi K, Shimazu R. Zonisamide improves wearing-off in Parkinson’s disease: a randomized, double-blind study. Mov Disord. 2015;30(10):1343–50.

    Article  CAS  PubMed  Google Scholar 

  90. Katzenschlager R, Manson AJ, Evans A, Watt H, Lees AJ. Low dose quetiapine for drug induced dyskinesias in Parkinson’s disease: a double blind cross over study. J Neurol Neurosurg Psychiatry. 2004;75(2):295–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tronci E, Fidalgo C, Zianni E, Collu M, Stancampiano R, Morelli M, et al. Effect of memantine on l-DOPA-induced dyskinesia in the 6-OHDA-lesioned rat model of Parkinson’s disease. Neuroscience. 2014;265:245–52.

    Article  CAS  PubMed  Google Scholar 

  92. Jankovic J, Clarence-Smith K. Tetrabenazine for the treatment of chorea and other hyperkinetic movement disorders. Expert Rev Neurother. 2011;11(11):1509–23.

    Article  CAS  PubMed  Google Scholar 

  93. Brusa L, Orlacchio A, Stefani A, Galati S, Pierantozzi M, Iani C, et al. Tetrabenazine improves levodopa-induced peak-dose dyskinesias in patients with Parkinson’s disease. Funct Neurol. 2013;28(2):101–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Paquette MA, Martinez AA, Macheda T, Meshul CK, Johnson SW, Berger SP, et al. Anti-dyskinetic mechanisms of amantadine and dextromethorphan in the 6-OHDA rat model of Parkinson’s disease: role of NMDA vs. 5-HT1A receptors. Eur J Neurosci. 2012;36(9):3224–34.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Verhagen Metman L, Del Dotto P, Natte R, van den Munckhof P, Chase TN. Dextromethorphan improves levodopa-induced dyskinesias in Parkinson’s disease. Neurology. 1998;51(1):203–6.

    Article  CAS  PubMed  Google Scholar 

  96. Chase TN, Oh JD, Konitsiotis S. Antiparkinsonian and antidyskinetic activity of drugs targeting central glutamatergic mechanisms. J Neurol. 2000;247(2):II36–42.

    PubMed  Google Scholar 

  97. Bargiotas P, Konitsiotis S. Levodopa-induced dyskinesias in Parkinson’s disease: emerging treatments. Neuropsychiatr Dis Treat. 2013;9:1605–17.

    PubMed  PubMed Central  Google Scholar 

  98. Avanir Pharmaceuticals. Safety and Efficacy of AVP-923 in the treatment of levodopa-induced dyskinesia in Parkinson’s disease patients (LID in PD): NCT01767129. 2015.

  99. Bara-Jimenez W, Dimitrova TD, Sherzai A, Aksu M, Chase TN. Glutamate release inhibition ineffective in levodopa-induced motor complications. Mov Disord. 2006;21(9):1380–3.

    Article  PubMed  Google Scholar 

  100. Krack P, Pollak P, Limousin P, Benazzouz A, Deuschl G, Benabid AL. From off-period dystonia to peak-dose chorea. The clinical spectrum of varying subthalamic nucleus activity. Brain. 1999;122(Pt 6):1133–46.

    Article  PubMed  Google Scholar 

  101. Munhoz RP, Okun MS. Levodopa-induced dyskinesia in Parkinson’s disease. London: Springer-Verlag; 2014.

  102. Baizabal-Carvallo J, Jankovic J. Movement disorders induced by deep brain stimulation. Parkinsonism Relat Disord. 2016;25:1–9. doi:10.1016/j.parkreldis.2016.01.014.

    Article  PubMed  Google Scholar 

  103. Pollak P. Deep brain stimulation for Parkinson’s disease—patient selection. Handb Clin Neurol. 2013;116:97–105.

    Article  PubMed  Google Scholar 

  104. Anderson VC, Burchiel KJ, Hogarth P, Favre J, Hammerstad JP. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol. 2005;62(4):554–60.

    Article  PubMed  Google Scholar 

  105. Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010;362(22):2077–91.

    Article  CAS  PubMed  Google Scholar 

  106. Oyama G, Foote KD, Jacobson CE, Velez-Lago F, Go C, Limotai N, et al. GPi and STN deep brain stimulation can suppress dyskinesia in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(7):814–8.

    Article  PubMed  Google Scholar 

  107. Kim JH, Chang WS, Jung HH, Chang JW. Effect of subthalamic deep brain stimulation on levodopa-induced dyskinesia in Parkinson’s disease. Yonsei Med J. 2015;56(5):1316–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Oyama G, Foote KD, Iyer SS, Zeilman P, Hwynn N, Jacobson CE, et al. Unilateral GPi-DBS as a treatment for levodopa-induced respiratory dyskinesia in Parkinson disease. Neurologist. 2011;17(5):282–5.

    Article  PubMed  Google Scholar 

  109. Li Q, Qian ZM, Arbuthnott GW, Ke Y, Yung WH. Cortical effects of deep brain stimulation: implications for pathogenesis and treatment of Parkinson disease. JAMA Neurol. 2014;71(1):100–3.

    Article  PubMed  Google Scholar 

  110. Metman LV, Slavin KV. Advances in functional neurosurgery for Parkinson’s disease. Mov Disord. 2015;30(11):1461–70.

    Article  PubMed  Google Scholar 

  111. Lotia M, Jankovic J. New and emerging therapies in PD. Expert Opin Pharmacother. 2016;19:1–15.

    Google Scholar 

  112. LeWitt PFH, Giladi N, et al. Poster presentation: accordion pill carbidopa-levodopa for improved symptomatic treatment of advanced Parkin-son’s disease. Mov Disord. 2012;27(S1):S1–523.

    Article  Google Scholar 

  113. Poewe W, Antonini A. Novel formulations and modes of delivery of levodopa. Mov Disord. 2015;30(1):114–20.

    Article  CAS  PubMed  Google Scholar 

  114. Giladi N, Caraco Y, Gurevich T, Djaldetti R, Cohen Y, Yacobi-Zeevi O, Oren S, Kieburtz K, Warren Olanow C. Stable levodopa plasma levels with ND0612 (levodopa/carbidopa for subcutaneous infusion) in Parkinson’s disease (PD) patients with motorfluctuations. Abstract presented at 19th international congress of Parkinson’s disease and movement disorders, San Diego; 2015.

  115. Yacoby-Zeevi O, LeWitt PA. Maintenance of constant steady state therapeutic plasma concentrations of levodopa following its continuous subcutaneous administration with carbidopa. MDS abstract from the 16th international congress of Parkinson’s disease and movement disorders, vol. 2, Dublin, Ireland, 17–21 June 2012.

  116. Trenkwalder C, Chaudhuri KR, Garcia Ruiz PJ, LeWitt P, Katzenschlager R, Sixel-Doring F, et al. Expert Consensus Group report on the use of apomorphine in the treatment of Parkinson’s disease–Clinical practice recommendations. Parkinsonism Relat Disord. 2015;21(9):1023–30.

    Article  PubMed  Google Scholar 

  117. LeWitt PA. Subcutaneously administered apomorphine: pharmacokinetics and metabolism. Neurology. 2004;62(6 Suppl 4):S8–11.

    Article  CAS  PubMed  Google Scholar 

  118. Colzi A, Turner K, Lees AJ. Continuous subcutaneous waking day apomorphine in the long term treatment of levodopa induced interdose dyskinesias in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1998;64(5):573–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kanovsky P, Kubova D, Bares M, Hortova H, Streitova H, Rektor I, et al. Levodopa-induced dyskinesias and continuous subcutaneous infusions of apomorphine: results of a two-year, prospective follow-up. Mov Disord. 2002;17(1):188–91.

    Article  PubMed  Google Scholar 

  120. Katzenschlager R, Hughes A, Evans A, Manson AJ, Hoffman M, Swinn L, et al. Continuous subcutaneous apomorphine therapy improves dyskinesias in Parkinson’s disease: a prospective study using single-dose challenges. Mov Disord. 2005;20(2):151–7.

    Article  PubMed  Google Scholar 

  121. Manson AJ, Turner K, Lees AJ. Apomorphine monotherapy in the treatment of refractory motor complications of Parkinson’s disease: long-term follow-up study of 64 patients. Mov Disord. 2002;17(6):1235–41.

    Article  PubMed  Google Scholar 

  122. Valldeoriola F, Puig-Junoy J, Puig-Peiro R. Cost analysis of the treatments for patients with advanced Parkinson’s disease: SCOPE study. J Med Econ. 2013;16(2):191–201.

    Article  PubMed  Google Scholar 

  123. Cenci MA, Lindgren HS. Advances in understanding l-DOPA-induced dyskinesia. Curr Opin Neurobiol. 2007;17(6):665–71.

    Article  CAS  PubMed  Google Scholar 

  124. Svenningsson P, Rosenblad C, Af Edholm Arvidsson K, Wictorin K, Keywood C, Shankar B, et al. Eltoprazine counteracts l-DOPA-induced dyskinesias in Parkinson’s disease: a dose-finding study. Brain. 2015;138(Pt 4):963–73.

    Article  PubMed  Google Scholar 

  125. Jimenez-Urbieta H, Gago B, de la Riva P, Delgado-Alvarado M, Marin C, Rodriguez-Oroz MC. Dyskinesias and impulse control disorders in Parkinson’s disease: from pathogenesis to potential therapeutic approaches. Neurosci Biobehav Rev. 2015;56:294–314.

    Article  PubMed  Google Scholar 

  126. ADAMAS. Adamas announces positive top-line phase 3 results of ADS-5102 for the treatment of levodopa-induced dyskinesia in patients with Parkinson’s disease. Globe Newswire. 2015. http://ir.adamaspharma.com/releasedetail.cfm?releaseid=948032. Accessed 29 Mar 2016.

  127. Benarroch EE. Adenosine and its receptors: multiple modulatory functions and potential therapeutic targets for neurologic disease. Neurology. 2008;70(3):231–6.

    Article  PubMed  Google Scholar 

  128. Sharma S, Singh S, Sharma V, Singh VP, Deshmukh R. Neurobiology of l-DOPA induced dyskinesia and the novel therapeutic strategies. Biomed Pharmacother. 2015;70:283–93.

    Article  CAS  PubMed  Google Scholar 

  129. Wills AM, Eberly S, Tennis M, Lang AE, Messing S, Togasaki D, et al. Caffeine consumption and risk of dyskinesia in CALM-PD. Mov Disord. 2013;28(3):380–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hauser RA, Cantillon M, Pourcher E, Micheli F, Mok V, Onofrj M, et al. Preladenant in patients with Parkinson’s disease and motor fluctuations: a phase 2, double-blind, randomised trial. Lancet Neurol. 2011;10(3):221–9.

    Article  CAS  PubMed  Google Scholar 

  131. Hauser RA, Stocchi F, Rascol O, Huyck SB, Capece R, Ho TW, et al. Preladenant as an adjunctive therapy with levodopa in parkinson disease: two randomized clinical trials and lessons learned. JAMA Neurol. 2015;2:1–10.

    Google Scholar 

  132. Mizuno Y, Kondo T. Adenosine A2A receptor antagonist istradefylline reduces daily OFF time in Parkinson’s disease. Mov Disord. 2013;28(8):1138–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vorovenci RJ, Antonini A. The efficacy of oral adenosine A2A antagonist istradefylline for the treatment of moderate to severe Parkinson’s disease. Expert Rev Neurother. 2015;15(12):1383–90.

    Article  CAS  PubMed  Google Scholar 

  134. Hauser RA, Olanow CW, Kieburtz KD, Pourcher E, Docu-Axelerad A, Lew M, et al. Tozadenant (SYN115) in patients with Parkinson’s disease who have motor fluctuations on levodopa: a phase 2b, double-blind, randomised trial. Lancet Neurol. 2014;13(8):767–76.

    Article  CAS  PubMed  Google Scholar 

  135. Lewitt PA, Hauser RA, Lu M, Nicholas AP, Weiner W, Coppard N, et al. Randomized clinical trial of fipamezole for dyskinesia in Parkinson disease (FJORD study). Neurology. 2012;79(2):163–9.

    Article  CAS  PubMed  Google Scholar 

  136. Hauser RA, Bronzova J, Sampaio C, Lang AE, Rascol O, Theeuwes A, et al. Safety and tolerability of pardoprunox, a new partial dopamine agonist, in a randomized, controlled study of patients with advanced Parkinson’s disease. Eur Neurol. 2009;62(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  137. Sampaio C, Bronzova J, Hauser RA, Lang AE, Rascol O, van de Witte SV, et al. Pardoprunox in early Parkinson’s disease: results from 2 large, randomized double-blind trials. Mov Disord. 2011;26(8):1464–76.

    Article  PubMed  Google Scholar 

  138. Rascol O, Bronzova J, Hauser RA, Lang AE, Sampaio C, Theeuwes A, et al. Pardoprunox as adjunct therapy to levodopa in patients with Parkinson’s disease experiencing motor fluctuations: results of a double-blind, randomized, placebo-controlled, trial. Parkinsonism Relat Disord. 2012;18(4):370–6.

    Article  CAS  PubMed  Google Scholar 

  139. Borgohain R, Szasz J, Stanzione P, Meshram C, Bhatt MH, Chirilineau D, et al. Two-year, randomized, controlled study of safinamide as add-on to levodopa in mid to late Parkinson’s disease. Mov Disord. 2014;29(10):1273–80.

    Article  CAS  PubMed  Google Scholar 

  140. Schapira AHV, Fox SH, Hauser RA, Jankovic J, Jost W, Kulisevsky J, Pahwa R, Poewe W, Lucini V, Anand R. Safinamide significantly improves responder rates in fluctuating Parkinson’s disease (PD) patients as add-on to levodopa (SETTLE). 17th international congress of Parkinson’s disease and movement disorders, Sydney, Australia, 16–20 June, 2013.

  141. Quik M, O’Leary K, Tanner CM. Nicotine and Parkinson’s disease: implications for therapy. Mov Disord. 2008;23(12):1641–52.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Quik M, Bordia T, Zhang D, Perez XA. Nicotine and nicotinic receptor drugs: potential for Parkinson’s disease and drug-induced movement disorders. Int Rev Neurobiol. 2015;124:247–71.

    Article  PubMed  Google Scholar 

  143. Neuraltus Pharmaceuticals I. Randomized, double-blind, parallel group, placebo controlled safety, tolerability and efficacy study of NP002 in subjects with idiopathic Parkinson’s disease with dyskinesias due to levodopa therapy. ClinicalTrials.gov U.S. National Institutes of Health; 2011 [updated September 26, 2011; cited 2015 September 8]; August 11, 2009: [(website on the Internet)]. Available from: https://www.clinicaltrials.gov/ct2/show/study/NCT00957918?view=results.

  144. Trenkwalder C, Berg D, Rascol O, Eggert K, Ceballos-Baumann A, Corvol JC, et al. A placebo-controlled trial of AQW051 in patients with moderate to severe levodopa-induced dyskinesia. Mov Disord. 2016;15(10):26569.

    Google Scholar 

  145. Koppel BS, Brust JC, Fife T, Bronstein J, Youssof S, Gronseth G, et al. Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2014;82(17):1556–63.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Kluger B, Triolo P, Jones W, Jankovic J. The therapeutic potential of cannabinoids for movement disorders. Mov Disord. 2015;30(3):313–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ferrer B, Asbrock N, Kathuria S, Piomelli D, Giuffrida A. Effects of levodopa on endocannabinoid levels in rat basal ganglia: implications for the treatment of levodopa-induced dyskinesias. Eur J Neurosci. 2003;18(6):1607–14.

    Article  PubMed  Google Scholar 

  148. van der Stelt M, Fox SH, Hill M, Crossman AR, Petrosino S, Di Marzo V, et al. A role for endocannabinoids in the generation of parkinsonism and levodopa-induced dyskinesia in MPTP-lesioned non-human primate models of Parkinson’s disease. Faseb J. 2005;19(9):1140–2.

    PubMed  Google Scholar 

  149. Sieradzan KA, Fox SH, Hill M, Dick JP, Crossman AR, Brotchie JM. Cannabinoids reduce levodopa-induced dyskinesia in Parkinson’s disease: a pilot study. Neurology. 2001;57(11):2108–11.

    Article  CAS  PubMed  Google Scholar 

  150. Carroll CB, Bain PG, Teare L, Liu X, Joint C, Wroath C, et al. Cannabis for dyskinesia in Parkinson disease: a randomized double-blind crossover study. Neurology. 2004;63(7):1245–50.

    Article  CAS  PubMed  Google Scholar 

  151. Potts LF, Park ES, Woo JM, Dyavar Shetty BL, Singh A, Braithwaite SP, et al. Dual kappa-agonist/mu-antagonist opioid receptor modulation reduces levodopa-induced dyskinesia and corrects dysregulated striatal changes in the nonhuman primate model of Parkinson disease. Ann Neurol. 2015;77(6):930–41.

    Article  CAS  PubMed  Google Scholar 

  152. Brusa L, Versace V, Koch G, Iani C, Stanzione P, Bernardi G, et al. Low frequency rTMS of the SMA transiently ameliorates peak-dose LID in Parkinson’s disease. Clin Neurophysiol. 2006;117(9):1917–21.

    Article  PubMed  Google Scholar 

  153. Filipovic SR, Rothwell JC, van de Warrenburg BP, Bhatia K. Repetitive transcranial magnetic stimulation for levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2009;24(2):246–53.

    Article  PubMed  Google Scholar 

  154. Sayin S, Cakmur R, Yener GG, Yaka E, Ugurel B, Uzunel F. Low-frequency repetitive transcranial magnetic stimulation for dyskinesia and motor performance in Parkinson’s disease. J Clin Neurosci. 2014;21(8):1373–6.

    Article  PubMed  Google Scholar 

  155. MJFF Research Grant. A study to evaluate feasibility, safety and preliminary efficacy of magnetic resonance image guided focused ultrasound for the treatment of Parkinson’s disease dyskinesia. The Michael J Fox Foundation for Parkinson’s Research [Internet]. 2013. https://www.michaeljfox.org/foundation/grant-detail.php?grant_id=1111. Accessed 29 Mar 2016.

  156. Bezard E, Tronci E, Pioli EY, Li Q, Porras G, Bjorklund A, et al. Study of the antidyskinetic effect of eltoprazine in animal models of levodopa-induced dyskinesia. Mov Disord. 2013;28(8):1088–96.

    Article  CAS  PubMed  Google Scholar 

  157. Goetz CG, Damier P, Hicking C, Laska E, Muller T, Olanow CW, et al. Sarizotan as a treatment for dyskinesias in Parkinson’s disease: a double-blind placebo-controlled trial. Mov Disord. 2007;22(2):179–86.

    Article  PubMed  Google Scholar 

  158. Olanow CW, Damier P, Goetz CG, Mueller T, Nutt J, Rascol O, et al. Multicenter, open-label, trial of sarizotan in Parkinson disease patients with levodopa-induced dyskinesias (the SPLENDID Study). Clin Neuropharmacol. 2004;27(2):58–62.

    Article  CAS  PubMed  Google Scholar 

  159. Nutt JG, Gunzler SA, Kirchhoff T, Hogarth P, Weaver JL, Krams M, et al. Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov Disord. 2008;23(13):1860–6.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Wu SS, Frucht SJ. Treatment of Parkinson’s disease : what’s on the horizon? CNS Drugs. 2005;19(9):723–43.

    Article  CAS  PubMed  Google Scholar 

  161. Duty S. Targeting glutamate receptors to tackle the pathogenesis, clinical symptoms and levodopa-induced dyskinesia associated with Parkinson’s disease. CNS Drugs. 2012;26(12):1017–32.

    Article  CAS  PubMed  Google Scholar 

  162. Manson AJ, Iakovidou E, Lees AJ. Idazoxan is ineffective for levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2000;15(2):336–7.

    Article  CAS  PubMed  Google Scholar 

  163. Rascol O, Arnulf I, Peyro-Saint Paul H, Brefel-Courbon C, Vidailhet M, Thalamas C, et al. Idazoxan, an alpha-2 antagonist, and l-DOPA-induced dyskinesias in patients with Parkinson’s disease. Mov Disord. 2001;16(4):708–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Jankovic.

Ethics declarations

Funding

None.

Conflict of interest

Dr. Jankovic has received Grants from Adamas Pharmaceuticals, Inc.; Allergan, Inc.; CHDI Foundation; Civitas/Acorda Therapeutics; Huntington Study Group; Ipsen Limited; Kyowa Haako Kirin Pharma, Inc.; Lundbeck Inc.; Medtronic; Merz Pharmaceuticals; Michael J. Fox Foundation for Parkinson Research; National Institutes of Health; National Parkinson Foundation; Omeros Corporation; Parkinson Study Group; Pfizer; Prothena Biosciences Inc.; Psyadon Pharmaceuticals, Inc.; St. Jude Medical; and Teva Pharmaceutical Industries Ltd. Dr. Jankovic receives consulting fees from Adamas Pharmaceuticals, Inc.; Allergan, Inc.; and Teva Pharmaceutical Industries Ltd. Dr. Jankovic has received royalties from Cambridge; Elsevier; Future Science Group; Hodder Arnold; Lippincott Williams and Wilkins; and Wiley-Blackwell. Dhanya Vijayakumar, MD, has no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayakumar, D., Jankovic, J. Drug-Induced Dyskinesia, Part 1: Treatment of Levodopa-Induced Dyskinesia. Drugs 76, 759–777 (2016). https://doi.org/10.1007/s40265-016-0566-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-016-0566-3

Keywords

Navigation