Skip to main content
Log in

The Role of Mitochondria in Statin-Induced Myopathy

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Statins represent the primary therapy for combatting hypercholesterolemia and reducing mortality from cardiovascular events. Despite their pleiotropic effects in lowering cholesterol synthesis, circulating cholesterol, as well as reducing the risk of other systemic diseases, statins have adverse events in a small, but significant, population of treated patients. The most prominent of these adverse effects is statin-induced myopathy, which lacks precise definition but is characterised by elevations in the muscle enzyme creatine kinase alongside musculoskeletal complaints, including pain, weakness and fatigue. The exact aetiology of statin-induced myopathy remains to be elucidated, although impaired mitochondrial function is thought to be an important underlying cause. This may result from or be the consequence of several factors including statin-induced inhibition of coenzyme Q10 (CoQ10) biosynthesis, impaired Ca2+ signalling and modified reactive oxygen species (ROS) generation. The purpose of this review article is to provide an update on the information available linking statin therapy with mitochondrial dysfunction and to outline any mechanistic insights, which may be beneficial in the future treatment of myopathic adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gordon T, Kannel WB. Premature mortality from coronary heart disease. The Framingham study. JAMA. 1971;215(10):1617–25.

    Article  CAS  PubMed  Google Scholar 

  3. Stamler J, Wentworth D, Neaton JD. Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA. 1986;256(20):2823–8.

    Article  CAS  PubMed  Google Scholar 

  4. Verschuren WM, Jacobs DR, Bloemberg BP, Kromhout D, Menotti A, Aravanis C, et al. Serum total cholesterol and long-term coronary heart disease mortality in different cultures. Twenty-five-year follow-up of the seven countries study. JAMA. 1995;274(2):131–6.

    Article  CAS  PubMed  Google Scholar 

  5. Apostolopoulou M, Corsini A, Roden M. The role of mitochondria in statin-induced myopathy. Eur J Clin Invest. 2015;45(7):745–54.

    Article  CAS  PubMed  Google Scholar 

  6. Thompson PD, Panza G, Zaleski A, Taylor B. Statin-associated side effects. J Am Coll Cardiol. 2016;67(20):2395–410.

    Article  CAS  PubMed  Google Scholar 

  7. Auer J, Sinzinger H, Franklin B, Berent R. Muscle- and skeletal-related side-effects of statins: tip of the iceberg? Eur J Prev Cardiol. 2016;23(1):88–110.

    Article  PubMed  Google Scholar 

  8. Sirtori CR. The pharmacology of statins. Pharmacol Res. 2014;88:3–11.

    Article  CAS  PubMed  Google Scholar 

  9. Baker SK, Tarnopolsky MA. Statin myopathies: pathophysiologic and clinical perspectives. Clin Invest Med. 2001;24(5):258–72.

    CAS  PubMed  Google Scholar 

  10. Hamelin BA, Turgeon J. Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci. 1998;19(1):26–37.

    Article  CAS  PubMed  Google Scholar 

  11. Nezasa K, Higaki K, Takeuchi M, Nakano M, Koike M. Uptake of rosuvastatin by isolated rat hepatocytes: comparison with pravastatin. Xenobiotica. 2003;33(4):379–88.

    Article  CAS  PubMed  Google Scholar 

  12. Filppula AM, Hirvensalo P, Parviainen H, Ivaska VE, Lonnberg KI, Deng F, et al. Comparative hepatic and intestinal metabolism and pharmacodynamics of statins. Drug Metab Dispos. 2021;49(8):658–67.

    Article  CAS  PubMed  Google Scholar 

  13. Climent E, Benaiges D, Pedro-Botet J. Hydrophilic or lipophilic statins? Front Cardiovasc Med. 2021;8: 687585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Choudhary A, Rawat U, Kumar P, Mittal P. Pleotropic effects of statins: the dilemma of wider utilization of statin. Egypt Heart J. 2023;75(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu A, Wu Q, Guo J, Ares I, Rodriguez JL, Martinez-Larranaga MR, et al. Statins: adverse reactions, oxidative stress and metabolic interactions. Pharmacol Ther. 2019;195:54–84.

    Article  CAS  PubMed  Google Scholar 

  16. Jeong HJ, Lee HS, Kim KS, Kim YK, Yoon D, Park SW. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J Lipid Res. 2008;49(2):399–409.

    Article  CAS  PubMed  Google Scholar 

  17. Huijgen R, Fouchier SW, Denoun M, Hutten BA, Vissers MN, Lambert G, et al. Plasma levels of PCSK9 and phenotypic variability in familial hypercholesterolemia. J Lipid Res. 2012;53(5):979–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bilheimer DW, Grundy SM, Brown MS, Goldstein JL. Mevinolin and colestipol stimulate receptor-mediated clearance of low density lipoprotein from plasma in familial hypercholesterolemia heterozygotes. Proc Natl Acad Sci USA. 1983;80(13):4124–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Forstermann U, Li H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br J Pharmacol. 2011;164(2):213–23.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Banach M, Stulc T, Dent R, Toth PP. Statin non-adherence and residual cardiovascular risk: There is need for substantial improvement. Int J Cardiol. 2016;225:184–96.

    Article  PubMed  Google Scholar 

  21. Stroes ES, van der Valk FM. A sense of excitement for a specific Lp(a)-lowering therapy. Lancet. 2015;386(10002):1427–9.

    Article  PubMed  Google Scholar 

  22. Newman CB, Preiss D, Tobert JA, Jacobson TA, Page RL 2nd, Goldstein LB, et al. Statin safety and associated adverse events: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol. 2019;39(2):e38–81.

    Article  CAS  PubMed  Google Scholar 

  23. Bruckert E, Hayem G, Dejager S, Yau C, Begaud B. Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients–the PRIMO study. Cardiovasc Drugs Ther. 2005;19(6):403–14.

    Article  CAS  PubMed  Google Scholar 

  24. Nichols GA, Koro CE. Does statin therapy initiation increase the risk for myopathy? An observational study of 32,225 diabetic and nondiabetic patients. Clin Ther. 2007;29(8):1761–70.

    Article  CAS  PubMed  Google Scholar 

  25. Cohen JD, Brinton EA, Ito MK, Jacobson TA. Understanding Statin Use in America and Gaps in Patient Education (USAGE): an internet-based survey of 10,138 current and former statin users. J Clin Lipidol. 2012;6(3):208–15.

    Article  PubMed  Google Scholar 

  26. Wiggins BS, Backes JM, Hilleman D. Statin-associated muscle symptoms—a review: individualizing the approach to optimize care. Pharmacotherapy. 2022;42(5):428–38.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou Z, Albarqouni L, Breslin M, Curtis AJ, Nelson M. Statin-associated muscle symptoms (SAMS) in primary prevention for cardiovascular disease in older adults: a protocol for a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2017;7(9): e017587.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hortobagyi T, Denahan T. Variability in creatine kinase: methodological, exercise, and clinically related factors. Int J Sports Med. 1989;10(2):69–80.

    Article  CAS  PubMed  Google Scholar 

  29. Warden BA, Guyton JR, Kovacs AC, Durham JA, Jones LK, Dixon DL, et al. Assessment and management of statin-associated muscle symptoms (SAMS): a clinical perspective from the National Lipid Association. J Clin Lipidol. 2023;17(1):19–39.

    Article  PubMed  Google Scholar 

  30. Lightfoot AP, McArdle A, Jackson MJ, Cooper RG. In the idiopathic inflammatory myopathies (IIM), do reactive oxygen species (ROS) contribute to muscle weakness? Ann Rheum Dis. 2015;74(7):1340–6.

    Article  CAS  PubMed  Google Scholar 

  31. Stringer HA, Sohi GK, Maguire JA, Cote HC. Decreased skeletal muscle mitochondrial DNA in patients with statin-induced myopathy. J Neurol Sci. 2013;325(1–2):142–7.

    Article  CAS  PubMed  Google Scholar 

  32. Bouitbir J, Charles AL, Echaniz-Laguna A, Kindo M, Daussin F, Auwerx J, et al. Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a “mitohormesis” mechanism involving reactive oxygen species and PGC-1. Eur Heart J. 2012;33(11):1397–407.

    Article  CAS  PubMed  Google Scholar 

  33. Singh F, Zoll J, Duthaler U, Charles AL, Panajatovic MV, Laverny G, et al. PGC-1beta modulates statin-associated myotoxicity in mice. Arch Toxicol. 2019;93(2):487–504.

    Article  CAS  PubMed  Google Scholar 

  34. Macchi C, Bonalume V, Greco MF, Mozzo M, Melfi V, Sirtori CR, et al. Impact of atorvastatin on skeletal muscle mitochondrial activity, locomotion and axonal excitability-evidence from ApoE(-/-) mice. Int J Mol Sci. 2022;23(10):5415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng P, Zhang Q, Ma W, Hu R, Gu Y, Bian Z, et al. Low-dose atorvastatin protects skeletal muscle mitochondria in high-fat diet-fed mice with mitochondrial autophagy inhibition and fusion enhancement. Eur J Pharmacol. 2023;959: 176085.

    Article  CAS  PubMed  Google Scholar 

  36. Sirvent P, Bordenave S, Vermaelen M, Roels B, Vassort G, Mercier J, et al. Simvastatin induces impairment in skeletal muscle while heart is protected. Biochem Biophys Res Commun. 2005;338(3):1426–34.

    Article  CAS  PubMed  Google Scholar 

  37. Kaufmann P, Torok M, Zahno A, Waldhauser KM, Brecht K, Krahenbuhl S. Toxicity of statins on rat skeletal muscle mitochondria. Cell Mol Life Sci. 2006;63(19–20):2415–25.

    Article  CAS  PubMed  Google Scholar 

  38. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278(38):36027–31.

    Article  CAS  PubMed  Google Scholar 

  39. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004;287(4):C817–33.

    Article  CAS  PubMed  Google Scholar 

  40. Wang Q, Zou MH. Measurement of reactive oxygen species (ROS) and mitochondrial ROS in AMPK knockout mice blood vessels. Methods Mol Biol. 2018;1732:507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kwak HB, Thalacker-Mercer A, Anderson EJ, Lin CT, Kane DA, Lee NS, et al. Simvastatin impairs ADP-stimulated respiration and increases mitochondrial oxidative stress in primary human skeletal myotubes. Free Radic Biol Med. 2012;52(1):198–207.

    Article  CAS  PubMed  Google Scholar 

  42. Antonsson B. Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways. Mol Cell Biochem. 2004;256–257(1–2):141–55.

    Article  PubMed  Google Scholar 

  43. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407(6805):770–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Dirks AJ, Jones KM. Statin-induced apoptosis and skeletal myopathy. Am J Physiol Cell Physiol. 2006;291(6):C1208–12.

    Article  CAS  PubMed  Google Scholar 

  45. Sirvent P, Mercier J, Vassort G, Lacampagne A. Simvastatin triggers mitochondria-induced Ca2+ signaling alteration in skeletal muscle. Biochem Biophys Res Commun. 2005;329(3):1067–75.

    Article  CAS  PubMed  Google Scholar 

  46. Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435(2):297–312.

    Article  CAS  PubMed  Google Scholar 

  47. Bjorkhem-Bergman L, Lindh JD, Bergman P. What is a relevant statin concentration in cell experiments claiming pleiotropic effects? Br J Clin Pharmacol. 2011;72(1):164–5.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mullen PJ, Zahno A, Lindinger P, Maseneni S, Felser A, Krahenbuhl S, et al. Susceptibility to simvastatin-induced toxicity is partly determined by mitochondrial respiration and phosphorylation state of Akt. Biochim Biophys Acta. 2011;1813(12):2079–87.

    Article  CAS  PubMed  Google Scholar 

  49. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science. 1997;278(5338):687–9.

    Article  ADS  PubMed  Google Scholar 

  50. Parcellier A, Tintignac LA, Zhuravleva E, Hemmings BA. PKB and the mitochondria: AKTing on apoptosis. Cell Signal. 2008;20(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  51. Hanai J, Cao P, Tanksale P, Imamura S, Koshimizu E, Zhao J, et al. The muscle-specific ubiquitin ligase atrogin-1/MAFbx mediates statin-induced muscle toxicity. J Clin Invest. 2007;117(12):3940–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ding WX, Nam OC. Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity. FEMS Microbiol Lett. 2003;220(1):1–7.

    Article  PubMed  Google Scholar 

  53. Obayashi H, Nezu Y, Yokota H, Kiyosawa N, Mori K, Maeda N, et al. Cerivastatin induces type-I fiber-, not type-II fiber-, predominant muscular toxicity in the young male F344 rats. J Toxicol Sci. 2011;36(4):445–52.

    Article  CAS  PubMed  Google Scholar 

  54. Wallace DC. Mitochondrial diseases in man and mouse. Science. 1999;283(5407):1482–8.

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Bentinger M, Brismar K, Dallner G. The antioxidant role of coenzyme Q. Mitochondrion. 2007;7(Suppl):S41-50.

    Article  CAS  PubMed  Google Scholar 

  56. Hargreaves IP. Coenzyme Q10 as a therapy for mitochondrial disease. Int J Biochem Cell Biol. 2014;49:105–11.

    Article  CAS  PubMed  Google Scholar 

  57. Laaksonen R, Ojala JP, Tikkanen MJ, Himberg JJ. Serum ubiquinone concentrations after short- and long-term treatment with HMG-CoA reductase inhibitors. Eur J Clin Pharmacol. 1994;46(4):313–7.

    Article  CAS  PubMed  Google Scholar 

  58. De Pinieux G, Chariot P, Ammi-Said M, Louarn F, Lejonc JL, Astier A, et al. Lipid-lowering drugs and mitochondrial function: effects of HMG-CoA reductase inhibitors on serum ubiquinone and blood lactate/pyruvate ratio. Br J Clin Pharmacol. 1996;42(3):333–7.

    Article  CAS  PubMed  Google Scholar 

  59. Marcoff L, Thompson PD. The role of coenzyme Q10 in statin-associated myopathy: a systematic review. J Am Coll Cardiol. 2007;49(23):2231–7.

    Article  CAS  PubMed  Google Scholar 

  60. Païva H, Thelen KM, Van Coster R, Smet J, De Paepe B, Mattila KM, et al. High-dose statins and skeletal muscle metabolism in humans: a randomized, controlled trial. Clin Pharmacol Ther. 2005;78(1):60–8.

    Article  PubMed  Google Scholar 

  61. Laaksonen R, Riihimaki A, Laitila J, Martensson K, Tikkanen MJ, Himberg JJ. Serum and muscle tissue ubiquinone levels in healthy subjects. J Lab Clin Med. 1995;125(4):517–21.

    CAS  PubMed  Google Scholar 

  62. Duncan AJ, Hargreaves IP, Damian MS, Land JM, Heales SJ. Decreased ubiquinone availability and impaired mitochondrial cytochrome oxidase activity associated with statin treatment. Toxicol Mech Methods. 2009;19(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  63. Vigelso A, Andersen NB, Dela F. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training. Int J Physiol Pathophysiol Pharmacol. 2014;6(2):84–101.

    PubMed  PubMed Central  Google Scholar 

  64. Littarru GP, Langsjoen P. Coenzyme Q10 and statins: biochemical and clinical implications. Mitochondrion. 2007;7(Suppl):S168–74.

    Article  CAS  PubMed  Google Scholar 

  65. Ghirlanda G, Oradei A, Manto A, Lippa S, Uccioli L, Caputo S, et al. Evidence of plasma CoQ10-lowering effect by HMG-CoA reductase inhibitors: a double-blind, placebo-controlled study. J Clin Pharmacol. 1993;33(3):226–9.

    Article  CAS  PubMed  Google Scholar 

  66. Hargreaves IP, Duncan AJ, Heales SJ, Land JM. The effect of HMG-CoA reductase inhibitors on coenzyme Q10: possible biochemical/clinical implications. Drug Saf. 2005;28(8):659–76.

    Article  CAS  PubMed  Google Scholar 

  67. Oh J, Ban MR, Miskie BA, Pollex RL, Hegele RA. Genetic determinants of statin intolerance. Lipids Health Dis. 2007;6:7.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ruaño G, Windemuth A, Wu AH, Kane JP, Malloy MJ, Pullinger CR, et al. Mechanisms of statin-induced myalgia assessed by physiogenomic associations. Atherosclerosis. 2011;218(2):451–6.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nakahara K, Yada T, Kuriyama M, Osame M. Cytosolic Ca2+ increase and cell damage in L6 rat myoblasts by HMG-CoA reductase inhibitors. Biochem Biophys Res Commun. 1994;202(3):1579–85.

    Article  CAS  PubMed  Google Scholar 

  70. Duchen MR. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J Physiol. 1999;516(Pt 1):1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, et al. Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem. 2009;284(31):20796–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Blomeyer CA, Bazil JN, Stowe DF, Pradhan RK, Dash RK, Camara AK. Dynamic buffering of mitochondrial Ca2+ during Ca2+ uptake and Na+-induced Ca2+ release. J Bioenergy Biomembr. 2013;45(3):189–202.

    Article  CAS  Google Scholar 

  73. Hattori T, Saito K, Takemura M, Ito H, Ohta H, Wada H, et al. Statin-induced Ca(2+) release was increased in B lymphocytes in patients who showed elevated serum creatine kinase during statin treatment. J Atheroscler Thromb. 2009;16(6):870–7.

    Article  CAS  PubMed  Google Scholar 

  74. Smith MA, Schnellmann RG. Calpains, mitochondria, and apoptosis. Cardiovasc Res. 2012;96(1):32–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Aromataris EC, Rychkov GY. ClC-1 chloride channel: matching its properties to a role in skeletal muscle. Clin Exp Pharmacol Physiol. 2006;33(11):1118–23.

    Article  CAS  PubMed  Google Scholar 

  76. Pierno S, Didonna MP, Cippone V, De Luca A, Pisoni M, Frigeri A, et al. Effects of chronic treatment with statins and fenofibrate on rat skeletal muscle: a biochemical, histological and electrophysiological study. Br J Pharmacol. 2006;149(7):909–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pierno S, Camerino GM, Cippone V, Rolland JF, Desaphy JF, De Luca A, et al. Statins and fenofibrate affect skeletal muscle chloride conductance in rats by differently impairing ClC-1 channel regulation and expression. Br J Pharmacol. 2009;156(8):1206–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Laaksonen R, Jokelainen K, Laakso J, Sahi T, Harkonen M, Tikkanen MJ, et al. The effect of simvastatin treatment on natural antioxidants in low-density lipoproteins and high-energy phosphates and ubiquinone in skeletal muscle. Am J Cardiol. 1996;77(10):851–4.

    Article  CAS  PubMed  Google Scholar 

  79. Yuksel C, Du F, Ravichandran C, Goldbach JR, Thida T, Lin P, et al. Abnormal high-energy phosphate molecule metabolism during regional brain activation in patients with bipolar disorder. Mol Psychiatry. 2015;20(9):1079–84.

    Article  CAS  PubMed  Google Scholar 

  80. Schaefer WH, Lawrence JW, Loughlin AF, Stoffregen DA, Mixson LA, Dean DC, et al. Evaluation of ubiquinone concentration and mitochondrial function relative to cerivastatin-induced skeletal myopathy in rats. Toxicol Appl Pharmacol. 2004;194(1):10–23.

    Article  CAS  PubMed  Google Scholar 

  81. Reed MD, Van Nostran W. Assessing pain intensity with the visual analog scale: a plea for uniformity. J Clin Pharmacol. 2014;54(3):241–4.

    Article  PubMed  Google Scholar 

  82. Qu H, Guo M, Chai H, Wang WT, Gao ZY, Shi DZ. Effects of coenzyme Q10 on statin-induced myopathy: an updated meta-analysis of randomized controlled trials. J Am Heart Assoc. 2018;7(19): e009835.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kennedy C, Koller Y, Surkova E. Effect of coenzyme Q10 on statin-associated myalgia and adherence to statin therapy: a systematic review and meta-analysis. Atherosclerosis. 2020;299:1–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iain P. Hargreaves or Adam P. Lightfoot.

Ethics declarations

Funding

There is no funding associated with this article.

Conflict of interest

The authors have no conflicts of interest to declare.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

GB, AT, IPH and APL have all contributed directly to the writing and revisions of the manuscript. All authors have approved the final version and submission.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, G., Thoma, A., Hargreaves, I.P. et al. The Role of Mitochondria in Statin-Induced Myopathy. Drug Saf (2024). https://doi.org/10.1007/s40264-024-01413-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40264-024-01413-9

Navigation