Skip to main content
Log in

Chemobrain in Breast Cancer: Mechanisms, Clinical Manifestations, and Potential Interventions

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Among the potential adverse effects of breast cancer treatment, chemotherapy-related cognitive impairment (CRCI) has gained increased attention in the past years. In this review, we provide an overview of the literature regarding CRCI in breast cancer, focusing on three main aspects. The first aspect relates to the molecular mechanisms linking individual drugs commonly used to treat breast cancer and CRCI, which include oxidative stress and inflammation, reduced neurogenesis, reduced levels of specific neurotransmitters, alterations in neuronal dendrites and spines, and impairment in myelin production. The second aspect is related to the clinical characteristics of CRCI in patients with breast cancer treated with different drug combinations. Data suggest the incidence rates of CRCI in breast cancer vary considerably, and may affect more than 50% of treated patients. Both chemotherapy regimens with or without anthracyclines have been associated with CRCI manifestations. While cross-sectional studies suggest the presence of symptoms up to 20 years after treatment, longitudinal studies confirm cognitive impairments lasting for at most 4 years after the end of chemotherapy. The third and final aspect is related to possible therapeutic interventions. Although there is still no standard of care to treat CRCI, several pharmacological and non-pharmacological approaches have shown interesting results. In summary, even if cognitive impairments derived from chemotherapy resolve with time, awareness of CRCI is crucial to provide patients with a better understanding of the syndrome and to offer them the best care directed at improving quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33. https://doi.org/10.3322/caac.21654.

    Article  PubMed  Google Scholar 

  2. Siembida EJ, Smith AW, Potosky AL, et al. Examination of individual and multiple comorbid conditions and health-related quality of life in older cancer survivors. Qual Life Res. 2021;30:1119–29.

    Article  Google Scholar 

  3. Gibson EM, Monje M. Emerging mechanistic underpinnings and therapeutic targets for chemotherapy-related cognitive impairment. Curr Opin Oncol. 2019;31:531–9. https://doi.org/10.1097/CCO.0000000000000578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wefel JS, Schagen SB. Chemotherapy-related cognitive dysfunction. Curr Neurol Neurosci Rep. 2012;12:267–75. https://doi.org/10.1007/s11910-012-0264-9.

    Article  CAS  PubMed  Google Scholar 

  5. Huehnchen P, van Kampen A, Boehmerle W, Endres M. Cognitive impairment after cytotoxic chemotherapy. Neuro Oncol Pract. 2020;7:11–21. https://doi.org/10.1093/nop/npz052.

    Article  Google Scholar 

  6. Harbeck N, Penault-Llorca F, Cortes J, et al. Breast cancer. Nat Rev Dis Primer. 2019;5:1–31. https://doi.org/10.1038/s41572-019-0111-2.

    Article  Google Scholar 

  7. Wieneke MH, Dienst ER. Neuropsychological assessment of cognitive functioning following chemotherapy for breast cancer. Psychooncology. 1995;4:61–6. https://doi.org/10.1002/pon.2960040108.

    Article  Google Scholar 

  8. Dijkshoorn ABC, van Stralen HE, Sloots M, et al. Prevalence of cognitive impairment and change in patients with breast cancer: a systematic review of longitudinal studies. Psychooncology. 2021;30:635–48. https://doi.org/10.1002/pon.5623.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wefel JS, Saleeba AK, Buzdar AU, Meyers CA. Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer. 2010;116:3348–56. https://doi.org/10.1002/cncr.25098.

    Article  PubMed  Google Scholar 

  10. Ahles TA, Saykin AJ, Furstenberg CT, et al. Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. J Clin Oncol. 2002;20:485–93. https://doi.org/10.1200/JCO.2002.20.2.485.

    Article  CAS  PubMed  Google Scholar 

  11. Scherwath A, Mehnert A, Schleimer B, et al. Neuropsychological function in high-risk breast cancer survivors after stem-cell supported high-dose therapy versus standard-dose chemotherapy: evaluation of long-term treatment effects. Ann Oncol. 2006;17:415–23. https://doi.org/10.1093/annonc/mdj108.

    Article  CAS  PubMed  Google Scholar 

  12. Wefel JS, Vardy J, Ahles T, Schagen SB. International Cognition and Cancer Task Force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol. 2011;12:703–8. https://doi.org/10.1016/S1470-2045(10)70294-1.

    Article  PubMed  Google Scholar 

  13. Bernstein LJ, McCreath GA, Komeylian Z, Rich JB. Cognitive impairment in breast cancer survivors treated with chemotherapy depends on control group type and cognitive domains assessed: a multilevel meta-analysis. Neurosci Biobehav Rev. 2017;83:417–28. https://doi.org/10.1016/j.neubiorev.2017.10.028.

    Article  PubMed  Google Scholar 

  14. Ahles TA, Saykin AJ, McDonald BC, et al. Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. J Clin Oncol. 2010;28(29):4434–40. https://doi.org/10.1200/JCO.2009.27.0827.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ganz PA, Van Dyk K. Cognitive impairment in patients with breast cancer: understanding the impact of chemotherapy and endocrine therapy. J Clin Oncol. 2020;38:1871–4. https://doi.org/10.1200/JCO.20.00336.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tangpong J, Cole MP, Sultana R, et al. Adriamycin-induced, TNF-alpha-mediated central nervous system toxicity. Neurobiol Dis. 2006;23:127–39. https://doi.org/10.1016/j.nbd.2006.02.013.

    Article  CAS  PubMed  Google Scholar 

  17. Tangpong J, Miriyala S, Noel T, et al. Doxorubicin-induved central nervous system toxicity and protection by xanthone derivative of Garcinia mangostana. Neuroscience. 2011;175:292–9. https://doi.org/10.1016/j.neuroscience.2010.11.007.

    Article  CAS  PubMed  Google Scholar 

  18. Ramalingayya GV, Cheruku SP, Nayak PG, et al. Rutin protects against neuronal damage in vitro and ameliorates doxorubicin-induced memory deficits in vivo in Wistar rats. Drug Des Devel Ther. 2017;11:1011–26. https://doi.org/10.2147/DDDT.S103511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Allen BD, Apodaca LA, Syage AR, et al. Attenuation of neuroinflammation reverses adriamycin-induced cognitive impairments. Acta Neuropathol Commun. 2019;7:186. https://doi.org/10.1186/s40478-019-0838-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. El-Agamy SE, Abdel-Aziz AK, Wahdan S, et al. Astaxanthin ameliorates doxorubicin-induced cognitive impairment (chemobrain) in experimental rat model: impact on oxidative, inflammatory, and apoptotic machineries. Mol Neurobiol. 2018;55:5727–40. https://doi.org/10.1007/s12035-017-0797-7.

    Article  CAS  PubMed  Google Scholar 

  21. Iqubal A, Sharma S, Najmi AK, et al. Nerolidol ameliorates cyclophosphamide-induced oxidative stress, neuroinflammation and cognitive dysfunction: plausible role of Nrf2 and NF- κB. Life Sci. 2019;236: 116867. https://doi.org/10.1016/j.lfs.2019.116867.

    Article  CAS  PubMed  Google Scholar 

  22. Gaman AM, Uzoni A, Popa-Wagner A, et al. The role of oxidative stress in etiopathogenesis of chemotherapy induced cognitive impairment (CICI): “chemobrain.” Aging Dis. 2016;7:307–17. https://doi.org/10.14336/AD.2015.1022.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li Z, Zhao S, Zhang H-L, et al. Proinflammatory factors mediate paclitaxel-induced impairment of learning and memory. Mediat Inflamm. 2018. https://doi.org/10.1155/2018/3941840.

    Article  Google Scholar 

  24. Brown T, Sykes D, Allen AR. Implications of breast cancer chemotherapy-induced inflammation on the gut, liver, and central nervous system. Biomedicines. 2021;9:189. https://doi.org/10.3390/biomedicines9020189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Christie L-A, Acharya MM, Parihar VK, et al. Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin Cancer Res. 2012;18:1954–65. https://doi.org/10.1158/1078-0432.CCR-11-2000.

    Article  CAS  PubMed  Google Scholar 

  26. Park H-S, Kim C-J, Kwak H-B, et al. Physical exercise prevents cognitive impairment by enhancing hippocampal neuroplasticity and mitochondrial function in doxorubicin-induced chemobrain. Neuropharmacology. 2018;133:451–61. https://doi.org/10.1016/j.neuropharm.2018.02.013.

    Article  CAS  PubMed  Google Scholar 

  27. Yang M, Kim J-S, Song M-S, et al. Cyclophosphamide impairs hippocampus-dependent learning and memory in adult mice: possible involvement of hippocampal neurogenesis in chemotherapy-induced memory deficits. Neurobiol Learn Mem. 2010;93:487–94. https://doi.org/10.1016/j.nlm.2010.01.006.

    Article  CAS  PubMed  Google Scholar 

  28. Janelsins MC, Roscoe JA, Berg MJ, et al. IGF-1 partially restores chemotherapy-induced reductions in neural cell proliferation in adult C57BL/6 mice. Cancer Invest. 2010;28:544–53. https://doi.org/10.3109/07357900903405942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kwatra M, Jangra A, Mishra M, et al. Naringin and sertraline ameliorate doxorubicin-induced behavioral deficits through modulation of serotonin level and mitochondrial complexes protection pathway in rat hippocampus. Neurochem Res. 2016;41:2352–66. https://doi.org/10.1007/s11064-016-1949-2.

    Article  CAS  PubMed  Google Scholar 

  30. Antkiewicz-Michaluk L, Krzemieniecki K, Romanska I, et al. Acute treatment with doxorubicin induced neurochemical impairment of the function of dopamine system in rat brain structures. Pharmacol Rep. 2016;68:627–30. https://doi.org/10.1016/j.pharep.2016.01.009.

    Article  CAS  PubMed  Google Scholar 

  31. Manchon JFM, Dabaghian Y, Uzor N-E, et al. Levetiracetam mitigates doxorubicin-induced DNA and synaptic damage in neurons. Sci Rep. 2016;6:25705. https://doi.org/10.1038/srep25705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu L, Guo D, Liu Q, et al. Abnormal development of dendrites in adult-born rat hippocampal granule cells induced by cyclophosphamide. Front Cell Neurosci. 2017. https://doi.org/10.3389/fncel.2017.00171.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Han R, Yang YM, Dietrich J, et al. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J Biol. 2008;7:12. https://doi.org/10.1186/jbiol69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Demby TC, Rodriguez O, McCarthy CW, et al. A mouse model of chemotherapy-related cognitive impairments integrating the risk factors of aging and APOE4 genotype. Behav Brain Res. 2020;384: 112534. https://doi.org/10.1016/j.bbr.2020.112534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McElroy T, Brown T, Kiffer F, et al. Assessing the effects of redox modifier MnTnBuOE-2-PyP 5+ on cognition and hippocampal physiology following doxorubicin, cyclophosphamide, and paclitaxel treatment. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21051867.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ongnok B, Chattipakorn N, Chattipakorn SC. Doxorubicin and cisplatin induced cognitive impairment: the possible mechanisms and interventions. Exp Neurol. 2020;324: 113118. https://doi.org/10.1016/j.expneurol.2019.113118.

    Article  CAS  PubMed  Google Scholar 

  37. Tong Y, Wang K, Sheng S, Cui J. Polydatin ameliorates chemotherapy-induced cognitive impairment (chemobrain) by inhibiting oxidative stress, inflammatory response, and apoptosis in rats. Biosci Biotechnol Biochem. 2020;84:1201–10. https://doi.org/10.1080/09168451.2020.1722057.

    Article  CAS  PubMed  Google Scholar 

  38. Anderson JE, Trujillo M, McElroy T, et al. Early effects of cyclophosphamide, methotrexate, and 5-fluorouracil on neuronal morphology and hippocampal-dependent behavior in a murine model. Toxicol Sci. 2020;173:156–70. https://doi.org/10.1093/toxsci/kfz213.

    Article  PubMed  Google Scholar 

  39. Lange M, Joly F, Vardy J, et al. Cancer-related cognitive impairment: an update on state of the art, detection, and management strategies in cancer survivors. Ann Oncol. 2019;30:1925–40. https://doi.org/10.1093/annonc/mdz410.

    Article  CAS  PubMed  Google Scholar 

  40. Geraghty AC, Gibson EM, Ghanem RA, et al. Loss of adaptive myelination contributes to methotrexate chemotherapy-related cognitive impairment. Neuron. 2019;103:250-65.e8. https://doi.org/10.1016/j.neuron.2019.04.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gibson EM, Nagaraja S, Ocampo A, et al. Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell. 2019;176:43-55.e13. https://doi.org/10.1016/j.cell.2018.10.049.

    Article  CAS  PubMed  Google Scholar 

  42. Bennouna D, Solano M, Orchard TS, et al. The effects of doxorubicin-based chemotherapy and omega-3 supplementation on mouse brain lipids. Metabolites. 2019. https://doi.org/10.3390/metabo9100208.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bagnall-Moreau C, Chaudhry S, Salas-Ramirez K, et al. Chemotherapy-induced cognitive impairment is associated with increased inflammation and oxidative damage in the hippocampus. Mol Neurobiol. 2019;56:7159–72. https://doi.org/10.1007/s12035-019-1589-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Philpot RM, Ficken M, Johns BE, et al. Spatial memory deficits in mice induced by chemotherapeutic agents are prevented by acetylcholinesterase inhibitors. Cancer Chemother Pharmacol. 2019;84:579–89. https://doi.org/10.1007/s00280-019-03881-8.

    Article  CAS  PubMed  Google Scholar 

  45. Shi D-D, Huang Y-H, Lai CSW, et al. Ginsenoside Rg1 prevents chemotherapyiInduced cognitive impairment: associations with microglia-mediated cytokines. Neuroinflamm Neuroplast Mol Neurobiol. 2019;56:5626–42. https://doi.org/10.1007/s12035-019-1474-9.

    Article  CAS  Google Scholar 

  46. El-Agamy SE, Abdel-Aziz AK, Esmat A, Azab SS. Chemotherapy and cognition: comprehensive review on doxorubicin-induced chemobrain. Cancer Chemother Pharmacol. 2019;84:1–14. https://doi.org/10.1007/s00280-019-03827-0.

    Article  CAS  PubMed  Google Scholar 

  47. Gourishetti K. Medhya rasayana restores memory function against doxorubicin-induced cognitive decline: possibly by its neuroprotective effect. Indian J Pharm Educ Res. 2019;53:s104–11. https://doi.org/10.5530/ijper.53.2s.54.

    Article  Google Scholar 

  48. Speidell AP, Demby T, Lee Y, et al. Development of a human APOE knock-in mouse model for study of cognitive function after cancer chemotherapy. Neurotox Res. 2019;35:291–303. https://doi.org/10.1007/s12640-018-9954-7.

    Article  CAS  PubMed  Google Scholar 

  49. Alhowail AH. Preserved memory function of rats following fluorouracil treatment. J Pharm Res Int. 2019. https://doi.org/10.9734/jpri/2019/v30i330269.

    Article  Google Scholar 

  50. Cerulla N, Arcusa À, Navarro J-B, et al. Cognitive impairment following chemotherapy for breast cancer: the impact of practice effect on results. J Clin Exp Neuropsychol. 2019;41:290–9. https://doi.org/10.1080/13803395.2018.1546381.

    Article  PubMed  Google Scholar 

  51. Li T-Y, Chen VC-H, Yeh D-C, et al. Investigation of chemotherapy-induced brain structural alterations in breast cancer patients with generalized q-sampling MRI and graph theoretical analysis. BMC Cancer. 2018. doi: https://doi.org/10.1186/s12885-018-5113-z.

  52. Orchard TS, Gaudier-Diaz MM, Phuwamongkolwiwat-Chu P, et al. Low sucrose, omega-3 enriched diet has region-specific effects on neuroinflammation and synaptic function markers in a mouse model of doxorubicin-based chemotherapy. Nutrients. 2018. https://doi.org/10.3390/nu10122004.

    Article  PubMed  PubMed Central  Google Scholar 

  53. van der Willik KD, Koppelmans V, Hauptmann M, et al. Inflammation markers and cognitive performance in breast cancer survivors 20 years after completion of chemotherapy: a cohort study. Breast Cancer Res. 2018;20:135. https://doi.org/10.1186/s13058-018-1062-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kang S, Lee S, Kim J, et al. Chronic treatment with combined chemotherapeutic agents affects hippocampal micromorphometry and function in mice, independently of neuroinflammation. Exp Neurobiol. 2018;27:419–36. https://doi.org/10.5607/en.2018.27.5.419.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ng T, Phey XY, Yeo HL, et al. Impact of adjuvant anthracycline-based and taxane-based chemotherapy on plasma VEGF levels and cognitive function in breast cancer patients: a longitudinal study. Clin Breast Cancer. 2018;18:e927–37. https://doi.org/10.1016/j.clbc.2018.03.016.

    Article  CAS  PubMed  Google Scholar 

  56. Almeida D, Pinho R, Correia V, et al. Mitoxantrone is more toxic than doxorubicin in SH-SY5Y human cells: a “chemobrain” in vitro study. Pharm Basel Switz. 2018. https://doi.org/10.3390/ph11020041.

    Article  Google Scholar 

  57. Shi D-D, Dong CM, Ho LC, et al. Resveratrol, a natural polyphenol, prevents chemotherapy-induced cognitive impairment: involvement of cytokine modulation and neuroprotection. Neurobiol Dis. 2018;114:164–73. https://doi.org/10.1016/j.nbd.2018.03.006.

    Article  CAS  PubMed  Google Scholar 

  58. Chen BT, Sethi SK, Jin T, et al. Assessing brain volume changes in older women with breast cancer receiving adjuvant chemotherapy: a brain magnetic resonance imaging pilot study. Breast Cancer Res. 2018;20:38. https://doi.org/10.1186/s13058-018-0965-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramalingayya GV, Nayak PG, Shenoy RR, et al. Naringin ameliorates doxorubicin-induced neurotoxicity in vitro and cognitive dysfunction in vivo. Pharmacogn Mag. 2018;14:S197-207. https://doi.org/10.4103/pm.pm_364_17.

    Article  CAS  Google Scholar 

  60. Menning S, de Ruiter MB, Veltman DJ, et al. Changes in brain white matter integrity after systemic treatment for breast cancer: a prospective longitudinal study. Brain Imaging Behav. 2018;12:324–34. https://doi.org/10.1007/s11682-017-9695-x.

    Article  PubMed  Google Scholar 

  61. Flanigan TJ, Anderson JE, Elayan I, et al. Effects of cyclophosphamide and/or doxorubicin in a murine model of postchemotherapy cognitive impairment. Toxicol Sci. 2018;162:462–74. https://doi.org/10.1093/toxsci/kfx267.

    Article  CAS  PubMed  Google Scholar 

  62. Barry RL, Byun NE, Tantawy MN, et al. In vivo neuroimaging and behavioral correlates in a rat model of chemotherapy-induced cognitive dysfunction. Brain Imaging Behav. 2018;12:87–95. https://doi.org/10.1007/s11682-017-9674-2.

    Article  PubMed  Google Scholar 

  63. Moruno-Manchon JF, Uzor N-E, Kesler SR, et al. Peroxisomes contribute to oxidative stress in neurons during doxorubicin-based chemotherapy. Mol Cell Neurosci. 2018;86:65–71. https://doi.org/10.1016/j.mcn.2017.11.014.

    Article  CAS  PubMed  Google Scholar 

  64. Andryszak P, Wiłkość M, Żurawski B, Izdebski P. Verbal memory in breast cancer patients treated with chemotherapy with doxorubicin and cyclophosphamide. Eur J Cancer Care (Engl). 2018. https://doi.org/10.1111/ecc.12749.

    Article  Google Scholar 

  65. Thomas TC, Beitchman JA, Pomerleau F, et al. Acute treatment with doxorubicin affects glutamate neurotransmission in the mouse frontal cortex and hippocampus. Brain Res. 2017;1672:10–7. https://doi.org/10.1016/j.brainres.2017.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee BE, Choi BY, Hong DK, et al. The cancer chemotherapeutic agent paclitaxel (Taxol) reduces hippocampal neurogenesis via down-regulation of vesicular zinc. Sci Rep. 2017;7:11667. https://doi.org/10.1038/s41598-017-12054-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lakshminarasimhan H, Coughlin BL, Darr AS, Byrne JH. Characterization and reversal of doxorubicin-mediated biphasic activation of ERK and persistent excitability in sensory neurons of Aplysia californica. Sci Rep. 2017;7:4533. https://doi.org/10.1038/s41598-017-04634-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cerulla N, Arcusa À, Navarro J-B, et al. Role of taxanes in chemotherapy-related cognitive impairment: a prospective longitudinal study. Breast Cancer Res Treat. 2017;164:179–87. https://doi.org/10.1007/s10549-017-4240-6.

    Article  CAS  PubMed  Google Scholar 

  69. Andryszak P, Wiłkość M, Żurawski B, Izdebski P. Verbal fluency in breast cancer patients treated with chemotherapy. Breast Cancer Tokyo Jpn. 2017;24:376–83. https://doi.org/10.1007/s12282-016-0713-4.

    Article  Google Scholar 

  70. Ramalho M, Fontes F, Ruano L, et al. Cognitive impairment in the first year after breast cancer diagnosis: a prospective cohort study. Breast Edinb Scotl. 2017;32:173–8. https://doi.org/10.1016/j.breast.2017.01.018.

    Article  Google Scholar 

  71. Orchard TS, Gaudier-Diaz MM, Weinhold KR, Courtney DA. Clearing the fog: a review of the effects of dietary omega-3 fatty acids and added sugars on chemotherapy-induced cognitive deficits. Breast Cancer Res Treat. 2017;61:391–8. https://doi.org/10.1007/s10549-016-4073-8.

    Article  CAS  Google Scholar 

  72. Ramalingayya GV, Sonawane V, Cheruku SP, et al. Insulin protects against brain oxidative stress with an apparent effect on episodic memory in doxorubicin-induced cognitive dysfunction in Wistar rats. J Environ Pathol Toxicol Oncol. 2017;36:121–30. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2017017087.

    Article  PubMed  Google Scholar 

  73. Rendeiro C, Sheriff A, Bhattacharya TK, et al. Long-lasting impairments in adult neurogenesis, spatial learning and memory from a standard chemotherapy regimen used to treat breast cancer. Behav Brain Res. 2016;315:10–22. https://doi.org/10.1016/j.bbr.2016.07.043.

    Article  PubMed  Google Scholar 

  74. Moruno Manchon JF, Uzor N-E, Kesler SR, et al. TFEB ameliorates the impairment of the autophagy-lysosome pathway in neurons induced by doxorubicin. Aging. 2016;8:3507–19. https://doi.org/10.18632/aging.101144.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lange M, Heutte N, Rigal O, et al. Decline in cognitive function in older adults with early-stage breast cancer after adjuvant treatment. Oncologist. 2016;21:1337–48. https://doi.org/10.1634/theoncologist.2016-0014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Iarkov A, Appunn D, Echeverria V. Post-treatment with cotinine improved memory and decreased depressive-like behavior after chemotherapy in rats. Cancer Chemother Pharmacol. 2016;78:1033–9. https://doi.org/10.1007/s00280-016-3161-0.

    Article  CAS  PubMed  Google Scholar 

  77. Himmel LE, Lustberg MB, DeVries AC, et al. Minocycline, a putative neuroprotectant, co-administered with doxorubicin-cyclophosphamide chemotherapy in a xenograft model of triple-negative breast cancer. Exp Toxicol Pathol. 2016;68:505–15. https://doi.org/10.1016/j.etp.2016.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Janelsins MC, Heckler CE, Thompson BD, et al. A clinically relevant dose of cyclophosphamide chemotherapy impairs memory performance on the delayed spatial alternation task that is sustained over time as mice age. Neurotoxicology. 2016;56:287–93. https://doi.org/10.1016/j.neuro.2016.06.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Philpot RM, Ficken M, Wecker L. Doxorubicin and cyclophosphamide lead to long-lasting impairment of spatial memory in female, but not male mice. Behav Brain Res. 2016;307:165–75. https://doi.org/10.1016/j.bbr.2016.04.017.

    Article  CAS  PubMed  Google Scholar 

  80. Seigers R, Loos M, Van Tellingen O, et al. Neurobiological changes by cytotoxic agents in mice. Behav Brain Res. 2016;299:19–26. https://doi.org/10.1016/j.bbr.2015.10.057.

    Article  CAS  PubMed  Google Scholar 

  81. Kesler SR, Blayney DW. Neurotoxic effects of anthracycline- vs nonanthracycline-based chemotherapy on cognition in breast cancer survivors. JAMA Oncol. 2016;2:185–92. https://doi.org/10.1001/jamaoncol.2015.4333.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lim I, Joung H-Y, Yu AR, et al. PET evidence of the effect of donepezil on cognitive performance in an animal model of chemobrain. BioMed Res Int. 2016. https://doi.org/10.1155/2016/6945415.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Marques-Aleixo I, Santos-Alves E, Balça MM, et al. Physical exercise mitigates doxorubicin-induced brain cortex and cerebellum mitochondrial alterations and cellular quality control signaling. Mitochondrion. 2016;26:43–57. https://doi.org/10.1016/j.mito.2015.12.002.

    Article  CAS  PubMed  Google Scholar 

  84. Hoogendam YY, Schagen SB, Ikram MA, et al. Late effects of adjuvant chemotherapy for breast cancer on fine motor function. Psychooncology. 2015;24:1799–807. https://doi.org/10.1002/pon.3796.

    Article  PubMed  Google Scholar 

  85. Petrovic M, Simillion C, Kruzliak P, et al. Doxorubicin affects expression of proteins of neuronal pathways in MCF-7 breast cancer cells. Cancer Genom Proteomics. 2015;12:347–58.

    CAS  Google Scholar 

  86. Salas-Ramirez KY, Bagnall C, Frias L, et al. Doxorubicin and cyclophosphamide induce cognitive dysfunction and activate the ERK and AKT signaling pathways. Behav Brain Res. 2015;292:133–41. https://doi.org/10.1016/j.bbr.2015.06.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kitamura Y, Hattori S, Yoneda S, et al. Doxorubicin and cyclophosphamide treatment produces anxiety-like behavior and spatial cognition impairment in rats: possible involvement of hippocampal neurogenesis via brain-derived neurotrophic factor and cyclin D1 regulation. Behav Brain Res. 2015;292:184–93. https://doi.org/10.1016/j.bbr.2015.06.007.

    Article  CAS  PubMed  Google Scholar 

  88. Callaghan CK, O’Mara SM. Long-term cognitive dysfunction in the rat following docetaxel treatment is ameliorated by the phosphodiesterase-4 inhibitor, rolipram. Behav Brain Res. 2015;290:84–9. https://doi.org/10.1016/j.bbr.2015.04.044.

    Article  CAS  PubMed  Google Scholar 

  89. Aboalela N, Lyon D, Elswick RK, et al. Perceived stress levels, chemotherapy, radiation treatment and tumor characteristics are associated with a persistent increased frequency of somatic chromosomal instability in women diagnosed with breast cancer: a one year longitudinal study. PLoS ONE. 2015;10: e0133380. https://doi.org/10.1371/journal.pone.0133380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hayslip J, Dressler EV, Weiss H, et al. Plasma TNF-α and soluble TNF receptor levels after doxorubicin with or without co-administration of mesna: a randomized, cross-over clinical study. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0124988.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ng T, Chan M, Khor CC, et al. The genetic variants underlying breast cancer treatment-induced chronic and late toxicities: a systematic review. Cancer Treat Rev. 2014;40:1199–214. https://doi.org/10.1016/j.ctrv.2014.10.001.

    Article  CAS  PubMed  Google Scholar 

  92. Nudelman KNH, Wang Y, McDonald BC, et al. Altered cerebral blood flow one month after systemic chemotherapy for breast cancer: a prospective study using pulsed arterial spin labeling MRI perfusion. PLoS ONE. 2014;9: e96713. https://doi.org/10.1371/journal.pone.0096713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ahles TA, Li Y, McDonald BC, et al. Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: the impact of APOE and smoking. Psychooncology. 2014;23:1382–90. https://doi.org/10.1002/pon.3545.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Koppelmans V, de Groot M, de Ruiter MB, et al. Global and focal white matter integrity in breast cancer survivors 20 years after adjuvant chemotherapy. Hum Brain Mapp. 2014;35:889–99. https://doi.org/10.1002/hbm.22221.

    Article  PubMed  Google Scholar 

  95. Fardell JE, Zhang J, De Souza R, et al. The impact of sustained and intermittent docetaxel chemotherapy regimens on cognition and neural morphology in healthy mice. Psychopharmacology. 2014;231:841–52. https://doi.org/10.1007/s00213-013-3301-8.

    Article  CAS  PubMed  Google Scholar 

  96. Briones TL, Woods J. Dysregulation in myelination mediated by persistent neuroinflammation: possible mechanisms in chemotherapy-related cognitive impairment. Brain Behav Immun. 2014;35:23–32. https://doi.org/10.1016/j.bbi.2013.07.175.

    Article  CAS  PubMed  Google Scholar 

  97. Fardell JE, Vardy J, Johnston IN. The short and long term effects of docetaxel chemotherapy on rodent object recognition and spatial reference memory. Life Sci. 2013;93:596–604. https://doi.org/10.1016/j.lfs.2013.05.006.

    Article  CAS  PubMed  Google Scholar 

  98. Loo WT, Yip MC, Chow LW, et al. A pilot study: application of hemoglobin and cortisol levels, and a memory test to evaluate the quality of life of breast cancer patients on chemotherapy. Int J Biol Markers. 2013;28:348–56. https://doi.org/10.5301/JBM.5000053.

    Article  Google Scholar 

  99. Collins B, MacKenzie J, Tasca GA, et al. Cognitive effects of chemotherapy in breast cancer patients: a dose-response study. Psychooncology. 2013;22:1517–27. https://doi.org/10.1002/pon.3163.

    Article  PubMed  Google Scholar 

  100. Freedman RA, Pitcher B, Keating NL, et al. Cognitive function in older women with breast cancer treated with standard chemotherapy and capecitabine on Cancer and Leukemia Group B 49907. Breast Cancer Res Treat. 2013;139:607–16. https://doi.org/10.1007/s10549-013-2562-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mandilaras V, Wan-Chow-Wah D, Monette J, et al. The impact of cancer therapy on cognition in the elderly. Front Pharmacol. 2013. https://doi.org/10.3389/fphar.2013.00048.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Cheung YT, Chui WK, Chan A. Neuro-cognitive impairment in breast cancer patients: pharmacological considerations. Crit Rev Oncol Hematol. 2012;83:99–111. https://doi.org/10.1016/j.critrevonc.2011.09.001.

    Article  PubMed  Google Scholar 

  103. Koppelmans V, Breteler MMB, Boogerd W, et al. Neuropsychological performance in survivors of breast cancer more than 20 years after adjuvant chemotherapy. J Clin Oncol. 2012;30:1080–6. https://doi.org/10.1200/JCO.2011.37.0189.

    Article  PubMed  Google Scholar 

  104. Janelsins MC, Mustian KM, Palesh OG, et al. Differential expression of cytokines in breast cancer patients receiving different chemotherapies: implications for cognitive impairment research. Support Care Cancer. 2012;20:831–9. https://doi.org/10.1007/s00520-011-1158-0.

    Article  PubMed  Google Scholar 

  105. Fremouw T, Fessler CL, Ferguson RJ, Burguete Y. Preserved learning and memory in mice following chemotherapy: 5-fluorouracil and doxorubicin single agent treatment, doxorubicin-cyclophosphamide combination treatment. Behav Brain Res. 2012;226:154–62. https://doi.org/10.1016/j.bbr.2011.09.013.

    Article  CAS  PubMed  Google Scholar 

  106. Fardell JE, Vardy J, Shah JD, Johnston IN. Cognitive impairments caused by oxaliplatin and 5-fluorouracil chemotherapy are ameliorated by physical activity. Psychopharmacology. 2012;220:183–93. https://doi.org/10.1007/s00213-011-2466-2.

    Article  CAS  PubMed  Google Scholar 

  107. Briones TL, Woods J. Chemotherapy-induced cognitive impairment is associated with decreases in cell proliferation and histone modifications. BMC Neurosci. 2011;12:124. https://doi.org/10.1186/1471-2202-12-124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Long JM, Lee GD, Kelley-Bell B, et al. Preserved learning and memory following 5-fluorouracil and cyclophosphamide treatment in rats. Pharmacol Biochem Behav. 2011;100:205–11. https://doi.org/10.1016/j.pbb.2011.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jansen CE, Cooper BA, Dodd MJ, Miaskowski CA. A prospective longitudinal study of chemotherapy-induced cognitive changes in breast cancer patients. Support Care Cancer. 2011;19:1647–56. https://doi.org/10.1007/s00520-010-0997-4.

    Article  PubMed  Google Scholar 

  110. Aluise CD, Miriyala S, Noel T, et al. 2-Mercaptoethane sulfonate prevents doxorubicin-induced plasma protein oxidation and TNF-α release: implications for the reactive oxygen species-mediated mechanisms of chemobrain. Free Radic Biol Med. 2011;50:1630–8. https://doi.org/10.1016/j.freeradbiomed.2011.03.009.

    Article  CAS  PubMed  Google Scholar 

  111. ElBeltagy M, Mustafa S, Umka J, et al. Fluoxetine improves the memory deficits caused by the chemotherapy agent 5-fluorouracil. Behav Brain Res. 2010;208:112–7. https://doi.org/10.1016/j.bbr.2009.11.017.

    Article  CAS  PubMed  Google Scholar 

  112. Debess J, Riis JØ, Engebjerg MC, Ewertz M. Cognitive function after adjuvant treatment for early breast cancer: a population-based longitudinal study. Breast Cancer Res Treat. 2010;121:91–100. https://doi.org/10.1007/s10549-010-0756-8.

    Article  CAS  PubMed  Google Scholar 

  113. Liedke PER, Reolon GK, Kilpp B, et al. Systemic administration of doxorubicin impairs aversively motivated memory in rats. Pharmacol Biochem Behav. 2009;94:239–43. https://doi.org/10.1016/j.pbb.2009.09.001.

    Article  CAS  PubMed  Google Scholar 

  114. Kesler SR, Bennett FC, Mahaffey ML, Spiegel D. Regional brain activation during verbal declarative memory in metastatic breast cancer. Clin Cancer Res. 2009;15:6665–73. https://doi.org/10.1158/1078-0432.CCR-09-1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Boyette-Davis JA, Fuchs PN. Differential effects of paclitaxel treatment on cognitive functioning and mechanical sensitivity. Neurosci Lett. 2009;453:170–4. https://doi.org/10.1016/j.neulet.2009.02.031.

    Article  CAS  PubMed  Google Scholar 

  116. Schilder CM, Eggens PC, Seynaeve C, et al. Neuropsychological functioning in postmenopausal breast cancer patients treated with tamoxifen or exemestane after AC-chemotherapy: cross-sectional findings from the neuropsychological TEAM-side study. Acta Oncol Stockh Swed. 2009;48:76–85. https://doi.org/10.1080/02841860802314738.

    Article  CAS  Google Scholar 

  117. Mustafa S, Walker A, Bennett G, Wigmore PM. 5-Fluorouracil chemotherapy affects spatial working memory and newborn neurons in the adult rat hippocampus. Eur J Neurosci. 2008;28:323–30. https://doi.org/10.1111/j.1460-9568.2008.06325.x.

    Article  PubMed  Google Scholar 

  118. Jansen CE, Dodd MJ, Miaskowski CA, et al. Preliminary results of a longitudinal study of changes in cognitive function in breast cancer patients undergoing chemotherapy with doxorubicin and cyclophosphamide. Psychooncology. 2008;17:1189–95. https://doi.org/10.1002/pon.1342.

    Article  PubMed  Google Scholar 

  119. Kreukels BPC, van Dam FS, Ridderinkhof KR, et al. Persistent neurocognitive problems after adjuvant chemotherapy for breast cancer. Clin Breast Cancer. 2008;8:80–7. https://doi.org/10.3816/CBC.2008.n.006.

    Article  CAS  PubMed  Google Scholar 

  120. Abraham J, Haut MW, Moran MT, et al. Adjuvant chemotherapy for breast cancer: effects on cerebral white matter seen in diffusion tensor imaging. Clin Breast Cancer. 2008;8:88–91. https://doi.org/10.3816/CBC.2008.n.007.

    Article  PubMed  Google Scholar 

  121. Ruzich M, Ryan B, Owen C, et al. Prospective evaluation of cognitive function in patients with early breast cancer receiving adjuvant chemotherapy. Asia Pac J Clin Oncol. 2007;3:125–33. https://doi.org/10.1111/j.1743-7563.2007.00109.x.

    Article  Google Scholar 

  122. Hermelink K, Untch M, Lux MP, et al. Cognitive function during neoadjuvant chemotherapy for breast cancer: results of a prospective, multicenter, longitudinal study. Cancer. 2007;109:1905–13. https://doi.org/10.1002/cncr.22610.

    Article  CAS  PubMed  Google Scholar 

  123. Schagen SB, Muller MJ, Boogerd W, et al. Change in cognitive function after chemotherapy: a prospective longitudinal study in breast cancer patients. J Natl Cancer Inst. 2006;98:1742–5. https://doi.org/10.1093/jnci/djj470.

    Article  CAS  PubMed  Google Scholar 

  124. Kreukels BPC, Schagen SB, Ridderinkhof KR, et al. Effects of high-dose and conventional-dose adjuvant chemotherapy on long-term cognitive sequelae in patients with breast cancer: an electrophysiologic study. Clin Breast Cancer. 2006;7:67–78. https://doi.org/10.3816/CBC.2006.n.015.

    Article  CAS  PubMed  Google Scholar 

  125. Lee GD, Longo DL, Wang Y, et al. Transient improvement in cognitive function and synaptic plasticity in rats following cancer chemotherapy. Clin Cancer Res. 2006;12:198–205. https://doi.org/10.1158/1078-0432.CCR-05-1286.

    Article  CAS  PubMed  Google Scholar 

  126. Schagen SB, Muller MJ, Boogerd W, et al. Late effects of adjuvant chemotherapy on cognitive function: a follow-up study in breast cancer patients. Ann Oncol. 2002;13:1387–97. https://doi.org/10.1093/annonc/mdf241.

    Article  CAS  PubMed  Google Scholar 

  127. Schagen SB, van Dam FS, Muller MJ, et al.) Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma. Cancer. 1999;85:640–50. doi: https://doi.org/10.1002/(sici)1097-0142(19990201)85:3<640::aid-cncr14>3.0.co;2-g.

  128. Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56:185–229. https://doi.org/10.1124/pr.56.2.6.

    Article  CAS  PubMed  Google Scholar 

  129. Bigotte L, Arvidson B, Olsson Y. Cytofluorescence localization of adriamycin in the nervous system. I. Distribution of the drug in the central nervous system of normal adult mice after intravenous injection. Acta Neuropathol 1982;57:121–9. https://doi.org/10.1007/BF00685379.

    Article  CAS  PubMed  Google Scholar 

  130. Kitamura Y, Ushio S, Sumiyoshi Y, et al. N-acetylcysteine attenuates the anxiety-like behavior and spatial cognition impairment induced by doxorubicin and cyclophosphamide combination treatment in rats. Pharmacology. 2021;106:286–93. https://doi.org/10.1159/000512117.

    Article  CAS  PubMed  Google Scholar 

  131. Khadrawy YA, Hosny EN, Mohammed HS. Protective effect of nanocurcumin against neurotoxicity induced by doxorubicin in rat’s brain. Neurotoxicology. 2021;85:1–9. https://doi.org/10.1016/j.neuro.2021.04.003.

    Article  CAS  PubMed  Google Scholar 

  132. Ibrahim SS, Elseoud OGA, Mohamedy MH, et al. Nose-to-brain delivery of chrysin transfersomal and composite vesicles in doxorubicin-induced cognitive impairment in rats: Insights on formulation, oxidative stress and TLR4/NF-kB/NLRP3 pathways. Neuropharmacology. 2021. https://doi.org/10.1016/j.neuropharm.2021.108738.

    Article  PubMed  Google Scholar 

  133. de la Hoz-Camacho R, Rivera-Lazarín AL, Vázquez-Guillen JM, et al. Cyclophosphamide and epirubicin induce high apoptosis in microglia cells while epirubicin provokes DNA damage and microglial activation at sub-lethal concentrations. EXCLI J. 2022;21:197–212. https://doi.org/10.17179/excli2021-4160.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Jung H, Kim SY, Canbakis Cecen FS, et al. Dysfunction of mitochondrial Ca2+ regulatory machineries in brain aging and neurodegenerative diseases. Front Cell Dev Biol 2020;8:599792. https://doi.org/10.3389/fcell.2020.599792

    Article  PubMed  PubMed Central  Google Scholar 

  135. Saris N-EL, Carafoli E. A historical review of cellular calcium handling, with emphasis on mitochondria. Biochem (Mosc). 2005;70:187–94. doi: https://doi.org/10.1007/s10541-005-0100-9.

  136. Morgan MJ, Liu Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011;21:103–15. https://doi.org/10.1038/cr.2010.178.

    Article  CAS  PubMed  Google Scholar 

  137. Gloire G, Legrand-Poels S, Piette J. NF-κB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006;72:1493–505. https://doi.org/10.1016/j.bcp.2006.04.011.

    Article  CAS  PubMed  Google Scholar 

  138. Trachootham D, Lu W, Ogasawara MA, et al. Redox regulation of cell survival. Antioxid Redox Signal. 2008;10:1343–74. https://doi.org/10.1089/ars.2007.1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Goossens V, Grooten J, De Vos K, Fiers W. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci USA. 1995;92:8115–9.

    Article  CAS  Google Scholar 

  140. Baune B, Camara M-L, Eyre H, et al. Tumour necrosis factor-alpha mediated mechanisms of cognitive dysfunction. Transl Neurosci. 2012;3:263–77. https://doi.org/10.2478/s13380-012-0027-8.

    Article  Google Scholar 

  141. Gutierrez EG, Banks WA, Kastin AJ. Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J Neuroimmunol. 1993;47:169–76. https://doi.org/10.1016/0165-5728(93)90027-v.

    Article  CAS  PubMed  Google Scholar 

  142. Pan W, Banks WA, Kastin AJ. Permeability of the blood–brain and blood–spinal cord barriers to interferons. J Neuroimmunol. 1997;76:105–11. https://doi.org/10.1016/S0165-5728(97)00034-9.

    Article  CAS  PubMed  Google Scholar 

  143. Keeney JTR, Swomley AM, Förster S, et al. Apolipoprotein A-I: insights from redox proteomics for its role in neurodegeneration. Proteomics Clin Appl. 2013;7:109–22. https://doi.org/10.1002/prca.201200087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hyka N, Dayer J-M, Modoux C, et al. Apolipoprotein A-I inhibits the production of interleukin-1β and tumor necrosis factor-α by blocking contact-mediated activation of monocytes by T lymphocytes. Blood. 2001;97:2381–9. https://doi.org/10.1182/blood.V97.8.2381.

    Article  CAS  PubMed  Google Scholar 

  145. Du J, Zhang A, Li J, et al. Doxorubicin-induced cognitive impairment: the mechanistic insights. Front Oncol. 2021;11: 673340. https://doi.org/10.3389/fonc.2021.673340.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zou JY, Crews FT. TNF alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NF kappa B inhibition. Brain Res. 2005;1034:11–24. https://doi.org/10.1016/j.brainres.2004.11.014.

    Article  CAS  PubMed  Google Scholar 

  147. Ongnok B, Khuanjing T, Chunchai T, et al. Donepezil protects against doxorubicin-induced chemobrain in rats via attenuation of inflammation and oxidative stress without interfering with doxorubicin efficacy. Neurother J Am Soc Exp Neurother. 2021;18:2107–25. https://doi.org/10.1007/s13311-021-01092-9.

    Article  CAS  Google Scholar 

  148. Fu D, Calvo JA, Samson LD. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer. 2012;12:104–20. https://doi.org/10.1038/nrc3185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dorr RT, Lagel K. Effect of sulfhydryl compounds and glutathione depletion on rat heart myocyte toxicity induced by 4-hydroperoxycyclophosphamide and acrolein in vitro. Chem Biol Interact. 1994;93:117–28. https://doi.org/10.1016/0009-2797(94)90091-4.

    Article  CAS  PubMed  Google Scholar 

  150. Kawanishi M, Matsuda T, Nakayama A, et al. Molecular analysis of mutations induced by acrolein in human fibroblast cells using supF shuttle vector plasmids. Mutat Res. 1998;417:65–73. https://doi.org/10.1016/s1383-5718(98)00093-x.

    Article  CAS  PubMed  Google Scholar 

  151. Brown T, McElroy T, Simmons P, et al. Cognitive impairment resulting from treatment with docetaxel, doxorubicin, and cyclophosphamide. Brain Res. 2021;1760: 147397. https://doi.org/10.1016/j.brainres.2021.147397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Baudino B, D’agata F, Caroppo P, et al. The chemotherapy long-term effect on cognitive functions and brain metabolism in lymphoma patients. Q J Nucl Med Mol Imaging. 2012;56:559–68.

    CAS  PubMed  Google Scholar 

  153. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4:253–65. https://doi.org/10.1038/nrc1317.

    Article  CAS  PubMed  Google Scholar 

  154. Kemper EM, van Zandbergen AE, Cleypool C, et al. Increased penetration of paclitaxel into the brain by inhibition of P-glycoprotein. Clin Cancer Res. 2003;9:2849–55.

    CAS  PubMed  Google Scholar 

  155. Fellner S, Bauer B, Miller DS, et al. Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Invest. 2002;110:1309–18. https://doi.org/10.1172/JCI15451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gangloff A, Hsueh W-A, Kesner AL, et al. Estimation of paclitaxel biodistribution and uptake in human-derived xenografts in vivo with 18F-fluoropaclitaxel. J Nucl Med. 2005;46:1866–71.

    CAS  PubMed  Google Scholar 

  157. van der Veldt AAM, Hendrikse NH, Smit EF, et al. Biodistribution and radiation dosimetry of 11C-labelled docetaxel in cancer patients. Eur J Nucl Med Mol Imaging. 2010;37:1950–8. https://doi.org/10.1007/s00259-010-1489-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Huehnchen P, Boehmerle W, Springer A, et al. A novel preventive therapy for paclitaxel-induced cognitive deficits: preclinical evidence from C57BL/6 mice. Transl Psychiatry. 2017;7: e1185. https://doi.org/10.1038/tp.2017.149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Scripture CD, Figg WD, Sparreboom A. Peripheral neuropathy induced by paclitaxel: recent insights and future perspectives. Curr Neuropharmacol. 2006;4:165–72.

    Article  CAS  Google Scholar 

  160. Zhao J, Zuo H, Ding K, et al. Changes in plasma IL-1β, TNF-α and IL-4 levels are involved in chemotherapy-related cognitive impairment in early-stage breast cancer patients. Am J Transl Res. 2020;12:3046–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Chang A, Chung N-C, Lawther AJ, et al. The Anti-Inflammatory Drug Aspirin Does Not Protect Against Chemotherapy-Induced Memory Impairment by Paclitaxel in Mice. Front Oncol 2020;10:564965. https://doi.org/10.3389/fonc.2020.564965.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Micheli L, Collodel G, Moretti E, et al. Redox imbalance induced by docetaxel in the neuroblastoma SH-SY5Y cells: a study of docetaxel-induced neuronal damage. Redox Rep Commun Free Radic Res. 2021;26:18–28. https://doi.org/10.1080/13510002.2021.1884802.

    Article  CAS  Google Scholar 

  163. Nguyen LD, Ehrlich BE. Cellular mechanisms and treatments for chemobrain: insight from aging and neurodegenerative diseases. EMBO Mol Med. 2020. https://doi.org/10.15252/emmm.202012075.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Nguyen LD, Fischer TT, Ehrlich BE. Pharmacological rescue of cognitive function in a mouse model of chemobrain. Mol Neurodegener. 2021;16:41. https://doi.org/10.1186/s13024-021-00463-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Varbiro G, Veres B, Gallyas F, Sumegi B. Direct effect of Taxol on free radical formation and mitochondrial permeability transition. Free Radic Biol Med. 2001;31:548–58. https://doi.org/10.1016/S0891-5849(01)00616-5.

    Article  CAS  PubMed  Google Scholar 

  166. Kidd JF, Pilkington MF, Schell MJ, et al. Paclitaxel affects cytosolic calcium signals by opening the mitochondrial permeability transition pore. J Biol Chem. 2022;277:6504–10. https://doi.org/10.1074/jbc.M106802200.

    Article  CAS  Google Scholar 

  167. Carlson K, Ocean AJ. Peripheral neuropathy with microtubule-targeting agents: occurrence and management approach. Clin Breast Cancer. 2011;11:73–81. https://doi.org/10.1016/j.clbc.2011.03.006.

    Article  CAS  PubMed  Google Scholar 

  168. Argyriou AA, Karteri S, Bruna J, et al. Serum neurofilament light chain levels as biomarker of paclitaxel-induced cognitive impairment in patients with breast cancer: a prospective study. Support Care Cancer. 2022;30:1807–14. https://doi.org/10.1007/s00520-021-06509-x.

    Article  PubMed  Google Scholar 

  169. Swain SM, Arezzo JC. Neuropathy associated with microtubule inhibitors: diagnosis, incidence, and management. Clin Adv Hematol Oncol. 2008;6:455–67.

    PubMed  Google Scholar 

  170. Boehmerle W, Splittgerber U, Lazarus MB, et al. Paclitaxel induces calcium oscillations via an inositol 1,4,5-trisphosphate receptor and neuronal calcium sensor 1-dependent mechanism. Proc Natl Acad Sci U S A. 2006;103:18356–61. https://doi.org/10.1073/pnas.0607240103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Boehmerle W, Zhang K, Sivula M, et al. Chronic exposure to paclitaxel diminishes phosphoinositide signaling by calpain-mediated neuronal calcium sensor-1 degradation. Proc Natl Acad Sci. 2007;104:11103–8. https://doi.org/10.1073/pnas.0701546104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mo M, Erdelyi I, Szigeti-Buck K, et al. Prevention of paclitaxel-induced peripheral neuropathy by lithium pretreatment. FASEB J. 2012;26:4696–709. https://doi.org/10.1096/fj.12-214643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. da Costa R, Passos GF, Quintão NLM, et al. Taxane-induced neurotoxicity: pathophysiology and therapeutic perspectives. Br J Pharmacol. 2020;177:3127–46. https://doi.org/10.1111/bph.15086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37:1590–8. https://doi.org/10.1016/s0959-8049(01)00171-x.

    Article  CAS  PubMed  Google Scholar 

  175. Kaye SB. New antimetabolites in cancer chemotherapy and their clinical impact. Br J Cancer. 1998;78:1–7. https://doi.org/10.1038/bjc.1998.747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bourke RS, West CR, Chheda G, Tower DB. Kinetics of entry and distribution of 5-fluorouracil in cerebrospinal fluid and brain following intravenous injection in a primate. Cancer Res. 1973;33:1735–46.

    CAS  PubMed  Google Scholar 

  177. Raffa RB, Tallarida RJ. Chemo fog: cancer chemotherapy-related cognitive impairment. New York (NY), Austin (TX): Springer Science+Business Media; Landes Bioscience; 2010.

  178. Alhowail AH, Almogbel YS, Abdellatif AAH, et al. CMF and MET treatment induce cognitive impairment through upregulation of IL-1α in rat brain. Eur Rev Med Pharmacol Sci. 2021;25:4385–93. https://doi.org/10.26355/eurrev_202106_26148.

    Article  CAS  PubMed  Google Scholar 

  179. Morikawa A, Peereboom DM, Smith QR, et al. Clinical evidence for drug penetration of capecitabine and lapatinib uptake in resected brain metastases from women with metastatic breast cancer. J Clin Oncol. 2013;1:514. https://doi.org/10.1200/jco.2013.31.15_suppl.514.

    Article  Google Scholar 

  180. Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 2005;4:307–20. https://doi.org/10.1038/nrd1691.

    Article  CAS  PubMed  Google Scholar 

  181. Alhareeri AA, Archer KJ, Fu H, et al. Telomere lengths in women treated for breast cancer show associations with chemotherapy, pain symptoms, and cognitive domain measures: a longitudinal study. Breast Cancer Res. 2020;22:137. https://doi.org/10.1186/s13058-020-01368-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365:1687–717. https://doi.org/10.1016/S0140-6736(05)66544-0.

  183. Fisher B, Brown AM, Dimitrov NV, et al. Two months of doxorubicin-cyclophosphamide with and without interval reinduction therapy compared with 6 months of cyclophosphamide, methotrexate, and fluorouracil in positive-node breast cancer patients with tamoxifen-nonresponsive tumors: results from the National Surgical Adjuvant Breast and Bowel Project B-15. J Clin Oncol. 1990;8:1483–96. https://doi.org/10.1200/JCO.1990.8.9.1483.

    Article  CAS  PubMed  Google Scholar 

  184. Blum JL, Flynn PJ, Yothers G, et al. Anthracyclines in early breast cancer: the ABC Trials-USOR 06–090, NSABP B-46-I/USOR 07132, and NSABP B-49 (NRG Oncology). J Clin Oncol. 2017;35:2647–55. https://doi.org/10.1200/JCO.2016.71.4147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Jones S, Holmes FA, O’Shaughnessy J, et al. Docetaxel with cyclophosphamide is associated with an overall survival benefit compared with dxorubicin and cyclophosphamide: 7-year follow-up of US Oncology Research Trial 9735. J Clin Oncol. 2009;27:1177–83. https://doi.org/10.1200/JCO.2008.18.4028.

    Article  CAS  PubMed  Google Scholar 

  186. Peethambaram PP, Hoskin TL, Heins CN, et al. Abstract PD7-05: how 21-gene recurrence score assay is being used to individualize adjuvant chemotherapy recommendations in ER+/HER2 -node positive breast cance: a national cancer data base study. Cancer Res. 2017;77:PD7-PD7-05. doi: https://doi.org/10.1158/1538-7445.SABCS16-PD7-05.

  187. Citron ML, Berry DA, Cirrincione C, et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol. 2003;21:1431–9. https://doi.org/10.1200/JCO.2003.09.081.

    Article  CAS  PubMed  Google Scholar 

  188. Sparano JA, Wang M, Martino S, et al. Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med. 2008;358:1663–71. https://doi.org/10.1056/NEJMoa0707056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Martin M, Pienkowski T, Mackey J, et al. Adjuvant docetaxel for node-positive breast cancer. 2009. https://doi.org/10.1056/NEJMoa043681. Accessed 19 Mar 2021.

  190. Perez EA, Romond EH, Suman VJ, et al. Four-year follow-up of trastuzumab plus adjuvant chemotherapy for operable human epidermal growth factor receptor 2-positive breast cancer: joint analysis of data from NCCTG N9831 and NSABP B-31. J Clin Oncol. 2011;29:3366–73. https://doi.org/10.1200/JCO.2011.35.0868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. von Minckwitz G, Procter M, de Azambuja E, et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N Engl J Med. 2017;377:122–31. https://doi.org/10.1056/NEJMoa1703643.

    Article  Google Scholar 

  192. Slamon D, Eiermann W, Robert N, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365:1273–83. https://doi.org/10.1056/NEJMoa0910383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tolaney SM, Barry WT, Dang CT, et al. Adjuvant paclitaxel and trastuzumab for node-negative, HER2-positive breast cancer. N Engl J Med. 2015;372:134–41. https://doi.org/10.1056/NEJMoa1406281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Gianni L, Pienkowski T, Im Y-H, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol 2012;13:25-32. https://doi.org/10.1016/S1470-2045(11)70336-9.

    Article  CAS  PubMed  Google Scholar 

  195. National Comprehensive Cancer Network (NCCN). NCCN clinical practice guidelines in oncology. Breast cancer. Version 3. 2021.

  196. Eide S, Feng Z-P. Doxorubicin chemotherapy-induced “chemo-brain”: meta-analysis. Eur J Pharmacol. 2020;881: 173078. https://doi.org/10.1016/j.ejphar.2020.173078.

    Article  CAS  PubMed  Google Scholar 

  197. Zhang H, Li P, Liu T, et al. Focal white matter microstructural alteration after anthracycline-based systemic treatment in long-term breast cancer survivors: a structural magnetic resonance imaging study. Brain Imaging Behav. 2021. https://doi.org/10.1007/s11682-021-00551-3.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Keetile NM, Osuch E, Lentoor AG. Chemotherapy-related subjective cognitive impairment in breast cancer patients in semi-rural South Africa. Health SA. 2021;26:1605. https://doi.org/10.4102/hsag.v26i0.1605.

    Article  PubMed  Google Scholar 

  199. van Dam FS, Schagen SB, Muller MJ, et al. Impairment of cognitive function in women receiving adjuvant treatment for high-risk breast cancer: high-dose versus standard-dose chemotherapy. J Natl Cancer Inst. 1998;90:210–8. https://doi.org/10.1093/jnci/90.3.210.

    Article  PubMed  Google Scholar 

  200. Buwalda B, Schagen SB. Is basic research providing answers if adjuvant anti-estrogen treatment of breast cancer can induce cognitive impairment? Life Sci. 2013;93:581–8. https://doi.org/10.1016/j.lfs.2012.12.012.

    Article  CAS  PubMed  Google Scholar 

  201. Wagner LI, Gray RJ, Sparano JA, et al. Patient-reported cognitive impairment among women with early breast cancer randomly assigned to endocrine therapy alone versus chemoendocrine therapy: results from TAILORx. J Clin Oncol. 2020;38:1875–86. https://doi.org/10.1200/JCO.19.01866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wu LM, Amidi A. Cognitive impairment following hormone therapy: current opinion of research in breast and prostate cancer patients. Curr Opin Support Palliat Care. 2017;11:38–45. https://doi.org/10.1097/SPC.0000000000000251.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Karschnia P, Parsons MW, Dietrich J. Pharmacologic management of cognitive impairment induced by cancer therapy. Lancet Oncol. 2019;20:e92-102. https://doi.org/10.1016/S1470-2045(18)30938-0.

    Article  PubMed  Google Scholar 

  204. Wefel JS, Kesler SR, Noll KR, Schagen SB. Clinical characteristics, pathophysiology, and management of noncentral nervous system cancer-related cognitive impairment in adults. CA Cancer J Clin. 2015;65:123–38. https://doi.org/10.3322/caac.21258.

    Article  PubMed  Google Scholar 

  205. Kohli S, Fisher SG, Tra Y, et al. The effect of modafinil on cognitive function in breast cancer survivors. Cancer. 2009;115:2605–16. https://doi.org/10.1002/cncr.24287.

    Article  CAS  PubMed  Google Scholar 

  206. Lundorff L, Jønsson B, Sjøgren P. Modafinil for attentional and psychomotor dysfunction in advanced cancer: a double-blind, randomised, cross-over trial. Palliat Med. 2009;23:731–8. https://doi.org/10.1177/0269216309106872.

    Article  CAS  PubMed  Google Scholar 

  207. Mar Fan HG, Clemons M, Xu W, et al. A randomised, placebo-controlled, double-blind trial of the effects of d-methylphenidate on fatigue and cognitive dysfunction in women undergoing adjuvant chemotherapy for breast cancer. Support Care Cancer. 2008;16:577–83. https://doi.org/10.1007/s00520-007-0341-9.

    Article  PubMed  Google Scholar 

  208. Lower EE, Fleishman S, Cooper A, et al. Efficacy of dexmethylphenidate for the treatment of fatigue after cancer chemotherapy: a randomized clinical trial. J Pain Symptom Manage. 2009;38:650–62. https://doi.org/10.1016/j.jpainsymman.2009.03.011.

    Article  CAS  PubMed  Google Scholar 

  209. Escalante CP, Meyers C, Reuben JM, et al. A randomized, double-blind, 2-period, placebo-controlled crossover trial of a sustained-release methylphenidate in the treatment of fatigue in cancer patients. Cancer J. 2014;20:8–14. https://doi.org/10.1097/PPO.0000000000000018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Santarelli L, Saxe M, Gross C, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301:805–9. https://doi.org/10.1126/science.1083328.

    Article  CAS  PubMed  Google Scholar 

  211. Jacobson SA, Sabbagh MN. Donepezil: potential neuroprotective and disease-modifying effects. Expert Opin Drug Metab Toxicol. 2008;4:1363–9. https://doi.org/10.1517/17425255.4.10.1363.

    Article  CAS  PubMed  Google Scholar 

  212. Lawrence JA, Griffin L, Balcueva EP, et al. A study of donepezil in female breast cancer survivors with self-reported cognitive dysfunction 1 to 5 years following adjuvant chemotherapy. J Cancer Surviv. 2016;10:176–84. https://doi.org/10.1007/s11764-015-0463-x.

    Article  CAS  PubMed  Google Scholar 

  213. Cauli O. Oxidative stress and cognitive alterations induced by cancer chemotherapy drugs: a scoping review. Antioxidants (Basel). 2021;10:1116. https://doi.org/10.3390/antiox10071116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Chtourou Y, Gargouri B, Kebieche M, Fetoui H. Naringin abrogates cisplatin-induced cognitive deficits and cholinergic dysfunction through the down-regulation of AChE expression and iNOS signaling pathways in hippocampus of aged rats. J Mol Neurosci. 2015;56:349–62. https://doi.org/10.1007/s12031-015-0547-0.

    Article  CAS  PubMed  Google Scholar 

  215. Barton DL, Burger K, Novotny PJ, et al. The use of Ginkgo biloba for the prevention of chemotherapy-related cognitive dysfunction in women receiving adjuvant treatment for breast cancer, N00C9. Support Care Cancer. 2013;21:1185–92. https://doi.org/10.1007/s00520-012-1647-9.

    Article  PubMed  Google Scholar 

  216. O’Shaughnessy JA, Vukelja SJ, Holmes FA, et al. Feasibility of quantifying the effects of epoetin alfa therapy on cognitive function in women with breast cancer undergoing adjuvant or neoadjuvant chemotherapy. Clin Breast Cancer. 2005;5:439–46. https://doi.org/10.3816/cbc.2005.n.002.

    Article  PubMed  Google Scholar 

  217. Fan HGM, Park A, Xu W, et al. The influence of erythropoietin on cognitive function in women following chemotherapy for breast cancer. Psychooncology. 2009;18:156–61. https://doi.org/10.1002/pon.1372.

    Article  PubMed  Google Scholar 

  218. Alhowail A, Chigurupati S. Research advances on how metformin improves memory impairment in “chemobrain.” Neural Regen Res. 2021;17:15–9. https://doi.org/10.4103/1673-5374.314284.

    Article  PubMed Central  Google Scholar 

  219. Jacobsen PB, Garland LL, Booth-Jones M, et al. Relationship of hemoglobin levels to fatigue and cognitive functioning among cancer patients receiving chemotherapy. J Pain Symptom Manage. 2004;28:7–18. https://doi.org/10.1016/j.jpainsymman.2003.11.002.

    Article  CAS  PubMed  Google Scholar 

  220. Wu Y-Q, Dang R-L, Tang M-M, et al. Long chain omega-3 polyunsaturated fatty acid supplementation alleviates doxorubicin-induced depressive-like behaviors andnNeurotoxicity in rats: involvement of oxidative stress and neuroinflammation. Nutrients. 2016;8:243. https://doi.org/10.3390/nu8040243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Clare L, Woods RT, Moniz Cook ED, et al. Cognitive rehabilitation and cognitive training for early-stage Alzheimer’s disease and vascular dementia. Cochrane Database Syst Rev. 2003;(4):CD003260. https://doi.org/10.1002/14651858.CD003260.

  222. Di Iulio F, Cravello L, Shofany J, et al. Neuropsychological disorders in non-central nervous system cancer: a review of objective cognitive impairment, depression, and related rehabilitation options. Neurol Sci. 2019;40:1759–74. https://doi.org/10.1007/s10072-019-03898-0.

    Article  PubMed  Google Scholar 

  223. Ferguson RJ, Ahles TA, Saykin AJ, et al. Cognitive-behavioral management of chemotherapy-related cognitive change. Psychooncology. 2007;16:772–7. https://doi.org/10.1002/pon.1133.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Ferguson RJ, McDonald BC, Rocque MA, et al. Development of CBT for chemotherapy-related cognitive change: results of a waitlist control trial. Psychooncology. 2012;21:176–86. https://doi.org/10.1002/pon.1878.

    Article  PubMed  Google Scholar 

  225. Ercoli LM, Castellon SA, Hunter AM, et al. Assessment of the feasibility of a rehabilitation intervention program for breast cancer survivors with cognitive complaints. Brain Imaging Behav. 2013;7:543–53. https://doi.org/10.1007/s11682-013-9237-0.

    Article  PubMed  Google Scholar 

  226. Ercoli LM, Petersen L, Hunter AM, et al. Cognitive rehabilitation group intervention for breast cancer survivors: results of a randomized clinical trial. Psychooncology. 2015;24:1360–7. https://doi.org/10.1002/pon.3769.

    Article  CAS  PubMed  Google Scholar 

  227. Park J-H, Jung YS, Kim KS, Bae SH. Effects of compensatory cognitive training intervention for breast cancer patients undergoing chemotherapy: a pilot study. Support Care Cancer. 2017;25:1887–96. https://doi.org/10.1007/s00520-017-3589-8.

    Article  PubMed  Google Scholar 

  228. Von Ah D, Carpenter JS, Saykin A, et al. Advanced cognitive training for breast cancer survivors: a randomized controlled trial. Breast Cancer Res Treat. 2012;135:799–809. https://doi.org/10.1007/s10549-012-2210-6.

    Article  Google Scholar 

  229. Kesler S, Hadi Hosseini SM, Heckler C, et al. Cognitive training for improving executive function in chemotherapy-treated breast cancer survivors. Clin Breast Cancer. 2013;13:299–306. https://doi.org/10.1016/j.clbc.2013.02.004.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Poppelreuter M, Weis J, Bartsch HH. Effects of specific neuropsychological training programs for breast cancer patients after adjuvant chemotherapy. J Psychosoc Oncol. 2009;27:274–96. https://doi.org/10.1080/07347330902776044.

    Article  CAS  PubMed  Google Scholar 

  231. Alvarez J, Meyer FL, Granoff DL, Lundy A. The effect of EEG biofeedback on reducing postcancer cognitive impairment. Integr Cancer Ther. 2013;12:475–87. https://doi.org/10.1177/1534735413477192.

    Article  PubMed  Google Scholar 

  232. Fitzpatrick TR, Edgar L, Holcroft C. Assessing the relationship between physical fitness activities, cognitive health, and quality of life among older cancer survivors. J Psychosoc Oncol. 2012;30:556–72. https://doi.org/10.1080/07347332.2012.703768.

    Article  PubMed  Google Scholar 

  233. Crowgey T, Peters KB, Hornsby WE, et al. Relationship between exercise behavior, cardiorespiratory fitness, and cognitive function in early breast cancer patients treated with doxorubicin-containing chemotherapy: a pilot study. Appl Physiol Nutr Metab. 2014;39:724–9. https://doi.org/10.1139/apnm-2013-0380.

    Article  CAS  PubMed  Google Scholar 

  234. Mustian KM, Janelsins MC, Peppone LJ, et al. EXCAP exercise effects on cognitive impairment and inflammation: a URCC NCORP RCT in 479 cancer patients. J Clin Oncol. 2015;33:9504. https://doi.org/10.1200/jco.2015.33.15_suppl.9504.

    Article  Google Scholar 

  235. Wong-Goodrich SJE, Pfau ML, Flores CT, et al. Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation. Cancer Res. 2010;70:9329–38. https://doi.org/10.1158/0008-5472.CAN-10-1854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Cooke GE, Wetter NC, Banducci SE, et al. Moderate physical activity mediates the association between white matter lesion volume and memory recall in breast cancer Ssrvivors. PLoS ONE. 2016;11: e0149552. https://doi.org/10.1371/journal.pone.0149552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Winocur G, Wojtowicz JM, Huang J, Tannock IF. Physical exercise prevents suppression of hippocampal neurogenesis and reduces cognitive impairment in chemotherapy-treated rats. Psychopharmacology. 2014;231:2311–20. https://doi.org/10.1007/s00213-013-3394-0.

    Article  CAS  PubMed  Google Scholar 

  238. Edelstein K, Bernstein LJ. Cognitive dysfunction after chemotherapy for breast cancer. J Int Neuropsychol Soc. 2014;20:351–6. https://doi.org/10.1017/S1355617714000149.

    Article  PubMed  Google Scholar 

  239. Ahles TA, Saykin A. Cognitive effects of standard-dose chemotherapy in patients with cancer. Cancer Invest. 2001;19:812–20. https://doi.org/10.1081/cnv-100107743.

    Article  CAS  PubMed  Google Scholar 

  240. Ahles TA, Root JC, Ryan EL. Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. J Clin Oncol. 2012;30:3675–86. https://doi.org/10.1200/JCO.2012.43.0116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Vardy J. Tannock I Cognitive function after chemotherapy in adults with solid tumours. Crit Rev Oncol Hematol. 2007;63:183–202. https://doi.org/10.1016/j.critrevonc.2007.06.001.

    Article  PubMed  Google Scholar 

  242. Yao C, Rich JB, Tirona K, Bernstein LJ. Intraindividual variability in reaction time before and after neoadjuvant chemotherapy in women diagnosed with breast cancer. Psychooncology. 2017;26:2261–8. https://doi.org/10.1002/pon.4351.

    Article  PubMed  Google Scholar 

  243. Vardy JL, Dhillon HM, Pond GR, et al. Cognitive function in patients with colorectal cancer who do and do not receive chemotherapy: a prospective, longitudinal, controlled study. J Clin Oncol. 2015;33:4085–92. https://doi.org/10.1200/JCO.2015.63.0905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Zer A, Pond GR, Razak ARA, et al. Association of neurocognitive deficits with radiotherapy or chemoradiotherapy for patients with head and neck Cancer. JAMA Otolaryngol Neck Surg. 2018;144:71–9. https://doi.org/10.1001/jamaoto.2017.2235.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giovana R. Onzi or Adriana R. Pohlmann.

Ethics declarations

Funding

Giovana R. Onzi received a research fellowship from the National Council for Scientific and Technological Development (CNPq #150654/2020-0). Adriana R. Pohlmann received a research grant from the National Council for Scientific and Technological Development (CNPq # 305343/2019-0). Silvia S. Guterres received a research grant and fellowship from FAPERGS (#18.2551.0000513-4).

Conflict of interest

Giovana R. Onzi works for Astrazeneca Brazil as a full-time employee. This manuscript was elaborated while the author was still working as a postdoctoral researcher at Federal University of Rio Grande do Sul. Paula R. Pohlmann has received consulting fees or honorarium from Perthera, Immunonet, Sirtex, CARIS, OncoPLex Diagnostics, Pfizer, Heron, Puma, BOLT, and Abbvie; fees for participation in review activities such as data monitoring boards from SEAGEN; payment for lectures including service on speakers bureaus from Dava Oncology, United Medical lecture, ION Oral Oncolytics Lecture, and Genentech/Roche; and holds stock/stock options in Immunonet. Daniela D. Rosa has received consulting fees or honorarium from Roche, Novartis, AstraZeneca, and Lilly; fees for participation in review activities such as data monitoring boards from Daiichi-Sankyo, Lilly, and Teva; and payment for lectures including service on speakers bureaus from Novartis, Pfizer, and AstraZeneca. Nathalia D’Agustini, Solange C. Garcia, Silvia S. Guterres, and Adriana R. Pohlmann have no conflicts of interest to declare.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

All authors participated in the conceptualization of the manuscript. Giovana R. Onzi and Nathalia D’Agustini wrote the manuscript. Giovana R. Onzi and Adriana R. Pohlmann performed the data curation and analysis. All authors reviewed the final manuscript. Silvia S. Guterres, Daniela D. Rosa, and Adriana R. Pohlmann supervised the work and were responsible for funding acquisition.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 313 KB)

40264_2022_1182_MOESM2_ESM.xlsx

Supplementary file2 Electronic Supplementary Material 2 Full list of documents obtained in the literature survey performed on CRCI in breast cancer (XLSX 39 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onzi, G.R., D’Agustini, N., Garcia, S.C. et al. Chemobrain in Breast Cancer: Mechanisms, Clinical Manifestations, and Potential Interventions. Drug Saf 45, 601–621 (2022). https://doi.org/10.1007/s40264-022-01182-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-022-01182-3

Navigation