Skip to main content
Log in

Assessing the Impact on Health of Pharmacovigilance Activities: Example of Four Safety Signals

  • Original Research Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Introduction

The impact of pharmacovigilance activities on public health remains under-investigated, and measuring the impact on health of pharmacovigilance activities for a specific safety signal is challenging.

Objective

To gain more insight into the methodological challenges and the data required, we assessed the impact of pharmacovigilance on public health for four identified product-specific safety signals using publicly available data in the Netherlands. The assessment was on the impact of the intertwined and complementary steps of the pharmacovigilance pathways.

Methods

The impact of pharmacovigilance on public health was assessed using the assessment support tool and ‘open data’ from the Netherlands for four different types of pharmacovigilance safety signals: (1) off-label use of cyproterone acetate/ethinyloestradiol (CPA/EE) and thrombotic risk after pharmacovigilance measures after 2014; (2) pergolide and the risk of cardiac valvulopathy after pharmacovigilance activities in 2003; (3) proton pump inhibitors and the risk of hypomagnesaemia after pharmacovigilance activities in 2011; (4) rosiglitazone withdrawal from the market because of cardiovascular effects in 2010.

Results

For the signals on CPA/EE and pergolide, a crude estimation of the impact could be made with varying degrees of assumptions based on the risk described in the literature and utilisation data.

Conclusion

This article highlights the methodological challenges and the data required to assess the impact of product-specific safety signals. A structured assessment support tool can be used as a guide for the necessary data elements and steps needed for the measurement or estimation of impact of pharmacovigilance activities on public health, provided that the appropriate data are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goedecke T, Morales DR, Pacurariu A, Kurz X. Measuring the impact of medicines regulatory interventions—systematic review and methodological considerations. Br J Clin Pharmacol. 2018;84(3):419–33. https://doi.org/10.1111/bcp.13469.

    Article  PubMed  Google Scholar 

  2. van Hunsel F, Gardarsdottir H, de Boer A, Kant A. Measuring the impact of pharmacovigilance activities, challenging but important. Br J Clin Pharmacol. 2019. https://doi.org/10.1111/bcp.14042.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kesselheim AS, Campbell EG, Schneeweiss S, Rausch P, Lappin BM, Zhou EH, et al. Methodological approaches to evaluate the impact of FDA drug safety communications. Drug Saf. 2015;38(6):565–75. https://doi.org/10.1007/s40264-015-0291-y.

    Article  CAS  PubMed  Google Scholar 

  4. (PRAC). PRAC. PRAC strategy measuring impact pharmacovigilance activities (Rev 1). 2017.

  5. European Network of Centres for Pharmacoepidemiology, Pharmacovigilance. ENCePP guide on methodological standards in pharmacoepidemiology—annex 2. Guidance on methods for pharmacovigilance impact research. 2018. http://www.enceppeu/standards_and_guidances/methodologicalGuideAnnex2shtml. Accessed 21 Nov 2019.

  6. Bitzer J, Amy JJ, Beerthuizen R, Birkhauser M, Bombas T, Creinin M, et al. Statement on combined hormonal contraceptives containing third- or fourth-generation progestogens or cyproterone acetate, and the associated risk of thromboembolism. J Fam Plann Reprod Health Care. 2013;39(3):156–9. https://doi.org/10.1136/jfprhc-2013-100624.

    Article  PubMed  Google Scholar 

  7. Bitzer J. Comment on “Statement on combined hormonal contraceptives containing third- or fourth-generation progestogens or cyproterone acetate, and the associated risk of thromboembolism”: author’s response. J Fam Plann Reprod Health Care. 2013;39(4):304–5. https://doi.org/10.1136/jfprhc-2013-100710.

    Article  PubMed  Google Scholar 

  8. Martinez F, Avecilla A. Combined hormonal contraception and venous thromboembolism. Eur J Contracept Reprod Health Care. 2007;12(2):97–106. https://doi.org/10.1080/13625180701300194.

    Article  CAS  PubMed  Google Scholar 

  9. Shufelt CL, Bairey Merz CN. Contraceptive hormone use and cardiovascular disease. J Am Coll Cardiol. 2009;53(3):221–31. https://doi.org/10.1016/j.jacc.2008.09.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mintzes B. Drug regulatory failure in Canada, the case of Diane-35. women and health protection. 2004.

  11. Stichting Farmaceutische Kengetallen (SFK). Aandeel risicopillen in vijf jaar met kwart afgenomen. 2006. https://www.sfk.nl/publicaties/PW/2016/aandeel-risicopillen-in-vijf-jaar-met-kwart-afgenomen. Accessed 21 Aug 2019.

  12. Stegeman BH, de Bastos M, Rosendaal FR, van Hylckama VA, Helmerhorst FM, Stijnen T, et al. Different combined oral contraceptives and the risk of venous thrombosis: systematic review and network meta-analysis. BMJ. 2013;347:f5298. https://doi.org/10.1136/bmj.f5298.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Furedi A. The public health implications of the 1999 pil scare. Hum Reprod Update. 1999;5(6):7.

    Article  Google Scholar 

  14. Farmer RD, Williams TJ, Simpson EL, Nightingale ALE, of, . pill scare on rates of venous thromboembolism among women taking combined oral contraceptives: analysis of General Practice Research Database. BMJ. 1995;2000(321):3.

    Google Scholar 

  15. Martin RM, Hilton,S.R., Kerry, S.M.. The impact of the October 1995 'Pil Scare' on oral contaceptive use in the United Kingdom; analysis of a general practice automated database. Fam Pract. 1997;14(4):6.

  16. Mills A. Avoiding problems in clinical practice after the pill scare. Hum Reprod Update. 1999;5(6):639.

    Article  CAS  Google Scholar 

  17. de Vries CS, van den Berg,P.B., van den Berg, L.T.W.,. Oral contraceptive use before and after the latest pill scare in the Netherlands. Contraception. 1998;57:3.

  18. Zambrano MD, Miller EC. Maternal stroke: an update. Curr Atheroscler Rep. 2019;21(9):33. https://doi.org/10.1007/s11883-019-0798-2.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen GC, Gao H, Zhang L, Tong T. Evaluation of therapeutic efficacy of anticoagulant drugs for patients with venous thromboembolism during pregnancy: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2019;238:7–11. https://doi.org/10.1016/j.ejogrb.2019.04.038.

    Article  CAS  PubMed  Google Scholar 

  20. Statistics Netherlands. 2019. http://www.cbs.nl. https://opendata.cbs.nl/statline/#/CBS/nl/. Accessed 21 Nov 2019.

  21. US Food and Drug Administration (FDA). Drugs@FDA: FDA Approved Drug Products—pergolide. 2019. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=019385. Accessed 23 Aug 2019.

  22. College ter Beoordeling van Geneesmiddelen (CBG-MEB). 2019. https://www.geneesmiddeleninformatiebank.nl/nl/. https://www.geneesmiddeleninformatiebank.nl/nl/. Accessed 21 Aug 2019.

  23. Shaunak S, Wilkins A, Pilling JB, Dick DJ. Pericardial, retroperitoneal, and pleural fibrosis induced by pergolide. J Neurol Neurosurg Psychiatry. 1999;66(1):79–81. https://doi.org/10.1136/jnnp.66.1.79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Flowers CM, Racoosin JA, Lu SL, Beitz JG. The US Food and Drug Administration’s registry of patients with pergolide-associated valvular heart disease. Mayo Clin Proc. 2003;78(6):730–1. https://doi.org/10.4065/78.6.730.

    Article  PubMed  Google Scholar 

  25. Pritchett AM, Morrison JF, Edwards WD, Schaff HV, Connolly HM, Espinosa RE. Valvular heart disease in patients taking pergolide. Mayo Clin Proc. 2002;77(12):1280–6. https://doi.org/10.4065/77.12.1280.

    Article  PubMed  Google Scholar 

  26. Zorginstituut Nederland (ZIN). The Drug Information System of the National Health Care Institute. 2019. https://www.gipdatabank.nl/servicepagina/engelse-informatie. Accessed 21 Aug 2019.

  27. Corvol JC, Anzouan-Kacou JB, Fauveau E, Bonnet AM, Lebrun-Vignes B, Girault C, Agid Y, Lechat P, Isnard R, Lacomblez L. Heart valve regurgitation, pergolide use, and Parkinson disease. Arch Neurol. 2007;64(12):5.

    Article  Google Scholar 

  28. Tran T, Brophy JM, Suissa S, Renoux C. Risks of cardiac valve regurgitation and heart failure associated with ergot- and non-ergot-derived dopamine agonist use in patients with Parkinson’s disease: a systematic review of observational studies. CNS Drugs. 2015;29(12):985–98. https://doi.org/10.1007/s40263-015-0293-4.

    Article  CAS  PubMed  Google Scholar 

  29. Antonini A, Tolosa E, Mizuno Y, Yamamoto M, Poewe WH. A reassessment of risks and benefits of dopamine agonists in Parkinson’s disease. Lancet Neurol. 2009;8(10):929–37. https://doi.org/10.1016/s1474-4422(09)70225-x.

    Article  CAS  PubMed  Google Scholar 

  30. Rasmussen VG, Østergaard K, Dupont E, Poulsen SH. The risk of valvular regurgitation in patients with Parkinson’s disease treated with dopamine receptor agonists. Mov Disord. 2011;26(5):801–6. https://doi.org/10.1002/mds.23470.

    Article  PubMed  Google Scholar 

  31. European Medicines Agency (EMA). Overall summary of the scientific evaluation of bromocriptine, dihydroergocryptine and lisuride and associated names. 2008. https://www.ema.europa.eu/en/documents/referral/bromocriptine-dihydroergocryptine-lisuride-article-31-referral-annex-ii_en.pdf. Accessed 23 Aug 2019.

  32. Fahn S, Parkinson Study G. Does levodopa slow or hasten the rate of progression of Parkinson's disease? J Neurol. 2005;252(Suppl 4):IV37–IV42. https://doi.org/10.1007/s00415-005-4008-5.

  33. Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 2004;351(24):2498–508. https://doi.org/10.1056/NEJMoa033447.

    Article  CAS  PubMed  Google Scholar 

  34. Netherlands Pharmacovigilance Centre Lareb. Pergolide and pathologic gambling addiction. 2005. https://databankws.lareb.nl/Downloads/kwb_2005_3_pergo.pdf. Accessed 22 Aug 2019.

  35. Lemmens T, Gibson S. Decreasing the data deficit: improving post-market surveillance in pharmaceutical regulation. McGill Law J. 2014;59(4):943–88.

    Article  Google Scholar 

  36. Yamashiro K, Komine-Kobayashi M, Hatano T, Urabe T, Mochizuki H, Hattori N, et al. The frequency of cardiac valvular regurgitation in Parkinson’s disease. Mov Disord. 2008;23(7):935–41. https://doi.org/10.1002/mds.22036.

    Article  PubMed  Google Scholar 

  37. Schade R, Andersohn F, Suissa S, Haverkamp W, Garbe E. Dopamine agonists and the risk of cardiac-valve regurgitation. NEJM. 2007;356:29.

    Article  CAS  Google Scholar 

  38. Oeda T, Masaki M, Yamamoto K, Mizuta E, Kitagawa N, Isono T, et al. High risk factors for valvular heart disease from dopamine agonists in patients with Parkinson’s disease. J Neural Transm (Vienna). 2009;116(2):171–8. https://doi.org/10.1007/s00702-008-0160-2.

    Article  CAS  PubMed  Google Scholar 

  39. Van Camp GF A, Cosyns D, Goldstein J, Perdaens Schoors D. Heart valvular disease in patients with Parkinson’s disease treated with high-dose pergolide. Neurology. 2003;61:859.

  40. Kim JY, Chung EJ, Park SW, Lee WY. Valvular heart disease in Parkinson’s disease treated with ergot derivative dopamine agonists. Mov Disord. 2006;21(8):1261–4. https://doi.org/10.1002/mds.20931.

    Article  PubMed  Google Scholar 

  41. Kenangil G, Ozekmekci S, Koldas L, Sahin T, Erginoz E. Assessment of valvulopathy in Parkinson’s disease patients on pergolide and/or cabergoline. Clin Neurol Neurosurg. 2007;109(4):350–3. https://doi.org/10.1016/j.clineuro.2007.01.011.

    Article  PubMed  Google Scholar 

  42. Ruzicka E, Linkova H, Penicka M, Ulmanova O, Novakova L, Roth J. Low incidence of restrictive valvulopathy in patients with Parkinson’s disease on moderate dose of pergolide. J Neurol. 2007;254(11):1575–8. https://doi.org/10.1007/s00415-007-0592-x.

    Article  PubMed  Google Scholar 

  43. Trifiro G, Mokhles MM, Dieleman JP, van Soest EM, Verhamme K, Mazzaglia G, et al. Risk of cardiac valve regurgitation with dopamine agonist use in Parkinson’s disease and hyperprolactinaemia: a multi-country, nested case-control study. Drug Saf. 2012;35(2):159–71. https://doi.org/10.2165/11594940-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  44. Yamamoto M, Uesugi T. Dopamine agonists and valvular heart disease in patients with Parkinson’s disease: evidence and mystery. J Neurol. 2007;254(S5):74–8. https://doi.org/10.1007/s00415-007-5012-8.

    Article  CAS  Google Scholar 

  45. Peralta C, Wolf E, Alber H, Seppi K, Muller S, Bosch S, et al. Valvular heart disease in Parkinson's disease vs. controls: an echocardiographic study. Mov Disord. 2006;21(8):1109–13. https://doi.org/10.1002/mds.20887.

  46. Ozer F, Tiras R, Cetin S, Ozturk O, Aydemir T, Ozben S, et al. Valvular heart disease in patients with Parkinson’s disease treated with pergolide, levodopa or both. J Clin Neurosci. 2009;16(1):83–7. https://doi.org/10.1016/j.jocn.2008.02.005.

    Article  PubMed  Google Scholar 

  47. Martin WR. Dopamine agonists and the risk of valvular heart disease. Nat Clin Pract Neurol. 2007;3(8):426–7. https://doi.org/10.1038/ncpneuro0534.

    Article  PubMed  Google Scholar 

  48. Zanettini R, Antonini A, Gatto G, Gentile R, Tesei S, Pezzoli G. Regression of cardiac valvulopathy related to ergot-derived dopamine agonists. Cardiovasc Ther. 2011;29(6):404–10. https://doi.org/10.1111/j.1755-5922.2010.00169.x.

    Article  CAS  PubMed  Google Scholar 

  49. Yamamoto M, Uesugi T, Nakayama T. Dopamine agonists and cardiac valvulopathy in Parkinson disease: a case-control study. Neurology. 2006;67(7):1225–9. https://doi.org/10.1212/01.wnl.0000238508.68593.1d.

    Article  CAS  PubMed  Google Scholar 

  50. Zadikoff C, Duong-Hua M, Sykora K, Marras C, Lang A, Rochon P. Pergolide associated cardiac valvulopathy based on Ontario administrative data. Can J Neurol Sci. 2014;35(2):173–8. https://doi.org/10.1017/s0317167100008593.

    Article  Google Scholar 

  51. Gau JT, Yang YX, Chen R, Kao TC. Uses of proton pump inhibitors and hypomagnesemia. Pharmacoepidemiol Drug Saf. 2012;21(5):553–9. https://doi.org/10.1002/pds.3224.

    Article  CAS  PubMed  Google Scholar 

  52. Fatuzzo P, Portale G, Scollo V, Zanoli L, Granata A. Proton pump inhibitors and symptomatic hypomagnesemic hypoparathyroidism. J Nephrol. 2017;30(2):297–301. https://doi.org/10.1007/s40620-016-0319-0.

    Article  CAS  PubMed  Google Scholar 

  53. Hoorn EJ, van der Hoek J, de Man RA, Kuipers EJ, Bolwerk C, Zietse R. A case series of proton pump inhibitor-induced hypomagnesemia. Am J Kidney Dis. 2010;56(1):112–6. https://doi.org/10.1053/j.ajkd.2009.11.019.

    Article  PubMed  Google Scholar 

  54. Florentin M, Elisaf MS. Proton pump inhibitor-induced hypomagnesemia: a new challenge. World J Nephrol. 2012;1(6):151–4. https://doi.org/10.5527/wjn.v1.i6.151.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Biyik M, Solak Y, Ucar R, Cifci S, Tekis D, Polat I, et al. Hypomagnesemia among outpatient long-term proton pump inhibitor users. Am J Ther. 2017;24(1):e52–5. https://doi.org/10.1097/MJT.0000000000000154.

    Article  PubMed  Google Scholar 

  56. Pasina L, Zanotta D, Puricelli S, Djignefa DC, Bonoldi G. Proton pump inhibitors and risk of hypomagnesemia. Eur J Intern Med. 2015;26(7):e25–6. https://doi.org/10.1016/j.ejim.2015.06.019.

    Article  CAS  PubMed  Google Scholar 

  57. Danziger J, William JH, Scott DJ, Lee J, Lehman LW, Mark RG, et al. Proton-pump inhibitor use is associated with low serum magnesium concentrations. Kidney Int. 2013;83(4):692–9. https://doi.org/10.1038/ki.2012.452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lindner G, Funk GC, Leichtle AB, Fiedler GM, Schwarz C, Eleftheriadis T, et al. Impact of proton pump inhibitor use on magnesium homoeostasis: a cross-sectional study in a tertiary emergency department. Int J Clin Pract. 2014;68(11):1352–7. https://doi.org/10.1111/ijcp.12469.

    Article  CAS  PubMed  Google Scholar 

  59. Cheungpasitporn W, Thongprayoon C, Kittanamongkolchai W, Srivali N, Edmonds PJ, Ungprasert P, et al. Proton pump inhibitors linked to hypomagnesemia: a systematic review and meta-analysis of observational studies. Ren Fail. 2015;37(7):1237–41. https://doi.org/10.3109/0886022X.2015.1057800.

    Article  CAS  PubMed  Google Scholar 

  60. Park CH, Kim EH, Roh YH, Kim HY, Lee SK. The association between the use of proton pump inhibitors and the risk of hypomagnesemia: a systematic review and meta-analysis. PLoS ONE. 2014;9(11):e112558. https://doi.org/10.1371/journal.pone.0112558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Koulouridis I, Alfayez M, Tighiouart H, Madias NE, Kent DM, Paulus JK, et al. Out-of-hospital use of proton pump inhibitors and hypomagnesemia at hospital admission: a nested case-control study. Am J Kidney Dis. 2013;62(4):730–7. https://doi.org/10.1053/j.ajkd.2013.02.373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gragossian A, Bashir K, Friede R. Hypomagnesemia. StatPearls. Treasure Island (FL). 2020.

  63. Yu EW, Bauer SR, Bain PA, Bauer DC. Proton pump inhibitors and risk of fractures: a meta-analysis of 11 international studies. Am J Med. 2011;124(6):519–26. https://doi.org/10.1016/j.amjmed.2011.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang YX, Lewis JD, Epstein S, Metz DC. Long-term proton pump inhibitor therapy and risk of hip fracture. JAMA. 2006;296(24):2947–53. https://doi.org/10.1001/jama.296.24.2947.

    Article  CAS  PubMed  Google Scholar 

  65. US Food and Drug Administration (FDA). FDA Drug Safety Communication: ongoing review of Avandia (rosiglitazone) and cardiovascular safety. 2010. https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/fda-drug-safety-communication-ongoing-review-avandia-rosiglitazone-and-cardiovascular-safety. Accessed 28 Aug 2019.

  66. Pouwels KB, van Grootheest K. The rosiglitazone decision process at FDA and EMA. What should we learn? Int J Risk Saf Med. 2012;24(2):73–80. https://doi.org/10.3233/JRS-2012-0559.

    Article  PubMed  Google Scholar 

  67. Nau R. Statistical forecasting: notes on regression and time series analysis. 2019. https://people.duke.edu/~rnau/411home.htm. Accessed 23 Aug 2019.

  68. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71. https://doi.org/10.1056/NEJMoa072761.

    Article  CAS  PubMed  Google Scholar 

  69. Singh S, Loke YK, Furberg CD. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA. 2007;298(10):1189–95. https://doi.org/10.1001/jama.298.10.1189.

    Article  CAS  PubMed  Google Scholar 

  70. Nissen SE, Wolski K. Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Intern Med. 2010;170(14):1191–201. https://doi.org/10.1001/archinternmed.2010.207.

    Article  CAS  PubMed  Google Scholar 

  71. Mannucci E, Monami M, Lamanna C, Gensini GF, Marchionni N. Pioglitazone and cardiovascular risk. A comprehensive meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2008;10(12):1221–38. https://doi.org/10.1111/j.1463-1326.2008.00892.x.

    Article  CAS  PubMed  Google Scholar 

  72. Mahaffey KW, Hafley G, Dickerson S, Burns S, Tourt-Uhlig S, White J et al. Results of a reevaluation of cardiovascular outcomes in the RECORD trial. Am Heart J. 2013;166(2):240–9 e1. https://doi.org/10.1016/j.ahj.2013.05.004.

  73. Pladevall M, Riera-Guardia N, Margulis AV, Varas-Lorenzo C, Calingaert B, Perez-Gutthann S. Cardiovascular risk associated with the use of glitazones, metformin and sufonylureas: meta-analysis of published observational studies. BMC Cardiovasc Disord. 2016;16:14. https://doi.org/10.1186/s12872-016-0187-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. StatLine. Internet; toegang, gebruik en faciliteiten. 2019. https://opendata.cbs.nl/statline/#/CBS/nl/dataset/83429NED/table?dl=2F8AA. Accessed 9 Mar 2020.

  75. Herdeiro MT, Soares S, Silva T, Roque F, Figueiras A. Impact of rosiglitazone safety alerts on oral antidiabetic sales trends: a countrywide study in Portugal. Fundam Clin Pharmacol. 2016;30(5):440–9. https://doi.org/10.1111/fcp.12207.

    Article  CAS  PubMed  Google Scholar 

  76. Ruiter R, Visser LE, van Herk-Sukel MP, Geelhoed-Duijvestijn PH, de Bie S, Straus SM, et al. Prescribing of rosiglitazone and pioglitazone following safety signals: analysis of trends in dispensing patterns in the Netherlands from 1998 to 2008. Drug Saf. 2012;35(6):471–80. https://doi.org/10.2165/11596950-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  77. Lu CY, Zhang F, Lakoma MD, Madden JM, Rusinak D, Penfold RB, et al. Changes in antidepressant use by young people and suicidal behavior after FDA warnings and media coverage: quasi-experimental study. BMJ. 2014;348:g3596.

    Article  Google Scholar 

  78. Weatherburn CJ, Guthrie B, Dreischulte T, Morales DR. Impact of medicines regulatory risk communications in the UK on prescribing and clinical outcomes: systematic review, time series analysis and meta-analysis. Br J Clin Pharmacol. 2020;86(4):698–710. https://doi.org/10.1111/bcp.14104.

    Article  PubMed  Google Scholar 

  79. Briesacher BA, Soumerai SB, Zhang F, Toh S, Andrade SE, Wagner JL, et al. A critical review of methods to evaluate the impact of FDA regulatory actions. Pharmacoepidemiol Drug Saf. 2013;22(9):986–94.

    Article  Google Scholar 

  80. Hawton K, Bergen H, Simkin S, Dodd S, Pocock P, Bernal W, et al. Long term effect of reduced pack sizes of paracetamol on poisoning deaths and liver transplant activity in England and Wales: interrupted time series analyses. BMJ. 2013;346:f403. https://doi.org/10.1136/bmj.f403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence van Hunsel.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Florence van Hunsel, Laura Peters, Helga Gardarsdottir, and Agnes Kant have no conflicts of interest that are directly relevant to the content of this study.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Publicly available data were used for this research. The data used during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Author contributions

FH, LP, HG, and AK contributed to the article. LP eters performed the assessments of the impact, with input from the other authors. FH wrote the first draft of the manuscript with input from all other authors. All authors contributed to manuscript revision and read and approved the submitted version.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Hunsel, F., Peters, L., Gardarsdottir, H. et al. Assessing the Impact on Health of Pharmacovigilance Activities: Example of Four Safety Signals. Drug Saf 44, 589–600 (2021). https://doi.org/10.1007/s40264-021-01047-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-021-01047-1

Navigation