Skip to main content
Log in

The Prevalence of Dose Errors Among Paediatric Patients in Hospital Wards with and without Health Information Technology: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Introduction

The risk of dose errors is high in paediatric inpatient settings. Computerized provider order entry (CPOE) systems with clinical decision support (CDS) may assist in reducing the risk of dosing errors. Although a frequent type of medication error, the prevalence of dose errors is not well described. Dosing error rates in hospitals with or without CPOE have not been compared.

Objective

Our aim was to conduct a systematic review assessing the prevalence and impact of dose errors in paediatric wards with and without CPOE and/or CDS.

Methods

We systematically searched five databases to identify studies published between January 2000 and December 2017 that assessed dose error rates by medication chart audit or direct observation.

Results

We identified 39 studies, nine of which involved paediatric wards using CPOE with or without CDS. Studies of paediatric wards using paper medication charts reported approximately 8–25% of patients experiencing a dose error, and approximately 2–6% of medication orders and approximately 3–8% of dose administrations contained a dose error, with estimates varying by ward type. The nine studies of paediatric wards using CPOE reported approximately 22% of patients experiencing a dose error, and approximately 1–6% of medication orders and approximately 3–8% of dose administrations contained a dose error. Few studies provided data for individual wards. The severity and prevalence of harm associated with dose errors was rarely assessed and showed inconsistent results.

Conclusions

Dose errors occur in approximately 1 in 20 medication orders. Hospitals using CPOE with or without CDS had a lower rate of dose errors compared with those using paper charts. However, few pre/post studies have been conducted and none reported a significant reduction in dose error rates associated with the introduction of CPOE. Future research employing controlled designs is needed to determine the true impact of CPOE on dosing errors among children, and any associated patient harm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ivanovska V, Rademaker CMA, van Dijk L, Mantel-Teeuwisse AK. Pediatric drug formulations: a review of challenges and progress. Pediatrics. 2014;134(2):361.

    Article  Google Scholar 

  2. Corny J, Lebel D, Bailey B, Bussières J-F. Unlicensed and off-label drug use in children before and after pediatric governmental initiatives. J Pediatr Pharmacol Ther. 2015;20(4):316–28.

    PubMed  PubMed Central  Google Scholar 

  3. Koren G, Barzilay Z, Greenwald M. Tenfold errors in administration of drug doses: a neglected iatrogenic disease in pediatrics. Pediatrics. 1986;77(6):848–9.

    CAS  PubMed  Google Scholar 

  4. Ghaleb MA, Barber N, Franklin BD, Yeung VWS, Khaki ZF, Wong ICK. Systematic review of medication errors in pediatric patients. Ann Pharmacother. 2006;40(10):1766–76.

    Article  Google Scholar 

  5. Koumpagioti D, Varounis C, Kletsiou E, Nteli C, Matziou V. Evaluation of the medication process in pediatric patients: a meta-analysis. J Pediatr. 2014;90(4):344–55.

    Article  Google Scholar 

  6. Miller MR, Robinson KA, Lubomski LH, Rinke ML, Pronovost PJ. Medication errors in paediatric care: a systematic review of epidemiology and an evaluation of evidence supporting reduction strategy recommendations. Qual Saf Health Care. 2007;16(2):116–26.

    Article  Google Scholar 

  7. Sharek PJ, Classen D. The incidence of adverse events and medical error in pediatrics. Pediatr Clin N Am. 2006;53(6):1067–77.

    Article  Google Scholar 

  8. Sullivan JE, Buchino JJ. Medication errors in pediatrics: the octopus evading defeat. J Surg Oncol. 2004;88(3):182–8.

    Article  Google Scholar 

  9. Wong IC, Ghaleb MA, Franklin BD, Barber N. Incidence and nature of dosing errors in paediatric medications: a systematic review. Drug Saf. 2004;27(9):661–70.

    Article  Google Scholar 

  10. Conroy S, Sweis D, Planner C, Yeung V, Collier J, Haines L, et al. Interventions to reduce dosing errors in children: a systematic review of the literature. Drug Saf. 2007;30(12):1111–25.

    Article  Google Scholar 

  11. Garfield S, Reynolds M, Dermont L, Franklin BD. Measuring the severity of prescribing errors: a systematic review. Drug Saf. 2013;36(12):1151–7.

    Article  Google Scholar 

  12. Maaskant JM, Vermeulen H, Apampa B, Fernando B, Ghaleb MA, Neubert A, et al. Interventions for reducing medication errors in children in hospital. Cochrane Database Syst Rev. 2015;3:CD006208.

    Google Scholar 

  13. Lehmann CU. Council on clinical information technology. Pediatric aspects of inpatient health information technology systems. Pediatrics. 2015;135(3):e756–68.

    Article  Google Scholar 

  14. Bannan DF, Tully MP. Bundle interventions used to reduce prescribing and administration errors in hospitalized children: a systematic review. J Clin Pharm Ther. 2016;41(3):246–55.

    Article  CAS  Google Scholar 

  15. Rinke ML, Bundy DG, Velasquez CA, Rao S, Zerhouni Y, Lobner K, et al. Interventions to reduce pediatric medication errors: a systematic review. Pediatrics. 2014;134(2):338–60.

    Article  Google Scholar 

  16. Meyer-Massetti C, Cheng CM, Schwappach DL, Paulsen L, Ide B, Meier CR, et al. Systematic review of medication safety assessment methods. Am J Health Syst Pharm. 2011;68(3):227–40.

    Article  Google Scholar 

  17. Franklin BD, Birch S, Savage I, Wong I, Woloshynowych M, Jacklin A, et al. Methodological variability in detecting prescribing errors and consequences for the evaluation of interventions. Pharmacoepidemiol Drug Saf. 2009;18(11):992–9.

    Article  Google Scholar 

  18. Westbrook JI, Li L, Lehnbom EC, Baysari MT, Braithwaite J, Burke R, et al. What are incident reports telling us? A comparative study at two Australian hospitals of medication errors identified at audit, detected by staff and reported to an incident system. Int J Qual Health Care. 2015;27(1):1–9.

    Article  Google Scholar 

  19. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M. The Newcastle–Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. 2017. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed June 2018.

  20. Critical Appraisal Skills Programme. CASP cohort study checklist. 2017. http://www.casp-uk.net/casp-tools-checklists. Accessed June 2018.

  21. Al-Jeraisy MI, Alanazi MQ, Abolfotouh MA. Medication prescribing errors in a pediatric inpatient tertiary care setting in Saudi Arabia. BMC Res Notes. 2011;4:294.

    Article  Google Scholar 

  22. Al-Ramahi R, Hmedat B, Alnjajrah E, Manasrah I, Radwan I, Alkhatib M. Medication dosing errors and associated factors in hospitalized pediatric patients from the south area of the west bank – Palestine. Saudi Pharm J. 2017;25(6):857–60.

    Article  Google Scholar 

  23. Campino A, Lopez-Herrera MC, Lopez-De-Heredia I, Valls-I-Soler A. Medication errors in a neonatal intensive care unit. Influence of observation on the error rate. Acta Paediatr. 2008;97(11):1591–4.

    Article  Google Scholar 

  24. Campino A, Lopez-Herrera MC, Lopez-De-Heredia I, Valls-I-Soler A. Educational strategy to reduce medication errors in a neonatal intensive care unit. Acta Paediatr. 2009;98(5):782–5.

    Article  Google Scholar 

  25. Davey AL, Britland A, Naylor RJ. Decreasing paediatric prescribing errors in a district general hospital. Qual Saf Health Care. 2008;17(2):146–9.

    Article  CAS  Google Scholar 

  26. Dedefo MG, Mitike AH, Angamo MT. Incidence and determinants of medication errors and adverse drug events among hospitalized children in West Ethiopia. BMC Pediatr. 2016;16:81.

    Article  Google Scholar 

  27. Dharmar M, Kuppermann N, Romano PS, Yang NH, Nesbitt TS, Phan J, et al. Telemedicine consultations and medication errors in rural emergency departments. Pediatrics. 2013;132(6):1090–7.

    Article  Google Scholar 

  28. Feleke Y, Girma B. Medication administration errors involving paediatric in-patients in a hospital in Ethiopia. Trop J Pharm Res. 2010;9(4):401–7.

    Article  Google Scholar 

  29. Fortescue EB, Kaushal R, Landrigan CP, McKenna KJ, Clapp MD, Federico F, et al. Prioritizing strategies for preventing medication errors and adverse drug events in pediatric inpatients. Pediatrics. 2003;111(4 Pt 1):722–9.

    Article  Google Scholar 

  30. Ghaleb MA, Barber N, Franklin BD, Wong ICK. The incidence and nature of prescribing and medication administration errors in paediatric inpatients. Arch Dis Child. 2010;95(2):113–8.

    Article  Google Scholar 

  31. Glanzmann C, Frey B, Meier CR, Vonbach P. Analysis of medication prescribing errors in critically ill children. Eur J Pediatr. 2015;174(10):1347–55.

    Article  Google Scholar 

  32. Horri J, Cransac A, Quantin C, Abrahamowicz M, Ferdynus C, Sgro C, et al. Frequency of dosage prescribing medication errors associated with manual prescriptions for very preterm infants. J Clin Pharm Ther. 2014;39(6):637–41.

    Article  CAS  Google Scholar 

  33. Jain S, Basu S, Parmar V. Medication errors in neonates admitted in intensive care unit and emergency department. Indian J of Med Sci. 2009;63(4):145–51.

    Article  Google Scholar 

  34. Kaushal R, Bates DW, Landrigan C, McKenna KJ, Clapp MD, Federico F, et al. Medication errors and adverse drug events in pediatric inpatients. J Am Med Assoc. 2001;285(16):2114–20.

    Article  CAS  Google Scholar 

  35. Kozer E, Scolnik D, Macpherson A, Keays T, Kevin Shi C, Tracy Luk C, et al. Variables associated with medication errors in pediatric emergency medicine. Pediatrics. 2002;110(4):737–42.

    Article  Google Scholar 

  36. Lepee C, Klaber RE, Benn J, Fletcher PJ, Cortoos PJ, Jacklin A, et al. The use of a consultant-led ward round checklist to improve paediatric prescribing: an interrupted time series study. Eur J Pediatr. 2012;171(8):1239–45.

    Article  Google Scholar 

  37. Machado APC, Tomich CSF, Osme SF, Ferreira DMLM, Mendonça MAO, Pinto RMC, et al. Prescribing errors in a Brazilian neonatal intensive care unit. Cadernos de Saude Publica. 2015;31(12):2610–20.

    Article  Google Scholar 

  38. Martinez-Anton A, Ignacio Sanchez J, Casanueva L. Impact of an intervention to reduce prescribing errors in a pediatric intensive care unit. Intensive Care Med. 2012;38(9):1532–8.

    Article  Google Scholar 

  39. Nikhithasri P, Ramya M, Kishore P. Assessment of medication errors in pediatricinpatient department of a private hospital. Int J Curr Pharm Res. 2017;9(6):70–5.

    Article  Google Scholar 

  40. Ozkan S, Kocaman G, Ozturk C. Effect of strategies for preventing medication administration errors in pediatric inpatients. Turk Pediatr Arsivi. 2013;48(4):299–302.

    Article  Google Scholar 

  41. Ozkan S, Kocaman G, Ozturk C, Seren S. Frequency of pediatric medication administration errors and contributing factors. J Nurs Care Qual. 2011;26(2):136–43.

    Article  Google Scholar 

  42. Pallás CR, De-La-Cruz J, Del-Moral MT, Lora D, Malalana MA. Improving the quality of medical prescriptions in neonatal units. Neonatology. 2008;93(4):251–6.

    Article  Google Scholar 

  43. Palmero D, Di Paolo ER, Beauport L, Pannatier A, Tolsa JF. A bundle with a preformatted medical order sheet and an introductory course to reduce prescription errors in neonates. Eur J Pediatr. 2016;175(1):113–9.

    Article  Google Scholar 

  44. Parihar M, Passi GR. Medical errors in pediatric practice. Indian Pediatr. 2008;45(7):586–9.

    PubMed  Google Scholar 

  45. Potts AL, Barr FE, Gregory DF, Wright L, Patel NR. Computerized physician order entry and medication errors in a pediatric critical care unit. Pediatrics. 2004;113(1):59–63.

    Article  Google Scholar 

  46. Prot S, Fontan JE, Alberti C, Bourdon O, Farnoux C, Macher MA, et al. Drug administration errors and their determinants in pediatric in-patients. Int J Qual Health Care. 2005;17(5):381–9.

    Article  Google Scholar 

  47. Rashed AN, Neubert A, Tomlin S, Jackman J, Alhamdan H, AlShaikh A, et al. Epidemiology and potential associated risk factors of drug-related problems in hospitalised children in the United Kingdom and Saudi Arabia. Eur J Clin Pharmacol. 2012;68(12):1657–66.

    Article  Google Scholar 

  48. Rashed AN, Wilton L, Lo CCH, Kwong BYS, Leung S, Wong ICK. Epidemiology and potential risk factors of drug-related problems in Hong Kong paediatric wards. Br J Clin Pharmacol. 2014;77(5):873–9.

    Article  Google Scholar 

  49. Sard BE, Walsh KE, Doros G, Hannon M, Moschetti W, Bauchner H. Retrospective evaluation of a computerized physician order entry adaptation to prevent prescribing errors in a pediatric emergency department. Pediatrics. 2008;122(4):782–7.

    Article  Google Scholar 

  50. Stultz JS, Porter K, Nahata MC. Sensitivity and specificity of dosing alerts for dosing errors among hospitalized pediatric patients. J Am Med Inform Assoc. 2014;21(e2):e219–25.

    Article  Google Scholar 

  51. Taylor JA, Loan LA, Kamara J, Blackburn S, Whitney D. Medication administration variances before and after implementation of computerized physician order entry in a neonatal intensive care unit. Pediatrics. 2008;121(1):123–8.

    Article  Google Scholar 

  52. Warrick C, Naik H, Avis S, Fletcher P, Franklin BD, Inwald D. A clinical information system reduces medication errors in paediatric intensive care. Intensive Care Med. 2011;37(4):691–4.

    Article  Google Scholar 

  53. Zeleke A, Chanie T, Woldie M. Medication prescribing errors and associated factors at the pediatric wards of Dessie Referral Hospital, Northeast Ethiopia. Int Arch Med. 2014;7:18.

    Article  Google Scholar 

  54. Rinke ML, Moon M, Clark JS, Mudd S, Miller MR. Prescribing errors in a pediatric emergency department. Pediatr Emerg Care. 2008;24(1):1–8.

    PubMed  Google Scholar 

  55. Otero P, Leyton A, Mariani G, Cernadas JMC. Medication errors in pediatric inpatients: prevalence and results of a prevention program. Pediatrics. 2008;122(3):e737–43.

    Article  Google Scholar 

  56. Mekory TM, Bahat H, Bar-Oz B, Tal O, Berkovitch M, Kozer E. The proportion of errors in medical prescriptions and their executions among hospitalized children before and during accreditation. Int J Qual Health Care. 2017;29(3):366–70.

    Article  Google Scholar 

  57. Chua SS, Choo SM, Sulaiman CZ, Omar A, Thong MK. Effects of sharing information on drug administration errors in pediatric wards: a pre-post intervention study. Ther Clin Risk Manag. 2017;13:345–53.

    Article  Google Scholar 

  58. Buckley MS, Erstad BL, Kopp BJ, Theodorou AA, Priestley G. Direct observation approach for detecting medication errors and adverse drug events in a pediatric intensive care unit. Pediatr Crit Care Med. 2007;8(2):145–52.

    Article  CAS  Google Scholar 

  59. Chedoe I, Molendijk H, Hospes W, Van Den Heuvel ER, Taxis K. The effect of a multifaceted educational intervention on medication preparation and administration errors in neonatal intensive care. Arch Dis Child Fetal Neonatal Ed. 2012;97(6):F449–55.

    Article  Google Scholar 

  60. Holdsworth MT, Fichtl RE, Raisch DW, Hewryk A, Behta M, Mendez-Rico E, et al. Impact of computerized prescriber order entry on the incidence of adverse drug events in pediatric inpatients. Pediatrics. 2007;120(5):1058–66.

    Article  Google Scholar 

  61. Newby BD. Dedicated fax machine to increase scrutiny of medication orders for pediatric hospital inpatients. Can J Hosp Pharm. 2008;61(5):329–33.

    Google Scholar 

  62. Kozer E, Scolnik D, Jarvis AD, Koren G. The effect of detection approaches on the reported incidence of tenfold errors. Drug Saf. 2006;29(2):169–74.

    Article  Google Scholar 

  63. Rinke ML, Zimmer KP, Lehmann CU, Colombani P, Dover G, Garger C, et al. Patient safety rounds in a pediatric tertiary care center. Jt Comm J Qual Patient Saf. 2008;34(1):5–12.

    Article  Google Scholar 

  64. Taketomo CK, Hodding JH, Kraus DM. Pediatric dosage handbook. 17th ed. Hudson: Lexi-Comp, Inc; 2010.

    Google Scholar 

  65. Baysari MT, Hardie R-A, Lake R, Richardson L, McCullagh C, Gardo A, et al. Longitudinal study of user experiences of a CPOE system in a pediatric hospital. Int J Med Inform. 2018;109:5–14.

    Article  Google Scholar 

  66. Abramson EL, Kaushal R. Computerized provider order entry and patient safety. Pediatr Clin N Am. 2012;59(6):1247–55.

    Article  Google Scholar 

  67. Brigham and Women’s Hospital. Computerized prescriber order entry medication safety (CPOEMS): uncovering and learning from issues and errors. Silver Spring: US Food and Drug Administration; 2015. https://psnet.ahrq.gov/resources/resource/29442/computerized-prescriber-order-entry-medication-safety-cpoems-uncovering-and-learning-from-issues-and-errors.

  68. Cresswell KM, Bates DW, Sheikh A. Ten key considerations for the successful implementation and adoption of large-scale health information technology. J Am Med Inform Assoc. 2013;20(e1):e9–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Gates.

Ethics declarations

Conflict of interest

Peter Gates, Sophie Meyerson, Melissa Baysari and Johanna Westbrook have no conflicts of interest that are directly relevant to the content of this study.

Funding

Funding from a National Health and Medical Research Council Partnership Grant (APP1094878) was used to assist with the preparation of this manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gates, P.J., Meyerson, S.A., Baysari, M.T. et al. The Prevalence of Dose Errors Among Paediatric Patients in Hospital Wards with and without Health Information Technology: A Systematic Review and Meta-Analysis. Drug Saf 42, 13–25 (2019). https://doi.org/10.1007/s40264-018-0715-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-018-0715-6

Navigation