Skip to main content
Log in

Comparative Efficacy and Safety of Monoclonal Antibodies for Cognitive Decline in Patients with Alzheimer’s Disease: A Systematic Review and Network Meta-Analysis

  • Systematic Review
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Background

Recent clinical trials of anti-Aβ monoclonal antibodies (mAbs) in the treatment of early Alzheimer’s disease (AD) have produced encouraging cognitive and clinical results. The purpose of this network meta-analysis (NMA) was to compare and rank mAb drugs according to their efficacy and safety.

Methods

PubMed, Embase, Web of Science, and the Cochrane Library were searched for randomized controlled trials testing various mAbs for the treatment of cognitive decline in patients with AD, up to March 31, 2023. R software (version 4.2.3) along with JAGS and STATA software (version 15.0) were used for statistical analysis. Odds ratio (OR) for binary variables, mean difference (MD) for continuous variables, and their 95% confidence intervals (CI) were utilized to estimate treatment effects and rank probabilities for each mAb in terms of safety and efficacy outcomes. We calculated the surface under the cumulative ranking area (SUCRA) to evaluate each mAb, with higher SUCRA values indicating better efficacy or lower likelihood of adverse events.

Results

Thirty-three randomized controlled trials with a total of 21,087 patients were included in the current NMA, involving eight different mAbs. SUCRA values showed that aducanumab (87.01% and 99.37%, respectively) was the most likely to achieve the best therapeutic effect based on the changes of Mini-Mental State Examination (MMSE) and Clinical Dementia Rating scale Sum of Boxes (CDR-SB) scores. Donanemab (88.50% and 99.00%, respectively) performed better than other therapies for Alzheimer's Disease Assessment Scale–cognitive subscale (ADAS-cog) and Positron Emission Tomography-Standardized Uptake Value ratio (PET-SUVr). Lecanemab (87.24%) may be the most promising way to slow down the decrease of Alzheimer's Disease Cooperative Study–Activities of Daily Living (ADCS-ADL) score. In the analysis of the incidence of adverse events (subjects with any treatment-emergent adverse event), gantenerumab (89.12%) had the least potential for adverse events, while lecanemab (0.79%) may cause more adverse events. Solanezumab (95.75% and 80.38%, respectively) had the lowest incidence of amyloid-related imaging abnormalities characterized by edema and effusion (ARIA-E) and by cerebral microhemorrhages (ARIA-H) of the included immunotherapies. While SUCRA values provided a comprehensive measure of treatment efficacy, the inherent statistical uncertainty required careful analysis in clinical application.

Conclusion

Despite immunotherapies significantly increasing the risks of adverse events and ARIA, the data suggest that mAbs can effectively improve the cognitive function of patients with mild and moderate AD. According to the NMA, aducanumab was the most likely to achieve significant improvements in different cognitive and clinical assessments (statistically improved MMSE and CDR-SB), followed by donanemab (statistically improved ADAS-Cog, and PET-SUVr) and lecanemab (statistically improved ADCS-ADL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1(1): a006189.

    PubMed Central  PubMed  Google Scholar 

  2. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51(6):1546–54.

    CAS  PubMed  Google Scholar 

  3. Dementia 2023 [updated 15 March 2023]. https://www.who.int/news-room/fact-sheets/detail/dementia.

  4. Viscogliosi G, Marigliano V. Alzheimer’s disease: how far have we progressed? Lessons learned from diabetes mellitus, metabolic syndrome, and inflammation. J Am Geriatr Soc. 2013;61(5):845–6.

    PubMed  Google Scholar 

  5. Judge D, Roberts J, Khandker RK, Ambegaonkar B, Black CM. Physician practice patterns associated with diagnostic evaluation of patients with suspected mild cognitive impairment and Alzheimer’s disease. Int J Alzheimer’s Dis. 2019;2019:4942562.

    Google Scholar 

  6. Briggs R, Kennelly SP, O’Neill D. Drug treatments in Alzheimer’s disease. Clin Med (Lond). 2016;16(3):247–53.

    PubMed  Google Scholar 

  7. 2022 Alzheimer's disease facts and figures. Alzheimer’s Dementia. 2022;18(4):700–89.

  8. Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol. 2016;14(1):101–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6.

    CAS  ADS  PubMed  Google Scholar 

  10. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–5.

    CAS  ADS  PubMed  Google Scholar 

  11. Behl T, Kaur I, Fratila O, Brata R, Bungau S. Exploring the potential of therapeutic agents targeted towards mitigating the events associated with amyloid-β cascade in Alzheimer’s disease. Int J Mol Sci. 2020;21(20):7443.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Grossberg GT, Tong G, Burke AD, Tariot PN. Present algorithms and future treatments for Alzheimer’s disease. J Alzheimer’s Dis JAD. 2019;67(4):1157–71.

    PubMed  Google Scholar 

  13. Pinheiro L, Faustino C. therapeutic strategies targeting amyloid-β in Alzheimer’s disease. Curr Alzheimer Res. 2019;16(5):418–52.

    CAS  PubMed  Google Scholar 

  14. Salloway S, Sperling R, Gilman S, Fox NC, Blennow K, Raskind M, et al. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology. 2009;73(24):2061–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Lacorte E, Ancidoni A, Zaccaria V, Remoli G, Tariciotti L, Bellomo G, et al. Safety and efficacy of monoclonal antibodies for Alzheimer’s disease: a systematic review and meta-analysis of published and unpublished clinical trials. J Alzheimers Dis. 2022;87(1):101–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7): e1000097.

    PubMed Central  PubMed  Google Scholar 

  17. Cumpston M, Li T, Page MJ, Chandler J, Welch VA, Higgins JP, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019;10:Ed000142.

  18. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.

    PubMed Central  PubMed  Google Scholar 

  19. Higgins JP, Jackson D, Barrett JK, Lu G, Ades AE, White IR. Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods. 2012;3(2):98–110.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

    PubMed  Google Scholar 

  21. Shim S, Yoon BH, Shin IS, Bae JM. Network meta-analysis: application and practice using Stata. Epidemiol Health. 2017;39: e2017047.

    PubMed Central  PubMed  Google Scholar 

  22. Cummings JL, Cohen S, van Dyck CH, Brody M, Curtis C, Cho W, et al. ABBY: a phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology. 2018;90(21):e1889–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Salloway S, Honigberg LA, Cho W, Ward M, Friesenhahn M, Brunstein F, et al. Amyloid positron emission tomography and cerebrospinal fluid results from a crenezumab anti-amyloid-beta antibody double-blind, placebo-controlled, randomized phase II study in mild-to-moderate Alzheimer’s disease (BLAZE). Alzheimer’s Res Ther. 2018;10(1):96.

    Google Scholar 

  24. Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537(7618):50–6.

    CAS  ADS  PubMed  Google Scholar 

  25. Shcherbinin S, Evans CD, Lu M, Andersen SW, Pontecorvo MJ, Willis BA, et al. Association of amyloid reduction after donanemab treatment with tau pathology and clinical outcomes: the TRAILBLAZER-ALZ randomized clinical trial. JAMA Neurol. 2022;79(10):1015–24.

    PubMed Central  PubMed  Google Scholar 

  26. Vandenberghe R, Rinne JO, Boada M, Katayama S, Scheltens P, Vellas B, et al. Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials. Alzheimer’s Res Ther. 2016;8(1):18.

    Google Scholar 

  27. Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, et al. C-11-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 2010;9(4):363–72.

    CAS  PubMed  Google Scholar 

  28. Brashear HR, Ketter N, Bogert J, Di J, Salloway SP, Sperling R. Clinical evaluation of amyloid-related imaging abnormalities in bapineuzumab phase III studies. J Alzheimer’s Dis JAD. 2018;66(4):1409–24.

    CAS  PubMed  Google Scholar 

  29. Nakamura T, Fujikoshi S, Funai J, Matsumura T. Disease-modifying effect of solanezumab evaluated by delayed-start analysis in a Japanese subpopulation with mild Alzheimer’s disease. Neurol Clin Neurosci. 2017;5(5):141–9.

    CAS  Google Scholar 

  30. Lowe SL, Duggan Evans C, Shcherbinin S, Cheng YJ, Willis BA, Gueorguieva I, et al. Donanemab (LY3002813) phase 1b study in Alzheimer’s disease: rapid and sustained reduction of brain amyloid measured by florbetapir F18 imaging. J Prev Alzheimer’s Dis. 2021;8(4):414–24.

    CAS  Google Scholar 

  31. Mintun MA, Lo AC, Duggan Evans C, Wessels AM, Ardayfio PA, Andersen SW, et al. Donanemab in early alzheimer’s Disease. N Engl J Med. 2021;384(18):1691–704.

    CAS  PubMed  Google Scholar 

  32. Ostrowitzki S, Bittner T, Sink KM, Mackey H, Rabe C, Honig LS, et al. Evaluating the safety and efficacy of crenezumab vs placebo in adults with early Alzheimer disease two phase 3 randomized placebo-controlled trials. JAMA Neurol. 2022;79(11):1113–21.

    PubMed Central  PubMed  Google Scholar 

  33. Ferrero J, Williams L, Stella H, Leitermann K, Mikulskis A, O’Gorman J, et al. First-in-human, double-blind, placebo-controlled, single-dose escalation study of aducanumab (BIIB037) in mild-to-moderate Alzheimer’s disease. Alzheimer’s Dementia (New York, N Y). 2016;2(3):169–76.

    PubMed  Google Scholar 

  34. van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388(1):9–21.

    PubMed  Google Scholar 

  35. Ostrowitzki S, Deptula D, Thurfjell L, Barkhof F, Bohrmann B, Brooks DJ, et al. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol. 2012;69(2):198–207.

    PubMed  Google Scholar 

  36. Landen JW, Cohen S, Billing CB Jr, Cronenberger C, Styren S, Burstein AH, et al. Multiple-dose ponezumab for mild-to-moderate Alzheimer’s disease: safety and efficacy. Alzheimer’s Dementia (New York, N Y). 2017;3(3):339–47.

    PubMed  Google Scholar 

  37. Lu M, Brashear HR. Pharmacokinetics, pharmacodynamics, and safety of subcutaneous bapineuzumab: a single-ascending-dose study in patients with mild to moderate Alzheimer disease. Clin Pharmacol Drug Dev. 2019;8(3):326–35.

    CAS  PubMed  Google Scholar 

  38. Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):311–21.

    CAS  PubMed  Google Scholar 

  39. Brody M, Liu E, Di J, Lu M, Margolin RA, Werth JL, et al. A phase II, randomized, double-blind, placebo-controlled study of safety, pharmacokinetics, and biomarker results of subcutaneous bapineuzumab in patients with mild to moderate Alzheimer’s disease. J Alzheimer’s Dis JAD. 2016;54(4):1509–19.

    CAS  PubMed  Google Scholar 

  40. Ostrowitzki S, Lasser RA, Dorflinger E, Scheltens P, Barkhof F, Nikolcheva T, et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimer’s Res Ther. 2017;9(1):95.

    Google Scholar 

  41. Landen JW, Andreasen N, Cronenberger CL, Schwartz PF, Börjesson-Hanson A, Östlund H, et al. Ponezumab in mild-to-moderate Alzheimer’s disease: randomized phase II PET-PIB study. Alzheimer’s Dementia (New York, N Y). 2017;3(3):393–401.

    PubMed  Google Scholar 

  42. Swanson CJ, Zhang Y, Dhadda S, Wang J, Kaplow J, Lai RYK, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-A beta protofibril antibody. Alzheimers Res Ther. 2021;13(1):80.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Farlow M, Arnold SE, van Dyck CH, Aisen PS, Snider BJ, Porsteinsson AP, et al. Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement. 2012;8(4):261–71.

    CAS  PubMed  Google Scholar 

  44. Arai H, Umemura K, Ichimiya Y, Iseki E, Eto K, Miyakawa K, et al. Safety and pharmacokinetics of bapineuzumab in a single ascending-dose study in Japanese patients with mild to moderate Alzheimer’s disease. Geriatr Gerontol Int. 2016;16(5):644–50.

    PubMed  Google Scholar 

  45. Miyoshi I, Fujimoto Y, Yamada M, Abe S, Zhao Q, Cronenberger C, et al. Safety and pharmacokinetics of PF-04360365 following a single-dose intravenous infusion in Japanese subjects with mild-to-moderate Alzheimer’s disease: a multicenter, randomized, double-blind, placebo-controlled, dose-escalation study. Int J Clin Pharmacol Ther. 2013;51(12):911–23.

    CAS  PubMed  Google Scholar 

  46. Landen JW, Zhao Q, Cohen S, Borrie M, Woodward M, Billing CB, et al. Safety and pharmacology of a single intravenous dose of ponezumab in subjects with mild-to-moderate Alzheimer disease: a phase I, randomized, placebo-controlled, double-blind, dose-escalation study. Clin Neuropharmacol. 2013;36(1):14–23.

    CAS  PubMed  Google Scholar 

  47. Logovinsky V, Satlin A, Lai R, Swanson C, Kaplow J, Osswald G, et al. Safety and tolerability of BAN2401—a clinical study in Alzheimer's disease with a protofibril selective Abeta antibody. Alzheimer's Res Ther. 2016;8(1) (no pagination).

  48. Guthrie H, Honig LS, Lin H, Sink KM, Blondeau K, Quartino A, et al. Safety, tolerability, and pharmacokinetics of crenezumab in patients with mild-to-moderate Alzheimer’s disease treated with escalating doses for up to 133 weeks. J Alzheimer’s Dis JAD. 2020;76(3):967–79.

    CAS  PubMed  Google Scholar 

  49. Black RS, Sperling RA, Safirstein B, Motter RN, Pallay A, Nichols A, et al. A single ascending dose study of bapineuzumab in patients with Alzheimer disease. Alzheimer Dis Assoc Disord. 2010;24(2):198–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Salloway S, Farlow M, McDade E, Clifford DB, Wang G, Llibre-Guerra JJ, et al. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease. Nat Med. 2021;27(7):1187–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M, et al. Trial of solanezumab for mild dementia due to Alzheimer’s disease. N Engl J Med. 2018;378(4):321–30.

    CAS  PubMed  Google Scholar 

  52. Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):322–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Haeberlein SB, Aisen PS, Barkhof F, Chalkias S, Chen T, Cohen S, et al. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J Prev Alzheimer’s Dis. 2022;9(2):197–210.

    Google Scholar 

  54. Avgerinos KI, Ferrucci L, Kapogiannis D. Effects of monoclonal antibodies against amyloid-β on clinical and biomarker outcomes and adverse event risks: a systematic review and meta-analysis of phase III RCTs in Alzheimer’s disease. Ageing Res Rev. 2021;68: 101339.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Lombardo I, Ramaswamy G, Fogel I, Mo Y, Friedhoff L, Bruinsma B. A summary of baseline efficacy characteristics from the mindset study: a global phase 3 study of intepirdine (RVT-101) in subjects with mild to moderate Alzheimer’s disease. Alzheimers Dement. 2017;13(7):P936.

    Google Scholar 

  56. Dhillon S. Aducanumab: first approval. Drugs. 2021;81(12):1437–43.

    MathSciNet  CAS  PubMed  Google Scholar 

  57. Linse S, Scheidt T, Bernfur K, Vendruscolo M, Dobson CM, Cohen SIA, et al. Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ antibodies. Nat Struct Mol Biol. 2020;27(12):1125–33.

    CAS  PubMed  Google Scholar 

  58. Imbimbo BP, Ippati S, Watling M, Imbimbo C. Role of monomeric amyloid-β in cognitive performance in Alzheimer’s disease: insights from clinical trials with secretase inhibitors and monoclonal antibodies. Pharmacol Res. 2023;187: 106631.

    CAS  PubMed  Google Scholar 

  59. Richard E, den Brok MGHE, van Gool WA. Bayes analysis supports null hypothesis of anti-amyloid beta therapy in Alzheimer’s disease. Alzheimers Dementia. 2021;17(6):1051–5.

    CAS  Google Scholar 

  60. Haeberlein SB, O’Gorman J, Chiao P, Bussière T, von Rosenstiel P, Tian Y, et al. Clinical development of aducanumab, an anti-Aβ human monoclonal antibody being investigated for the treatment of early Alzheimer’s disease. J Prev Alzheimer’s Dis. 2017;4(4):255–63.

    Google Scholar 

  61. Mohs RC, Knopman D, Petersen RC, Ferris SH, Ernesto C, Grundman M, et al. Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Study. Alzheimer Dis Assoc Disord. 1997;11(Suppl 2):S13-21.

    PubMed  Google Scholar 

  62. Doraiswamy PM, Kaiser L, Bieber F, Garman RL. The Alzheimer’s Disease Assessment Scale: evaluation of psychometric properties and patterns of cognitive decline in multicenter clinical trials of mild to moderate Alzheimer’s disease. Alzheimer Dis Assoc Disord. 2001;15(4):174–83.

    CAS  PubMed  Google Scholar 

  63. Avgerinos KI, Ferrucci L, Kapogiannis D. Effects of monoclonal antibodies against amyloid-beta on clinical and biomarker outcomes and adverse event risks: a systematic review and meta-analysis of phase III RCTs in Alzheimer’s disease. Ageing Res Rev. 2021;68: 101339.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Mo JJ, Li JY, Yang Z, Liu Z, Feng JS. Efficacy and safety of anti-amyloid-β immunotherapy for Alzheimer’s disease: a systematic review and network meta-analysis. Ann Clin Transl Neurol. 2017;4(12):931–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Galasko D, Bennett D, Sano M, Ernesto C, Thomas R, Grundman M, et al. An inventory to assess activities of daily living for clinical trials in Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. Alzheimer Dis Assoc Disord. 1997;11(Suppl 2):S33–9.

    PubMed  Google Scholar 

  66. Jeremic D, Navarro-López JD, Jiménez-Díaz L. Efficacy and safety of anti-amyloid-β monoclonal antibodies in current Alzheimer’s disease phase III clinical trials: a systematic review and interactive web app-based meta-analysis. Ageing Res Rev. 2023;90: 102012.

    CAS  PubMed  Google Scholar 

  67. Barthel H. Amyloid imaging-based food and drug administration approval of lecanemab to treat Alzheimer disease-what lasts long finally becomes good? J Nucl Med. 2023;64(4):503–4.

    CAS  PubMed  Google Scholar 

  68. Fulop T, Witkowski JM, Bourgade K, Khalil A, Zerif E, Larbi A, et al. Can an infection hypothesis explain the beta amyloid hypothesis of Alzheimer’s disease? Front Aging Neurosci. 2018;10:224.

    PubMed Central  PubMed  Google Scholar 

  69. Multhaup G, Huber O, Buée L, Galas MC. Amyloid precursor protein (APP) metabolites APP intracellular fragment (AICD), Aβ42, and Tau in nuclear roles. J Biol Chem. 2015;290(39):23515–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Rashad A, Rasool A, Shaheryar M, Sarfraz A, Sarfraz Z, Robles-Velasco K, et al. Donanemab for Alzheimer’s disease: a systematic review of clinical trials. Healthcare (Basel, Switzerland). 2022;11(1):32.

    PubMed Central  PubMed  Google Scholar 

  71. Rabinovici GD, La Joie R. Amyloid-targeting monoclonal antibodies for Alzheimer disease. JAMA. 2023;330(6):507–9.

    PubMed  Google Scholar 

  72. Salemme S, Ancidoni A, Locuratolo N, Piscopo P, Lacorte E, Canevelli M, et al. Advances in amyloid-targeting monoclonal antibodies for Alzheimer’s disease: clinical and public health issues. Expert Rev Neurother. 2023;23(12):1113–29.

    CAS  PubMed  Google Scholar 

  73. Villain N, Planche V, Levy R. High-clearance anti-amyloid immunotherapies in Alzheimer’s disease. Part 1: meta-analysis and review of efficacy and safety data, and medico-economical aspects. Revue Neurol. 2022;178(10):1011–30.

    CAS  Google Scholar 

  74. Atwood CS, Perry G. Playing Russian roulette with Alzheimer’s disease patients: do the cognitive benefits of lecanemab outweigh the risk of edema, stroke and encephalitis? J Alzheimer’s Dis JAD. 2023;92(3):799–801.

    PubMed  Google Scholar 

  75. Sperling RA, Jack CR Jr, Black SE, Frosch MP, Greenberg SM, Hyman BT, et al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimer’s Dementia. 2011;7(4):367–85.

    PubMed  Google Scholar 

  76. Cotta Ramusino M, Perini G, Altomare D, Barbarino P, Weidner W, Salvini Porro G, et al. Outcomes of clinical utility in amyloid-PET studies: state of art and future perspectives. Eur J Nucl Med Mol Imaging. 2021;48(7):2157–68.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Ma.

Ethics declarations

Funding

This study was supported by the Shenyang Science and Technology Program [grant number 20-205-4-090].

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material; further inquiries can be directed to the corresponding author.

Author contributions

All authors contributed to the study conception and design. YQ: subject design and writing—original draft. YC, MY and JG: investigation. YM: conceptualization, supervision, and funding acquisition—reviewing and editing. All authors contributed to the article and approved the submitted version.

Consent for publication

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Code availability

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1198 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Gu, J., Yu, M. et al. Comparative Efficacy and Safety of Monoclonal Antibodies for Cognitive Decline in Patients with Alzheimer’s Disease: A Systematic Review and Network Meta-Analysis. CNS Drugs 38, 169–192 (2024). https://doi.org/10.1007/s40263-024-01067-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-024-01067-2

Navigation