Skip to main content
Log in

Role of Pharmacogenomics in Individualizing Treatment for Alzheimer’s Disease

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

The development of Alzheimer’s disease therapeutics has been challenging, with 99% of clinical trials failing to find a significant difference between drug and placebo. While the quest continues for more effective treatments, there is emerging evidence that pharmacogenetic considerations are important factors in regard to metabolism, efficacy, and toxicity of drugs. Currently, there are five US Food and Drug Administration-approved drugs for the treatment of Alzheimer’s disease; three acetylcholinesterase inhibitors, memantine, and aducanumab. Introducing a limited genetic panel consisting of APOE4, CYP2D6*10, and BChE*K would optimize acetylcholinesterase inhibitor therapy, facilitate immunotherapy risk assessment, and inform an amyloid-related imaging abnormality surveillance schedule. In view of the genetic heterogeneity of Alzheimer’s disease identified in genome-wide association studies, pharmacogenetics is expected to play an increasing role in mechanism-specific treatment strategies and personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gale SA, Acar D, Daffner KR. Dementia. Am J Med. 2018;31(10):1161–9.

    Article  Google Scholar 

  2. Seripa D, D’Onofrio G, Panza F, et al. The genetics of the human APOE polymorphism. Rejuvenation Res. 2011;14(5):491–500.

    Article  CAS  PubMed  Google Scholar 

  3. Xiao T, Jiao B, Zhang W, et al. Effect of the CYP2D6 and APOE polymorphisms on the efficacy of donepezil in patients with Alzheimer’s disease: a systematic review and meta-analysis. CNS Drugs. 2016;30(10):899–907.

    Article  CAS  PubMed  Google Scholar 

  4. Wightman DP, Jansen IE, Savage JE, et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat Genet. 2021;53(9):1276–82.

    Article  CAS  PubMed  Google Scholar 

  5. Jansen IE, Savage JE, Watanabe K, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet. 2019;51(3):404–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Banks SJ, Qiu Y, Fan CC, et al. Enriching the design of Alzheimer’s disease clinical trials: application of the polygenic hazard score and composite outcome measures. Alzheimers Dement (N Y). 2020;6(1):e12071.

    Google Scholar 

  7. Szigeti K, Ihnatovych I, Birkaya B, et al. CHRFAM7A: a human specific fusion gene, accounts for the translational gap for cholinergic strategies in Alzheimer’s disease. EBioMedicine. 2020;59:102892.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Doody RS, Thomas RG, Farlow M, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):311–21.

    Article  CAS  PubMed  Google Scholar 

  9. Zhong Y, Zheng X, Miao Y, et al. Effect of CYP2D6*10 and APOE polymorphisms on the efficacy of donepezil in patients with Alzheimer’s disease. Am J Med Sci. 2013;345(3):222–6.

    Article  PubMed  Google Scholar 

  10. Yaowaluk T, Senanarong V, Limwongse C, et al. Influence of CYP2D6, CYP3A5, ABCB1, APOE polymorphisms and nongenetic factors on donepezil treatment in patients with Alzheimer’s disease and vascular dementia. Pharmgenomics Pers Med. 2019;12:209–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ketter N, Brashear HR, Bogert J, et al. Central review of amyloid-related imaging abnormalities in two phase III clinical trials of bapineuzumab in mild-to-moderate Alzheimer’s disease patients. J Alzheimers Dis. 2017;57(2):557–73.

    Article  CAS  PubMed  Google Scholar 

  12. Barner EL, Gray SL. Donepezil use in Alzheimer disease. Ann Pharmacother. 1998;32(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  13. Shintani EY, Uchida KM. Donepezil: an anticholinesterase inhibitor for Alzheimer’s disease. Am J Health Syst Pharm. 1997;54(24):2805–10.

    Article  CAS  PubMed  Google Scholar 

  14. Noetzli M, Guidi M, Ebbing K, et al. Relationship of CYP2D6, CYP3A, POR, and ABCB1 genotypes with galantamine plasma concentrations. Ther Drug Monit. 2013;35(2):270–5.

    Article  CAS  PubMed  Google Scholar 

  15. Jasiecki J, Wasag B. Butyrylcholinesterase protein ends in the pathogenesis of Alzheimer’s disease: could BCHE genotyping be helpful in Alzheimer’s therapy? Biomolecules. 2019;9(10):592.

    Article  CAS  PubMed Central  Google Scholar 

  16. Prestori F, Bonardi C, Mapelli L, et al. Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage. PLoS ONE. 2013;8(5):e64828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shen J, Wu J. Nicotinic cholinergic mechanisms in Alzheimer’s disease. Int Rev Neurobiol. 2015;124:275–92.

    Article  CAS  PubMed  Google Scholar 

  18. Lewis AS, van Schalkwyk GI, Bloch MH. Alpha-7 nicotinic agonists for cognitive deficits in neuropsychiatric disorders: a translational meta-analysis of rodent and human studies. Prog Neuropsychopharmacol Biol Psychiatry. 2017;75:45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aracava Y, Pereira EF, Maelicke A, et al. Memantine blocks alpha7* nicotinic acetylcholine receptors more potently than n-methyl-D-aspartate receptors in rat hippocampal neurons. J Pharmacol Exp Ther. 2005;312(3):1195–205.

    Article  CAS  PubMed  Google Scholar 

  20. van Dyck CH. Anti-amyloid-beta monoclonal antibodies for Alzheimer’s disease: pitfalls and promise. Biol Psychiatry. 2018;83(4):311–9.

    Article  PubMed  CAS  Google Scholar 

  21. Brashear HR, Ketter N, Bogert J, et al. Clinical evaluation of amyloid-related imaging abnormalities in bapineuzumab phase III studies. J Alzheimers Dis. 2018;66(4):1409–24.

    Article  CAS  PubMed  Google Scholar 

  22. Miranda LF, Gomes KB, Tito PA, et al. Clinical response to donepezil in mild and moderate dementia: relationship to drug plasma concentration and CYP2D6 and APOE genetic polymorphisms. J Alzheimers Dis. 2017;55(2):539–49.

    Article  CAS  PubMed  Google Scholar 

  23. Rigaud AS, Traykov L, Latour F, et al. Presence or absence of at least one epsilon 4 allele and gender are not predictive for the response to donepezil treatment in Alzheimer’s disease. Pharmacogenetics. 2002;12(5):415–20.

    Article  CAS  PubMed  Google Scholar 

  24. De Beaumont L, Pelleieux S, Lamarre-Theroux L, et al. Butyrylcholinesterase K and apolipoprotein E-varepsilon4 reduce the age of onset of Alzheimer’s disease, accelerate cognitive decline, and modulate donepezil response in mild cognitively impaired subjects. J Alzheimers Dis. 2016;54(3):913–22.

    Article  PubMed  CAS  Google Scholar 

  25. Salloway S, Mintzer J, Cummings JL, et al. Subgroup analysis of US and non-US patients in a global study of high-dose donepezil (23 mg) in moderate and severe Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2012;27(6):421–32.

    Article  PubMed  Google Scholar 

  26. Choi SH, Kim SY, Na HR, et al. Effect of ApoE genotype on response to donepezil in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord. 2008;25(5):445–50.

    Article  CAS  PubMed  Google Scholar 

  27. Bizzarro A, Marra C, Acciarri A, et al. Apolipoprotein E epsilon4 allele differentiates the clinical response to donepezil in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2005;20(4):254–61.

    Article  CAS  PubMed  Google Scholar 

  28. Waring JF, Tang Q, Robieson WZ, et al. APOE-varepsilon4 carrier status and donepezil response in patients with Alzheimer’s disease. J Alzheimers Dis. 2015;47(1):137–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bullock R, Bergman H, Touchon J, et al. Effect of age on response to rivastigmine or donepezil in patients with Alzheimer’s disease. Curr Med Res Opin. 2006;22(3):483–94.

    Article  CAS  PubMed  Google Scholar 

  30. Blesa R, Aguilar M, Casanova JP, et al. Relationship between the efficacy of rivastigmine and apolipoprotein E (epsilon4) in patients with mild to moderately severe Alzheimer disease. Alzheimer Dis Assoc Disord. 2006;20(4):248–54.

    Article  CAS  PubMed  Google Scholar 

  31. Han HJ, Kim BC, Lee JY, et al. Response to rivastigmine transdermal patch or memantine plus rivastigmine patch is affected by apolipoprotein E genotype in Alzheimer patients. Dement Geriatr Cogn Disord. 2012;34(3–4):167–73.

    Article  CAS  PubMed  Google Scholar 

  32. Suh GH, Jung HY, Lee CU, et al. Effect of the apolipoprotein E epsilon4 allele on the efficacy and tolerability of galantamine in the treatment of Alzheimer’s disease. Dement Geriatr Cogn Disord. 2006;21(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  33. Aerssens J, Raeymaekers P, Lilienfeld S, et al. APOE genotype: no influence on galantamine treatment efficacy nor on rate of decline in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2001;12(2):69–77.

    Article  CAS  PubMed  Google Scholar 

  34. Babic T, Mahovic Lakusic D, Sertic J, et al. ApoE genotyping and response to galanthamine in Alzheimer’s disease: a real life retrospective study. Coll Antropol. 2004;28(1):199–204.

    CAS  PubMed  Google Scholar 

  35. MacGowan SH, Wilcock GK, Scott M. Effect of gender and apolipoprotein E genotype on response to anticholinesterase therapy in Alzheimer’s disease. Int J Geriatr Psychiatry. 1998;13(9):625–30.

    Article  CAS  PubMed  Google Scholar 

  36. Wroolie TE, Kenna HA, Williams KE, et al. Cognitive effects of memantine in postmenopausal women at risk of dementia: a pilot study. Acta Neurol Scand. 2009;119(3):172–9.

    Article  CAS  PubMed  Google Scholar 

  37. Lu J, Wang X, Wan L, et al. Gene polymorphisms affecting the pharmacokinetics and pharmacodynamics of donepezil efficacy. Front Pharmacol. 2020;11:934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Han HJ, Kwon JC, Kim JE, et al. Effect of rivastigmine or memantine add-on therapy is affected by butyrylcholinesterase genotype in patients with probable Alzheimer’s disease. Eur Neurol. 2015;73(1–2):23–8.

    Article  CAS  PubMed  Google Scholar 

  39. Braga IL, Silva PN, Furuya TK, et al. Effect of APOE and CHRNA7 genotypes on the cognitive response to cholinesterase inhibitor treatment at different stages of Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2015;30(2):39–44.

    Article  Google Scholar 

  40. Weng PH, Chen JH, Chen TF, et al. CHRNA7 polymorphisms and response to cholinesterase inhibitors in Alzheimer’s disease. PLoS ONE. 2013;8(12):e84059.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Clarelli F, Mascia E, Santangelo R, et al. CHRNA7 gene and response to cholinesterase inhibitors in an Italian cohort of Alzheimer’s disease patients. J Alzheimers Dis. 2016;52(4):1203–8.

    Article  CAS  PubMed  Google Scholar 

  42. Salloway S, Sperling R, Fox NC, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):322–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Salloway SP, Sperling R, Fox NC, et al. Long-term follow up of patients with mild-to-moderate Alzheimer’s disease treated with bapineuzumab in a phase III, open-label, extension study. J Alzheimers Dis. 2018;64(3):689–707.

    Article  CAS  PubMed  Google Scholar 

  44. Vandenberghe R, Rinne JO, Boada M, et al. Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials. Alzheimers Res Ther. 2016;8(1):18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ostrowitzki S, Lasser RA, Dorflinger E, et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res Ther. 2017;9(1):95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sevigny J, Chiao P, Bussiere T, et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature. 2016;537(7618):50–6.

    Article  CAS  PubMed  Google Scholar 

  47. Sperling R, Salloway S, Brooks DJ, et al. Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol. 2012;11(3):241–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brody M, Liu E, Di J, et al. A phase II, randomized, double-blind, placebo-controlled study of safety, pharmacokinetics, and biomarker results of subcutaneous bapineuzumab in patients with mild to moderate Alzheimer’s disease. J Alzheimers Dis. 2016;54(4):1509–19.

    Article  CAS  PubMed  Google Scholar 

  49. Cummings JL, Cohen S, van Dyck CH, et al. ABBY: a phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology. 2018;90(21):e1889–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mintun MA, Lo AC, Duggan Evans C, et al. Donanemab in early Alzheimer’s disease. N Engl J Med. 2021;384(18):1691–704.

    Article  CAS  PubMed  Google Scholar 

  51. Swanson CJ, Zhang Y, Dhadda S, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Abeta protofibril antibody. Alzheimers Res Ther. 2021;13(1):80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Turner RM, Park BK, Pirmohamed M. Parsing interindividual drug variability: an emerging role for systems pharmacology. Wiley Interdiscip Rev Syst Biol Med. 2015;7(4):221–41.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ashley EA. Towards precision medicine. Nat Rev Genet. 2016;17(9):507–22.

    Article  CAS  PubMed  Google Scholar 

  54. Roden DM, McLeod HL, Relling MV, et al. Pharmacogenomics. Lancet. 2019;394(10197):521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;77(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  56. Yamazaki Y, Zhao N, Caulfield TR, et al. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019;15(9):501–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Belloy ME, Napolioni V, Greicius MD. A quarter century of APOE and Alzheimer’s disease: progress to date and the path forward. Neuron. 2019;101(5):820–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lane R, Feldman HH, Meyer J, et al. Synergistic effect of apolipoprotein E epsilon4 and butyrylcholinesterase K-variant on progression from mild cognitive impairment to Alzheimer’s disease. Pharmacogenet Genomics. 2008;18(4):289–98.

    Article  CAS  PubMed  Google Scholar 

  59. Russo P, Kisialiou A, Moroni R, et al. Effect of genetic polymorphisms (SNPs) in CHRNA7 gene on response to acetylcholinesterase inhibitors (AChEI) in patients with Alzheimer’s disease. Curr Drug Targets. 2017;18(10):1179–90.

    Article  CAS  PubMed  Google Scholar 

  60. Araud T, Graw S, Berger R, et al. The chimeric gene CHRFAM7A, a partial duplication of the CHRNA7 gene, is a dominant negative regulator of alpha7*nAChR function. Biochem Pharmacol. 2011;82(8):904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gault J, Robinson M, Berger R, et al. Genomic organization and partial duplication of the human alpha7 neuronal nicotinic acetylcholine receptor gene (CHRNA7). Genomics. 1998;52(2):173–85.

    Article  CAS  PubMed  Google Scholar 

  62. de Lucas-Cerrillo AM, Maldifassi MC, Arnalich F, et al. Function of partially duplicated human alpha77 nicotinic receptor subunit CHRFAM7A gene: potential implications for the cholinergic anti-inflammatory response. J Biol Chem. 2011;286(1):594–606.

    Article  PubMed  CAS  Google Scholar 

  63. Ihnatovych I, Nayak TK, Ouf A, et al. iPSC model of CHRFAM7A effect on alpha7 nicotinic acetylcholine receptor function in the human context. Transl Psychiatry. 2019;9(1):59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Sinkus ML, Graw S, Freedman R, et al. The human CHRNA7 and CHRFAM7A genes: a review of the genetics, regulation, and function. Neuropharmacology. 2015;96(Pt B):274–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ma KG, Lv J, Yang WN, et al. The p38 mitogen activated protein kinase regulates beta-amyloid protein internalization through the alpha7 nicotinic acetylcholine receptor in mouse brain. Brain Res Bull. 2018;137:41–52.

    Article  CAS  PubMed  Google Scholar 

  66. Wang HY, Li W, Benedetti NJ, et al. Alpha 7 nicotinic acetylcholine receptors mediate beta-amyloid peptide-induced tau protein phosphorylation. J Biol Chem. 2003;278(34):31547–53.

    Article  CAS  PubMed  Google Scholar 

  67. Karran E, Hardy J. Antiamyloid therapy for Alzheimer’s disease: are we on the right road? N Engl J Med. 2014;370(4):377–8.

    Article  CAS  PubMed  Google Scholar 

  68. Ivanoiu A, Pariente J, Booth K, et al. Long-term safety and tolerability of bapineuzumab in patients with Alzheimer’s disease in two phase 3 extension studies. Alzheimers Res Ther. 2016;8(1):24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Tolar M, Abushakra S, Hey JA, et al. Aducanumab, gantenerumab, BAN2401, and ALZ-801-the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval. Alzheimers Res Ther. 2020;12(1):95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pankiewicz JE, Sadowski MJ. APOE genotype and Alzheimer’s immunotherapy. Oncotarget. 2017;8(25):39941–2.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Barrera-Ocampo A, Lopera F. Amyloid-beta immunotherapy: the hope for Alzheimer disease? Colomb Med (Cali). 2016;47(4):203–12.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lin YT, Seo J, Gao F, et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron. 2018;98(6):1141-54.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Novak P, Schmidt R, Kontsekova E, et al. FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer’s disease. Alzheimers Res Ther. 2018;10(1):108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients and their families for participating in these trials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinga Szigeti.

Ethics declarations

Funding

No funding was received for the publication of this review.

Conflicts of Interest/Competing Interests

The authors declare no conflicts of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Authors’ Contributions

N.A. performed the literature search, wrote the first draft of the manuscript, and designed the supplementary tables. E.N. critically revised the manuscript. K.S. formulated the idea for the publication and critically revised the manuscript and the supplementary tables. All authors have read and approve the final submitted version of the paper and agree to be accountable for this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argueta, N., Notari, E. & Szigeti, K. Role of Pharmacogenomics in Individualizing Treatment for Alzheimer’s Disease. CNS Drugs 36, 365–376 (2022). https://doi.org/10.1007/s40263-022-00915-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-022-00915-3

Navigation