Skip to main content
Log in

Neurological and Psychiatric Adverse Effects of Antimicrobials

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Antimicrobials are a widely used class of medications, but several of them are associated with neurological and psychiatric side effects. The exact incidence of neurotoxicity with anti-infectives is unknown, although it is estimated to be < 1%. Neurotoxicity occurs with all classes of antimicrobials, such as antibiotics, antimycobacterials, antivirals, antifungals and antiretrovirals, with side effects ranging from headaches, anxiety and depression to confusion, delirium, psychosis, mania and seizures, among others. It is important to consider these possible side effects to prevent misdiagnosis or delayed treatment as drug withdrawal can be associated with reversibility in most cases. This article highlights the different neurotoxic effects of a range of antimicrobials, discusses proposed mechanisms of onset and offers general management recommendations. The effects of antibiotics on the gut microbiome and how they may ultimately affect cognition is also briefly examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention. Outpatient antibiotic prescriptions—United States, 2015. http://www.cdc.gov/antibiotic-use/community/pdfs/Annual-report-2015.pdf. Accessed 12 Feb 2019.

  2. Esposito S, Canevini MP, Principi N. Complications associated with antibiotic administration: neurological adverse events and interference with antiepileptic drugs. Int J Antimicrob Agents. 2017;50(1):1–8. https://doi.org/10.1016/j.ijantimicag.2017.01.027.

    Article  CAS  PubMed  Google Scholar 

  3. Gutnick MJ, Prince DA. Penicillinase and the convulsant action of penicillin. Neurology. 1971;21:759–64.

    Article  CAS  PubMed  Google Scholar 

  4. Walker AE, Johnson HC, Kollros II. Penicillin convulsions; the convulsive effects of penicillin applied to the cerebral cortex of monkey and man. Surg Gynecol Obstet. 1945;81:692–701.

    CAS  PubMed  Google Scholar 

  5. Walker AE, Johnson HC. Principles and practice of penicillin therapy in disease of the nervous system. Ann Surg. 1945;122:1125–35.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schliamser S, Broholm KA, Norrby SR. Comparative neurotoxicity of benzylpenicillin, imipenem/ciliastatin and FCE 22101, a new injectable penem. J Antimicrob Chemother. 1988;22:687–96.

    Article  CAS  PubMed  Google Scholar 

  7. Norrby SR. Neurotoxicity of carbapenem antibacterials. Drug Saf. 1996;2:87–90.

    Article  Google Scholar 

  8. Bhattacharyya S, Darby RR, Raibagkar P, Gonzalez LN, Berkowitz AL. Antibiotic-associated encephalopathy. Neurology. 2016;86:963–71.

    Article  CAS  PubMed  Google Scholar 

  9. Xiao Y, Xiong T, Meng X, Yu D, Xiao Z, Song L. Different influences on mitochondrial function, oxidative stress and cytotoxicity of antibiotics on primary human neuron and cell lines. J Mol Toxicol. 2018. https://doi.org/10.1002/jbt.22277.

    Article  Google Scholar 

  10. Mattappalil A, Mergenhagen KA. Neurotoxicity with antimicrobials in the elderly: a review. Clin Ther. 2014;36(11):1489–511. https://doi.org/10.1016/j.clinthera.2014.09.020.

    Article  CAS  PubMed  Google Scholar 

  11. Huang WT, Hsu YJ, Chu PL, Lin SH. Neurotoxicity associated with standard doses of piperacillin in an elderly patient with renal failure. Infection. 2009;37(4):374–6. https://doi.org/10.1007/s15010-009-8373-3.

    Article  PubMed  Google Scholar 

  12. File TM, Wilcox MH, Stein GE. Summary of ceftaroline fosamil clinical trial studies and clinical safety. Clin Infect Dis. 2012;55(33):S173–80. https://doi.org/10.1093/cid/cis559.

    Article  CAS  PubMed  Google Scholar 

  13. Rank DR, Friedland HD, Laudano JB. Integrated safety summary of FOCUS 1 and FOCUS 2 trials: phase III randomized, double-blind studies evaluating ceftaroline fosamil for the treatment of patients with community-acquired pneumonia. J Antimicrob Chemother. 2011;66(3):iii53–9. https://doi.org/10.1093/jac/dkr099.

    Article  CAS  PubMed  Google Scholar 

  14. Corrado ML. Integrated safety summary of CANVAS 1 and 2 trials: phase III, randomized, double-blind studies evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother. 2010;65(4):iv67–71. https://doi.org/10.1093/jac/dkq256.

    Article  CAS  PubMed  Google Scholar 

  15. Sorbera M, Chung E, Ho CW, Marzella N. Ceftolozane/tazobactam: a new option in the treatment of complicated gram-negative infections. Pharm Ther. 2014;39(12):825–32.

    Google Scholar 

  16. Grill MF, Maganti RK. Neurotoxic effects associated with antibiotic use: management consideratins. Br J Clin Pharmacol. 2011;72(3):381–93. https://doi.org/10.1111/j.1365-2125.2011.03991.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lacroix C, Kheloufi F, Montastruc F, Bennis Y, Pizzoglio V, Micallef J. Serious central nervous system side effects of cephalosporins: a national analysis of serious reports registered in the French Pharmacovigilance Database. J Neurol Sci. 2019. https://doi.org/10.1016/j.jns.2019.01.018 (in press).

    Article  PubMed  Google Scholar 

  18. Grahl JJ, Stollings JL, Rakhit S, Person AK, Wang L, Thompson JL, Pandharipande PP, Ely EW, Patel MB. Antimicrobial exposure and the risk of delirium in critically ill patients. Crit Care. 2018;22:337. https://doi.org/10.1186/s13054-018-2262-z.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Debysenko L, Nicolson SE. Cefoxitin and ciprofloxacin neurotoxicity and catatonia in a patient on hemodialysis. Psychosomatics. 2011;52(4):379–83.

    Article  Google Scholar 

  20. Dakdouki GK, Al-Awar GN. Letter to the Editor: Cefepime-induced encephalopathy. Int J Infect Dis. 2004;8:59–61. https://doi.org/10.1016/j.ijid.2003.09.003.

    Article  PubMed  Google Scholar 

  21. Ong CY, Qin Y. Myoclonus from antibiotic therapy (ceftazidime-induced neurotoxicity): a case report and review. Cureus. 2018. https://doi.org/10.7759/cureus.2250.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Grill MF, Maganti R. Cephalosporin-induced neurotoxicity: clinical manifestations, potential pathogenic mechanisms, and the role of electroencephalogramphic monitoring. Ann Pharmacother. 2008;42:1843–50. https://doi.org/10.1345/aph.1l307.

    Article  CAS  PubMed  Google Scholar 

  23. Warstler A, Bean J. Antimicrobial-induced cognitive side effects. Ment Health Clin Online. 2016;6(4):207–14. https://doi.org/10.9740/mhc.2016.07.207.

    Article  Google Scholar 

  24. Payne LE, Gagnon DJ, Riker RR, Seder DB, Glisic EK, Morris JG, Fraser GL. Cefepime-induced neurotoxicity: a systematic review. Crit Care. 2017;21:276. https://doi.org/10.1186/s13054-017-1856-1.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Neu HC. Safety of cefepime: a new extended-spectrum parenteral cephalosporin. Am J Med. 1996;100:S68–75.

    Article  Google Scholar 

  26. Abanades S, Nolla J, Rodriguez-Campello A, Pedro C, Valls A, Farré M. Reversible coma secondary to cefepime neurotoxicity. Ann Pharmacother. 2004;38:606–8. https://doi.org/10.1345/aph.1d322.

    Article  PubMed  Google Scholar 

  27. Hsuan H, Yun-Chung C, Yi-Hsin L. Ceftriaxone-induced non-convulsive status epilepticus in an elderly patient with renal insufficiency. Int J Gerontol. 2018. https://doi.org/10.1016/j.ijge.2018.03.016 (in press).

    Article  Google Scholar 

  28. Anzelloti F, Ricciardi L, Monaco D, Ciccocioppo F, Borelli I, Zhuzhuni H, Onofrj M. Cefixime-induced nonconvulsive status epilepticus. Neurol Sci. 2012;33:325–9.

    Article  Google Scholar 

  29. Tanaka A, Takechi K, Watanabe S, Tanaka M, Suemaru K, Araki H. Comparison of the prevalence of convulsions associated with the use of cefepime and meropenem. Int J Clin Pharm. 2013;35:683–7. https://doi.org/10.1007/s11096-013-9799-3.

    Article  CAS  PubMed  Google Scholar 

  30. Calandra GB, Wang C, Aziz M, et al. The safety profile of imipenem/ciliastatin: worldwide clinical experience based on 3470 patients. J Antimicrob Chemother. 1986;18(Supplemental E):193–203.

    Article  PubMed  Google Scholar 

  31. Pestotnik SL, Classen DC, Evans RS, et al. Prospective surveillance of imipenem/cilastatin use and associated seizures using a hospital information system. Ann Pharmacother. 1993;27:497–501.

    Article  CAS  PubMed  Google Scholar 

  32. Hoffman J, Trimble J, Brophy GM. Safety of imipenem/cilastatin in neurocritical care patients. Neurocrit Care. 2009;10:403–7. https://doi.org/10.1007/s12028-008-9170-z.

    Article  CAS  PubMed  Google Scholar 

  33. Rodloff AC, Goldstein EJ, Torres A. Two decades of imipenem therapy. J Antimicrob Chemother. 2006;58(5):916–29.

    Article  CAS  PubMed  Google Scholar 

  34. Seto AH, Song JC, Guest SS. Ertapenem-associated seziures in a peritoneal dialysis patient. Ann Pharmacother. 2005;39:352–6.

    Article  PubMed  Google Scholar 

  35. Sunbagawa M, Matsumura H, Sumita Y, et al. Structural features resulting in convulsive activity of carbapenem compounds: effect of C-2 side chain. J Antimicrob Chemother. 1995;45:408–16.

    Google Scholar 

  36. Norrby SW, Newell PA, Faulkner KL, et al. Safety profile of meropenem: international clinical experience based on the first 3125 patients treated with meropenem. J Antimicrob Chemother. 1995;36(suppl A):207–23.

    Article  CAS  PubMed  Google Scholar 

  37. Snavely SR, Hodges GR. The neurotoxicity of antibacterial agents. Ann Intern Med. 1984;101:92–104.

    Article  CAS  PubMed  Google Scholar 

  38. Zhanel GG, Ketter N, Rubinstein E, Friedland I, Redman R. Overview of seizure-inducing potential of doripenem. Drug Saf. 2009;32(9):709–16.

    Article  CAS  PubMed  Google Scholar 

  39. Patel UC, Fowler MA. Ertapenem-associated neurotoxicity in the spinal cord injury (SCI) population: a case series. J Spinal Cord Med. 2018;41:1. https://doi.org/10.1080/10790268.2017.1368960.

    Article  Google Scholar 

  40. Ninan J, George GM. Imipenem-cilastatin-induced psychosis: a case report. J Med Case Rep. 2016;10:107. https://doi.org/10.1186/s13256-016-0883-x.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Alván G, Nord CE. Adverse effects of monobactams and carbapenems. Drug Saf. 1995;12(5):305–13.

    Article  PubMed  Google Scholar 

  42. Bhattacharyya S, Darby R, Berkowitz. Antibiotic-induced neurotoxicity. Curr Infect Dis Rep. 2014;16:448.

    Article  PubMed  Google Scholar 

  43. O’Riordan J, Javed M, Doherty C, Hutchinson M. Worsening of myasthenia gravis on treatment with imipenem/cilastatin. J Neurol Neurosurg Psychiatry. 1994;57:383.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rubinstein E. Comparative safety of the different macrolides. Int J Antimicrob Agents. 2001;18(suppl 1):71–6. https://doi.org/10.1016/s0924-8579(01)00397-1.

    Article  Google Scholar 

  45. Guay DR, Patterson DR, Seipman N, Craft JC. Overview of the tolerability profile of clarithromycin in preclinical trials. Drug Saf. 1993;8(5):350–64.

    Article  CAS  PubMed  Google Scholar 

  46. Prime K, French P. Neuropsychiatric reaction induced by clarithromycin in a patient on highly active antiretroviral therapy (HAART). Sex Transm Infect. 2001;77(4):297. https://doi.org/10.1136/sti.77.4.297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abouesh A, Stone C, Hobbs W. Antimicrobial-induced mania (antibiomania): a review of spontaneous reports. J Clin Psychopharmacol. 2002;22(1):71–81.

    Article  PubMed  Google Scholar 

  48. Bandettini di Poggio M, Anfosso S, Audenino D, Primavera A. Clarithromycin-induced neurotoxicity in adults. J Clin Neurosci. 2011;18:313–8. https://doi.org/10.1016/j.jocn.2010.08.014.

    Article  CAS  PubMed  Google Scholar 

  49. Hopkins S. Clinical toleration and safety of azithromycin. Am J Med. 1991;91:405–55.

    Article  Google Scholar 

  50. Tseng AL, Dolovich L, Salit IE. Azithromycin-related ototoxicity in patients infected with human immunodeficiency virus. Clin Infect Dis. 1997;24:76–7. https://doi.org/10.1093/clinids/24.1.76.

    Article  CAS  PubMed  Google Scholar 

  51. Wallace MR, Miller LK, Nguyen MT, Shields AR. Ototoxicity with azithromycin. Lancet. 1994;343:241.

    Article  CAS  PubMed  Google Scholar 

  52. Juel VC. Myasthenia gravis: management of myasthenic crisis and perioperative care. Semin Neurol. 2004;24(1):75–81. https://doi.org/10.1055/s-2004-829595.

    Article  PubMed  Google Scholar 

  53. FDA. Telithromycin FDA safety alert: contraindication in myasthenia gravis. Clin Alert. 2007;45(4):1–8.

    Article  Google Scholar 

  54. Tomé AM, Filipe A. Quinolones: review of psychiatric and neurological adverse reactions. Drug Saf. 2011;34(6):466–88.

    Article  Google Scholar 

  55. Stahlman R, Lode H. Toxicity of quinolones. Drugs. 1999;58(suppl 2):37–42. https://doi.org/10.2165/00003495-199958002-00007.

    Article  Google Scholar 

  56. FDA. Drug safety communication. Food and Drug Administration. 2013. http://www.fda.gov. Accessed 13 Feb 2019.

  57. Etminan M, Brophy JM, Samii A. Oral fluoroquinolone use and risk of peripheral neuropathy: a pharmacoepidemiologic study. Neurology. 2014;83:1261–3.

    Article  CAS  PubMed  Google Scholar 

  58. Doussau de Bazignan A, Thiessard F, Miremont-Salamé G, Conri C, Haramburu F. Psychiatric adverse effects of fluoroquinolones: review of cases from the French pharmacologic surveillance database. Rev Med Interne. 2006;27(6):448–52.

    Article  CAS  PubMed  Google Scholar 

  59. Samyde J, Petit P, Hillaire-Buys D, Faillie JL. Quinolone antibiotics and suicidal behavior: analysis of the World Health Organization’s adverse drug reactions database and discussion of potential mechanisms. Psychopharmacology. 2016;233:2503–11. https://doi.org/10.1007/s00213-016-4300-3.

    Article  CAS  PubMed  Google Scholar 

  60. Jones SC, Sorbello A, Boucher RM. Fluoroquinolone-associated myasthenia gravis exacerbation. Drug Saf. 2011;34(10):839–47. https://doi.org/10.2165/11593110-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  61. Sieb JP. Fluoroquinolone antibiotics block neuromuscular transmission. Neurology. 1998;50(3):804–7. https://doi.org/10.1212/wnl.50.2.804.

    Article  CAS  PubMed  Google Scholar 

  62. Golomb BA, Koslik HJ, Redd AJ. Fluoroquinolone-induced serious, persistent, multisystem adverse effects. BMJ Case Rep. 2015. https://doi.org/10.1136/bcr-2015-209821.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lerner SA, Schmitt BA, Seligsohn R, Matz GJ. Comparative study of ototoxicity and nephrotoxicity in patients randomly assigned to treatment with amikacin or gentamicin. Am J Med. 1986;80(6):98–104. https://doi.org/10.1016/0002-9343(86)90486-9.

    Article  CAS  PubMed  Google Scholar 

  64. Lanvers-Kaminsky C, Ciarimboli G. Pharmacogenetics of drug-induced ototoxicity caused by aminoglycosides and cisplatin. Pharmacogenomics. 2017;18(18):1683–95. https://doi.org/10.2217/pgs-2017-0125.

    Article  CAS  PubMed  Google Scholar 

  65. Brummett RE, Fox KE. Aminoglycoside-induced hearing loss in humans. Antimicrob Agents Chemother. 1989;33(6):797–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fee WE. Aminoglycoside ototoxicity in the human. Laryngoscope. 1980;90(S24):1–19. https://doi.org/10.1288/00005537-198010001-00001.

    Article  PubMed  Google Scholar 

  67. Guthrie OW. Aminoglycoside induced ototoxicity. Toxicology. 2008;249:91–6. https://doi.org/10.1016/j.tox.2008.04.015.

    Article  CAS  PubMed  Google Scholar 

  68. Thomas RJ, Reagan DR. Association of a tourette-like syndrome with ofloxacin. Ann Pharmacother. 1996;30(2):138–41. https://doi.org/10.1177/106002809603000205.

    Article  CAS  PubMed  Google Scholar 

  69. Rybak L. Ototoxicity. Curr Opin Otolaryngol Head Neck Surg. 1996;4:302–7.

    Article  Google Scholar 

  70. Gao Z, Chen Y, Guan M. Mitochondrial DNA mutations associated with aminoglycoside induced ototoxicity. J Otol. 2017;12(1):1–8. https://doi.org/10.1016/j.joto.2017.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Paradelis AG, Triantaphyllidis C, Giala MM. Neuromuscular blocking activity of aminoglycoside antibiotics. Methods Find Exp Clin Pharmacol. 1980;2(1):45–51. https://doi.org/10.1007/978-1-4684-3123-0_51.

    Article  CAS  PubMed  Google Scholar 

  72. Falagas ME, Kasiakou SK. Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care. 2006;10(1):R27. https://doi.org/10.1186/cc3995.

    Article  PubMed  PubMed Central  Google Scholar 

  73. John JF, Falci DR, Rigatto MH, Oliveira RD, Kremer TG, Zavascki AP. Severe infusion-related adverse events and renal failure in patients receiving high-dose intravenous polymyxin B. Antimicrob Agents Chemother. 2018. https://doi.org/10.1128/aac.01617-17.

    Article  PubMed  Google Scholar 

  74. Honore PM, Jacobs R, Lochy S, De Waele E, Van Gorp V, et al. Acute respiratory muscle weakness and apnea in a critically ill patient induced by colistin neurotoxicity: key potential role of hemoadsorption elimination during continuous venovenous hemofiltration. Int J Nephrol Renovasc Dis. 2013;6:107–11. https://doi.org/10.2147/ijnrd.s42791.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kesler A, Goldhammer Y, Hadayer A, Pianka P. The outcome of pseudo tumor cerebri induced by tetracycline therapy. Acta Neurol Scand. 2004;110:408–11.

    Article  CAS  PubMed  Google Scholar 

  76. NINDS Investigators. A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results. Clin Neuropharmacol. 2008;31:141–50.

    Article  CAS  Google Scholar 

  77. Fanning WL, Gump DW. Distressing side-effects of minocycline hydrochloride. Arch Intern Med. 1976;136(7):761–2. https://doi.org/10.1001/archinte.1976.03630070009005.

    Article  CAS  PubMed  Google Scholar 

  78. Wang DD, Englot DJ, Garcia PA, Lawton MT, Young WL. Minocycline and tetracycline-class antibiotics are protective against partial seizures in vivo. Epilepsy Behav. 2012;24(3):314–8. https://doi.org/10.1016/j.yebeh.2012.03.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu Z, Fan Y, Won SJ, Neumann M, Hu D, Zhou L, Weinstein PR, Liu J. Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke. 2007;38:146–52.

    Article  CAS  PubMed  Google Scholar 

  80. Padma SMV, Bhasin A, Bhatia R, Garg A, Gaikwad S, Prasad K, Singh MB, Tripathi M. Efficacy of minocycline in acute ischemic stroke: a single-blinded, placebo-controlled trial. Neurol India. 2012;60:23–8.

    Article  Google Scholar 

  81. Greer ND. Tigecycline (tygacil): the first in the glycylcycline class of antibiotics. Proc (Bayl Univ Med Cent). 2006;19(2):155–61.

    Article  Google Scholar 

  82. Walker LE, Thomas S, McBride C, Howse M, Turtle LCW, et al. ‘Septrin psychosis’ among renal transplant patients with Pneumocystis jirovecii pneumonia. J Antimicrob Chemother. 2011;66:1117–9. https://doi.org/10.1093/jac/dkr050.

    Article  CAS  PubMed  Google Scholar 

  83. McCue JD, Zandt JR. Acute psychoses associated with the use of ciprofloxacin and trimethoprim-sulfamethoxazole. Am J Med. 1991;90:528–9.

    Article  CAS  PubMed  Google Scholar 

  84. Lee KY, Huang CH, Tang HJ, Yang CJ, et al. Acute psychosis related to use of trimethoprim/sulfamethoxazole in the treatment of HIV-infected patients with Pneumocystis jirovecii pneumonia: a multicenter, retrospective study. J Antimicrob Chemother. 2012;67:2749–54. https://doi.org/10.1093/jac/dks283.

    Article  CAS  PubMed  Google Scholar 

  85. Lu YM, Lee YT, Chang HC, Yang HS, et al. Combination of Echinocandins and trimethoprim/sulfamethoxazole for the treatment of Pneumocystis jirovecii pneumonia after heart transplantation. Transplant Proc. 2017;49:1893–8. https://doi.org/10.1016/j.transproceed.2017.04.020.

    Article  CAS  PubMed  Google Scholar 

  86. TOXNET. Vancomycin. United States National Library of Medicine. American Society of Health System Pharmacists; AHFS Drug Information. 2009. http://toxnet.nlm.nih.gov. Accessed 25 Feb 2019.

  87. Bruniera FR, Ferreira FM, Saviolli LRM, Bacci MR, Feder D, et al. The use of vancomycin with its therapeutic and adverse effects: a review. Eur Rev Med Pharmacol Sci. 2015;19:694–700.

    CAS  PubMed  Google Scholar 

  88. Brummett RE. Ototoxicity of vancomycin and analouges. Otolaryngol Clin N Am. 1993;26:821–8.

    CAS  Google Scholar 

  89. Gupta A, Biyani M, Khaira A. Vancomycin nephrotoxicity: myths and facts. Neth J Med. 2011;69(9):379–83.

    CAS  PubMed  Google Scholar 

  90. Forouzesh A, Moise PA, Sakoulas G. Vancomycin ototoxicity: a reevaluation in an era of increasing doses. Antimicrob Agents Chemother. 2009;53(2):483–6. https://doi.org/10.1128/aac.01088-08.

    Article  CAS  PubMed  Google Scholar 

  91. Mellor JA, Kingdom J, Cafferkey M, Keane CT. Vancomycin toxicity: a prospective study. J Antimicrob Chemother. 1985;15:773–80.

    Article  CAS  PubMed  Google Scholar 

  92. Davey PG, Williams AH. A review of the safety profile of teicoplanin. J Antimicrob Chemother. 1991;27:69–73.

    Article  PubMed  Google Scholar 

  93. Bonnet RM, Mattie H, Laat JA, Schoemaker HC, Frijns JH. Clinical ototoxicity of teicoplanin. Ann Otol Rhinol Laryngol. 2004;113:310–2.

    Article  PubMed  Google Scholar 

  94. Brummett RE, Fox KE, Warchol M, Himes D. Absence of ototoxicity of teichomycin A2 in guinea pigs. Antimicrob Agents Chemother. 1987;31:612–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Maher ER, Hollman A, Grüneberg RN. Teicoplanin-induced ototoxicity in Down’s syndrome. Lancet. 1986;327(8481):613.

    Article  Google Scholar 

  96. Dunne MW, Talbot GH, Boucher HW, Wilcox M, Puttagunta S. Safety of dalbavancin in the treatment of skin and skin structure infections: a pooled analysis of randomized, comparative studies. Drug Saf. 2016;39:147–57. https://doi.org/10.1007/s40264-015-0374-9.

    Article  CAS  PubMed  Google Scholar 

  97. Zhanel GG, Calic D, Schweizer F, Zelenitsky S, Adam H, Lagacé-Wiens PRS, Rubinstein E, Gin AS, Hoban DJ, Karlowsky. New lipoglycopeptides. Drugs. 2010;70(7):859–86.

    Article  CAS  PubMed  Google Scholar 

  98. Cubist Pharmaceuticals. Cubicin (daptomycin for injection) for intravenous use [package insert]. 2014.

  99. Aronson JK, Meyler L. Meyler's side effects of drugs: the international encyclopedia of adverse drug reactions and interactions. 2016. Edn 16. http://www.sciencedirect.com/science/book/9780444537164. Accessed 13 Feb 2019.

  100. Fowler VG, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355:653–65.

    Article  CAS  PubMed  Google Scholar 

  101. Shorr AF, Lodise TP, Corey GR, De Anda C, et al. Analysis of the phase 3 ESTABLISH trials of tedizolid versus linezolid in acute bacterial skin and skin structure infections. Antimicrob Agents Chemother. 2015;59:864–71. https://doi.org/10.1128/aac03688-14.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Chao CC, Sun HY, Chang YC, Hsieh ST. Painful neuropathy with skin denervation after prolonged use of linezolid. J Neurol Neurosurg Psychiatry. 2008;79:97–9. https://doi.org/10.1136/jnnp.2007.127910.

    Article  PubMed  Google Scholar 

  103. Zivkovic SA, Lacomis D. Severe sensory neuropathy associated with long-term linezolid use. Neurology. 2005;64(5):926–7. https://doi.org/10.1212/01.wnl.0000152883.53691.5b.

    Article  PubMed  Google Scholar 

  104. Vishnu VY, Modi M, Goyal MK, Lal V. Linezolid induced reversible peripheral neuropathy. Am J Ther. 2016;23:e1839–41.

    Article  PubMed  Google Scholar 

  105. Bressler AM, Zimmer SM, Gilmore JL, Somani J. Peripheral neuropathy associated with prolonged use of linezolid. Lancet. 2004;4:528–31.

    Article  PubMed  Google Scholar 

  106. Birmingham MC, Rayner CR, Meagher AK, Flavin SM, et al. Linezolid for the treatment of multidrug-resistant, gram-positive infections: experience from a compassionate-use program. Clin Infect Dis. 2003;36(2):159–68.

    Article  CAS  PubMed  Google Scholar 

  107. Bobylev I, Maru H, Joshi AR, Lehmann HC. Toxicity to sensory neurons and Schwann cells in experimental linezolid-induced peripheral neuropathy. J Antimicrob Chemother. 2016;71:685–91. https://doi.org/10.1093/jac/dkv386.

    Article  CAS  PubMed  Google Scholar 

  108. Rucker JC, Hamilton SR, Bardenstein D, Isada CM, Lee MS. Linezolid-associated toxic optic neuropathy. Neurology. 2006;66:595–8.

    Article  CAS  PubMed  Google Scholar 

  109. Mehta S, Das M, Laxmeshwar C, Jonckheere S, Thi SS, Isaakidis P. Linezolid-associated optic neuropathy in drug-resistant tuberculosis patients in Mumbai, India. PLoS One. 2016;11(9):e0162138. https://doi.org/10.1371/journal.pone.0162138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sotgiu G, Centis R, D’Ambrosio L, Alffenaar JW, Anger HA, Caminero JA, et al. Efficacy, safety, and tolerability of linezolid containing regimens in treating MDR-TB and XDR-TB: systematic review and meta-analysis. Eur Respir J. 2012;40(6):1430–42. https://doi.org/10.1183/09031936.00022912.

    Article  CAS  PubMed  Google Scholar 

  111. Zhang X, Falagas ME, Vardakas KZ, Wang R, Qin R, Wang J, Liu Y. Systematic review and meta-analysis of the efficacy and safety of therapy with linezolid containing regimens in the treatment of multidrug-resistant and extensively drug-resistant tuberculosis. J Thorac Dis. 2015;7(4):603–15. https://doi.org/10.3978/j.issn.2072-1439.2015.03.10.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Schlosser MJ, Hosako H, Radovsky A, Butt MT, et al. Lack of neuropathological changes in rats administered tedizolid phosphate for nine months. Antimicrob Agents Chemother. 2015;59(1):475–81. https://doi.org/10.1128/aac.03950-14.

    Article  PubMed  Google Scholar 

  113. Nigo M, Luce AM, Aria CA. Long-term use of tedizolid as suppressive therapy for recurrent methicillin-resistant Staphylococcus aureus graft infection. Clin Infect Dis. 2018;66(12):1975–6. https://doi.org/10.1093/cid/ciy041.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kim T, Wills A, Makus A, Prevots DR, Olivier KN. Safety and tolerability of long term use of tedizolid for treatment of nontuberculous mycobacterial infections. Open Forum Infect Dis 2016;39(Issue supplementation 1, Fall 2016):577. https://doi.org/10.1093/ofid/ofw172.440.

  115. Sutton J, Stroup J, Som M. Linezolid-induced serotonin toxicity in a patient not taking monoamine oxidase inhibitors or serotonin receptor antagonists. Proc (Bayl Univ Med Cent). 2016;29(2):214–5.

    Article  Google Scholar 

  116. Lawrence KR, Adra M, Gillman PK. Serotonin toxicity associated with the use of linezolid: a review of postmarketing data. CID. 2006;42:1578–83.

    Article  CAS  Google Scholar 

  117. Thai XC, Bruno-Murtha LA. Bell’s palsy associated with linezolid therapy: case report and review of neuropathic adverse events. Pharmacotherapy. 2006;26(8):1183–9.

    Article  PubMed  Google Scholar 

  118. Cholongitas E, Karatzi C, Spyrou S, Georgousaki C, Dasenaki M. Linezolid-induced complex partial seizures in a patient with epilepsy. Scand J Infect Dis. 2009;41:540–1. https://doi.org/10.1080/00365540902896087.

    Article  PubMed  Google Scholar 

  119. Balkan II, Delil S, Karabacak ER, Yemisen M, Ozaras R, Yeni N. Linezolid-induced complex partial seizure in a patient without epilepsy. Int J Infect Dis. 2015;35:120. https://doi.org/10.1016/j.ijid.2015.05.007.

    Article  PubMed  Google Scholar 

  120. Shneker BF, Baylin PD, Nakhla ME. Linezolid inducing complex partial status epilepticus in a patient with epilepsy. Neurology. 2009;72:378–9.

    Article  PubMed  Google Scholar 

  121. Fletcher J, Aykroyd LE, Feucht EC, Curtis JM. Early onset probable linezolid-induced encephalopathy. J Neurol. 2010;257:433–5. https://doi.org/10.1007/s00415-009-5340-y.

    Article  CAS  PubMed  Google Scholar 

  122. Loannou P, Stavroulaki M, Mavrikaki V, Papakitsou I, Panagiotakis S. A case of severe hyponatremia due to linezolid-induced SIADH. J Clin Pharm Ther. 2018;43:434–6. https://doi.org/10.1111/jcpt.12681.

    Article  Google Scholar 

  123. Baik SH, Choi YK, Kim HS, Yoon YK, Sohn JW, Kim MJ. A probable case of syndrome of inappropriate antidiuretic hormone secretion associated with linezolid. Am J Health Syst Pharm. 2015;72:1865–9. https://doi.org/10.2146/ajhp150208.

    Article  CAS  PubMed  Google Scholar 

  124. Al Ahdal O, Bevan DR. Clindamycin-induced neuromuscular blockade. Can J Anaesth. 1995;42(7):614–7.

    Article  CAS  PubMed  Google Scholar 

  125. Kuriyama A, Jackson JL, Doi A, Kamiya T. Metronidazole-induced central nervous system toxicity: a systematic review. Clin Neuropharmacol. 2011;34(6):241–7.

    Article  CAS  PubMed  Google Scholar 

  126. Mahl TC, Ummadi S. Metronidazole and mental confusion. J Clin Gastroenterol. 2003;36:373–4.

    Article  PubMed  Google Scholar 

  127. Luykx JJ, Vis R, Tijdink JK, Dirckx M, Van Hecke J, Vinkers C. Psychotic symptoms after combined metronidazole-disulfiram use. J Clin Psychopharmacol. 2013;33:136–7.

    Article  PubMed  Google Scholar 

  128. Kim E, Na DG, Kim EY, Kim JH, Son KR, Chang KH. MR imaging of metronidazole-induced encephalopathy: lesion distribution and diffusion-weighted imaging findings. AJNR Am J Neuroradiol. 2007;28:1652–8.

    Article  CAS  PubMed  Google Scholar 

  129. Alston TA, Abeles RH. Enzymatic conversion of the antibiotic metronidazole to an analog of thiamine. Arch Biochem Biophys. 1987;257:357–62.

    Article  CAS  PubMed  Google Scholar 

  130. Von Rogulia P, Kovac W, Schmid H. Metronidazole encephalopathy in rats. Acta Neuropathol. 1973;25:36–45.

    Article  Google Scholar 

  131. Sørensen CG, Karlsson WK, Amin FM, Lindelof M. Metronidazole-induced encephalopathy: a systematic review. J Neurol. 2018. https://doi.org/10.1007/s00415-018-9147-6.

    Article  PubMed  Google Scholar 

  132. Graves TD, Condon M, Loucaidou M, Perry R. Reversible metronidazole-induced cerebellar toxicity in a multiple transplant patient. J Neurol Sci. 2009;285(1–2):238–40. https://doi.org/10.1016/j.jns.2009.06.011.

    Article  CAS  PubMed  Google Scholar 

  133. Hobbs K, Stern-Nezer S, Buckwalter MS, Fischbein N, Caulfield AF. Metronidazole-induced encephalopathy: not always a reversible situation. Neurocrit Care. 2015;22:429–36. https://doi.org/10.1007/s12028-014-0102-9.

    Article  PubMed  Google Scholar 

  134. Mizuta K, Sohohata M, Nozaki O, Kobatake T, Nakayama D, Morimoto T, Mawatari M. Metronidazole-induced encephalopathy in a patient with pyogenic spondylitis: a case report. BMC Musculoskelet Disord. 2018;19:336. https://doi.org/10.1186/s12891-018-2255-8.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Cação G, Fontes S, Salgado M, Rodrigues T, Damásio J. Metronidazole-induced central and peripheral nervous system toxicity. Neurol Sci. 2015;36:1737–9. https://doi.org/10.1007/s10072-015-2260-8.

    Article  PubMed  Google Scholar 

  136. Goolsby TA, Jakeman B, Gaynes R. Clinical relevance of metronidazole and peripheral neuropathy: a systematic review of the literature. Int J Antimicrob Agents. 2018;51:319–25. https://doi.org/10.1016/j.ijantimicag.2017.08.033.

    Article  CAS  PubMed  Google Scholar 

  137. Brumfitt W, Hamilton-Miller JMT. Efficacy and safety profile of long-term nitrofurantoin in urinary infections: 18 years’ experience. J Antimicrob Chemother. 1998;24:363–71.

    Article  Google Scholar 

  138. D’Arcy PF. Nitrofurantoin. Drug Intell Clin Pharm. 1985;19:540–7.

    Article  PubMed  Google Scholar 

  139. Rajabally YA. Neuropathies in the older patient. Rev Clin Gerontol. 2006;16:113–24.

    Article  Google Scholar 

  140. Toole JF, Parrish ML. Nitrofurantoin polyneuropathy. Neurology. 1973;23:554–9.

    Article  CAS  PubMed  Google Scholar 

  141. Arsalan R, Sabzwari S. Isoniazid induced motor-dominant neuropathy. J Pak Med Assoc. 2015;65(10):1131–3.

    PubMed  Google Scholar 

  142. Kass JS, Shandera WX. Nervous system effects of antituberculosis therapy. CNS Drugs. 2010;24:655–67.

    Article  CAS  PubMed  Google Scholar 

  143. Holdiness MR. Neurological manifestations and toxicities of the antituberculosis drugs: a review. Med Toxicol. 1987;2(1):33–51.

    Article  CAS  PubMed  Google Scholar 

  144. CDC: Division of Tuberculosis. Latent tuberculosis infection: a guide for primary health care providers. Centers for Disease Control and Prevention. http://www.cdc.gov/tb/publications/ltbi/treatment.htm. Accessed 27 Feb 2019.

  145. Eakarnath A, Koomanachai P, Thamlikitkul V. Pyridoxine (vitamin B6) usage in tuberculosis patients at Siriraj Hospital. Siriraj Med J. 2007;59:348–9.

    Google Scholar 

  146. Wasik A. Mental disorders caused by isonicotinic acid hydrazine (INH) in the course of treatment of pulmonary tuberculosis. Pol Med J. 1970;9:1498–503.

    CAS  PubMed  Google Scholar 

  147. Duncan H, Kerr D. Toxic psychosis due to isoniazid. Br J Dis Chest. 1962;56:131–8.

    Article  CAS  PubMed  Google Scholar 

  148. Duggal HS, Nizamine SH. Novel antipsychotic drugs and INH-related psychosis. Aust N Z J Psychiatry. 2000;34:343–4.

    Article  CAS  PubMed  Google Scholar 

  149. Alao AO, Yolles JC. Isoniazid-induced psychosis. Ann Pharmacother. 1998;32:889–91.

    Article  CAS  PubMed  Google Scholar 

  150. Bender DA, Russell Jones R. Isoniazid-induced pellagra despite vitamin-B6 supplementation. Lancet. 1979;2:1125–6.

    Article  CAS  PubMed  Google Scholar 

  151. Temmerman W, Dhondt A, Vandewoude K. Acute isoniazid intoxication: seizures, acidosis, and coma. Acta Clin Belg. 1999;54(4):211–6.

    Article  CAS  PubMed  Google Scholar 

  152. Wason S, Lacouture PG, Lovejoy FH. Single high-dose pyridoxine treatment for isoniazid overdose. JAMA. 1981;246(10):1102–4. https://doi.org/10.1001/jama.1981.03320100038026.

    Article  CAS  PubMed  Google Scholar 

  153. Yarbrough BE, Wood JP. Isoniazid overdose treated with high-dose pyridoxine. Ann Emerg Med. 1983;12:303–5. https://doi.org/10.1016/s0196-0644(83)80514-9.

    Article  CAS  PubMed  Google Scholar 

  154. Kammire LD, Donofrio PD. Nitrofurantoin neuropathy: a forgotten adverse effect. Obstet Gynecol. 2007;110:510–2.

    Article  PubMed  Google Scholar 

  155. London Z, Albers JW. Toxic Neuropathies associated with pharmaceutic and industrial agents. Neurol Clin. 2007;25:257–76. https://doi.org/10.1016/j.ncl.2006.10.001.

    Article  PubMed  Google Scholar 

  156. Moudgal R, Hosseini S, Colapietro P, Awosika O. Vitamin B6 toxicity revisited: a case of reversible pyridoxine-associated neuropathy and disequilibrium. Neurology 2018;90(suppl 15):P4.021.

    Google Scholar 

  157. Chamberlain PD, Sadaka A, Shauna B, Lee A. Ethambutol optic neuropathy. Curr Opin Ophthalmol. 2017;28(6):545–51. https://doi.org/10.1097/icu.0000000000000416.

    Article  PubMed  Google Scholar 

  158. Yang HK, Park MJ, Lee JH, et al. Incidence of toxic optic neuropathy with low-dose ethambutol. Int J Tuberc Lung Dis. 2016;20:261–4.

    Article  CAS  PubMed  Google Scholar 

  159. Chen SC, Lin MC, Sheu SJ. Incidence and prognostic factor of ethambutol-related optic neuropathy: 10-year experience in southern Taiwan. Kaohsiung J Med Sci. 2015;31:358–62.

    Article  CAS  PubMed  Google Scholar 

  160. Ezer N, Benedetti A, Darvish-Zargar M, Menzies D. Incidence of ethambutol-related visual impairment during treatment of active tuberculosis. Int J Tuberc Lung Dis. 2013;17:447–55.

    Article  CAS  PubMed  Google Scholar 

  161. Tsai RK, Lee YH. Reversibility of ethambutol optic neuropathy. J Ocul Pharmacol Ther. 1997;13(5):473–7. https://doi.org/10.1089/jop.1997.13.473.

    Article  CAS  PubMed  Google Scholar 

  162. Yoon YH, Jung KH, Sadun AA, Shin HC, Koh JY. Ethambutol-induced vacuolar changes and neuronal loss in rat retinal cell culture: mediation by endogenous zinc. Toxicol Appl Pharmacol. 2000;162:107–14.

    Article  CAS  PubMed  Google Scholar 

  163. Chung H, Yoon YH, Hwang JJ, Cho KS, Koh JY, Kim JG. Ethambutol-induced toxicity is mediated by zinc and lysosomal membrane permeabilization in cultured retinal cells. Toxicol Appl Pharmacol. 2009;23:163–70. https://doi.org/10.1016/j.taap.2008.11.006.

    Article  CAS  Google Scholar 

  164. Dolton MJ, Ray JE, Chen SCA, Ng K, Pont LG, McLachlan AJ. Multicenter study of voriconazole pharmacokinetics and therapeutic drug monitoring. Antimicrob Agents Chemother. 2012;56(9):4793–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008;46(2):201–11. https://doi.org/10.1086/524669.

    Article  CAS  PubMed  Google Scholar 

  166. Xiang Y, Chen L, Feng Y, Zhou Y, Zhai Y, Lu J. Meta-analysis of the safety of voriconazole in definitive, empirical, and prophylactic therapies for invasive fungal infections. BMC Infect Dis. 2017;17:798. https://doi.org/10.1186/s12879-017-2913-8.

    Article  CAS  Google Scholar 

  167. Raad II, Graybill JR, Bustamante AB, Cornely OA, et al. Safety of long-term oral posaconazole use in treatment of refractory invasive fungal infections. Clin Infect Dis. 2006;42(12):1726–34. https://doi.org/10.1086/504328.

    Article  CAS  PubMed  Google Scholar 

  168. Mittal D, Wikaitis J. Itraconazole-induced delirium. Psychosomatics. 2003;44(3):260–1.

    Article  PubMed  Google Scholar 

  169. Anaisse EJ, Kontoyiannis DP, Huls C, Vartivarian SE, Karl C, Prince RA, Bosso J, Bodey GP. Safety, plasma concentrations, and efficacy of high-dose fluconazole in invasive mold infections. J Infect Dis. 1994;172:599–602.

    Article  Google Scholar 

  170. Robinson PA, Knirsch AK, Joseph JA. Fluconazole for life-threatening fungal infections in patients who cannot be treated with conventional antifungal agents. Rev Infect Dis. 1990;12:S349–63.

    Article  PubMed  Google Scholar 

  171. Weddington WW. Delirium and depression associated with amphotericin B. Psychosomatics. 1982;23(10):1076–8.

    Article  PubMed  Google Scholar 

  172. Doty RL, Haxel BR. Objective assessment of terbinafine-induced taste loss. Laryngoscope. 2005;115(11):2035–7. https://doi.org/10.1097/01.mlg.0000181462.08683.0c.

    Article  CAS  PubMed  Google Scholar 

  173. Novartis Pharmaceuticals Corporation. Lamasil (terbinafine hydrochloride) Tablets [package insert]. 2017.

  174. Garcia HH, Gilman RH, Horton J, Martinez M, Herrera G, Altamirano J, Cuba JM, Rios-Saavedra N, Verastegui M, Boero J, Gonzalez AE. Albendazole therapy for neurocysticercosis: a prospective double-blind trial comparing 7 versus 14 days of treatment. Neurology. 1997;48:1421–7.

    Article  CAS  PubMed  Google Scholar 

  175. Noboa C. Albendazole therapy for giant subarachnoid cysticerci. Arch Neurol. 1993;50:347–8.

    Article  CAS  PubMed  Google Scholar 

  176. Bayer HealthCare Pharmaceuticals. Biltricide tablets (praziquantel) [package inset]. 2010.

  177. Garg RK. Medical management of neurocysticercosis. Neurol India. 2001;49:329–37.

    CAS  PubMed  Google Scholar 

  178. Woo E, Yu YL, Huang CY. Cerebral infarct precipitated by praziquantel in neurocysticercosis—a cautionary note. Trop Geogr Med. 1988;40:143–6.

    CAS  PubMed  Google Scholar 

  179. Chang GY, Ko DY. Isolated Echinococcus granulosus hydatid cyst in the CNS with severe reaction to treatment. Neurology. 2000;54:778–9. https://doi.org/10.1212/wnl.54.3.778.

    Article  CAS  PubMed  Google Scholar 

  180. Chai JY. Praziquantel treatment in trematode and cestode infections: an update. Infect Chemother. 2013;45:32–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Guisse F, Polman K, Stelma FF, Mbaye A, et al. Therapeutic evaluation of two different dose regimens of praziquantel in a recent Schistosoma mansoni focus in northern Senegal. Am J Trop Med Hyg. 1997;56:511–4. https://doi.org/10.4269/ajtmh.1997.56.511.

    Article  CAS  PubMed  Google Scholar 

  182. Bada JL, Trevino B, Cabezos J. Convulsive seizures after treatment with praziquantel. BMJ. 1988;296:646. https://doi.org/10.1136/bmj.296.6622.646-a.

    Article  CAS  PubMed  Google Scholar 

  183. Chandler RE. Serious neurological adverse effects after ivermectin—do they occur beyond the indication of Onchocerciasis? Am J Trop Med Hyg. 2018;98(2):382–8. https://doi.org/10.4269/ajtmh.17-0042.

    Article  CAS  PubMed  Google Scholar 

  184. Muñoz J, Ballester MR, Antonijoan RM, Gich I, et al. Safety and pharmacokinetic profile of fixed-dose ivermectin with an innovative 18 mg tablet in healthy adult volunteers. PLoS Negl Trop Dis. 2018. https://doi.org/10.1371/journal.pntd.0006020.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Merck & Co, Inc. Stromeectol tablets (Ivermectin [package insert]. 2009.

  186. Gardon J, Gardon-Wendel N, Demanga-Ngangue, Kamgno J, et al. Serious reactions after mass treatment of onchocerciasis with ivermectin in an area endemic for Loa loa infection. Lancet. 1997;350:18–22.

    Article  CAS  PubMed  Google Scholar 

  187. McEnvoy GK. American Hospital Formulary service, drug information. Bethesda: American Society of Health-System Pharmacists; 1999.

    Google Scholar 

  188. Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Goodman AG. Pyrantel. In: Goodman and Gilman’s the pharmacological basis of therapeutics, 9th edn. McGraw-Hill: New York; 1996. p. 1022.

  189. Bescansa E, Nicolas M, Aguado C, Toledano M, Vinals M. Myasthenia gravis aggravated by pyrantel pamoate. J Neurol Neurosurg Psychiatry. 1991;54:563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Hemphill A, Mueller J, Esposito M. Nitazoxanide, a broad-spectrum thiazolide anti-infective agent for the treatment of gastrointestinal infections. Expert Opin Pharmacother. 2006. https://doi.org/10.1517/14656566.7.7.

    Article  PubMed  Google Scholar 

  191. Aschenbrenner DS. Drug watch: antimalarial drug can produce neurologic or psychiatric symptoms. AJN. 2013;113(11):22.

    Google Scholar 

  192. Harinasuta T, Lasserre R, Bunnag D, Leimer R, Vinijanont S. Trials of mefloquine in vivax and of mefloquine plas “fansidar” in falciparum malaria. Lancet. 1985;325(8434):885–8. https://doi.org/10.1016/s0140-6736(85)91670-8.

    Article  Google Scholar 

  193. Matteelli A, Saleri N, Bisoffi Z, Gregis G, et al. Mefloquine versus quinine plus sulphalene-pyrimethamine (metakelfin) for treatment of uncomplicated imported falciparum malaria acquired in Africa. Antimicrob Agents Chemother. 2005;49:663–7. https://doi.org/10.1128/aac.49.2.663-667.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Nguyen TH, Day NP, Ly VC, Waller D, Mai NT, et al. Post-malaria neurological syndrome. Lancet. 1996;1996:917–21. https://doi.org/10.1016/s0140-6736(96)01409-2.

    Article  Google Scholar 

  195. Jha S, Kumar R, Kumar R. Mefloquine toxicity presenting with polyneuropathy—a report of two cases in India. Trans R Soc Trop Med Hyg. 2006;100(6):594–6. https://doi.org/10.1016/j.trstmh.2006.08.006.

    Article  CAS  PubMed  Google Scholar 

  196. Wasay M, Wolfe GI, Herrold JM, Burns DK, Barohn RJ. Chloroquine myopathy and neuropathy with elevated CSF protein. Neurology. 1998;51(4):1226–7. https://doi.org/10.1212/wnl.51.4.1226.

    Article  CAS  PubMed  Google Scholar 

  197. Browne GF, Coppel DL. Management of quinine overdose. Hum Toxicol. 1984;3(5):399–402. https://doi.org/10.1177/09603271840030050.

    Article  CAS  PubMed  Google Scholar 

  198. Novartis Pharmaceuticals Corporation. Coartem (artemether/lumefantrine) Tablets [package insert]. 2018.

  199. Guilin Pharmaceuticals. Artesun (Artesunate for injection) [package insert]. 2012.

  200. Genovese RF, Newman DB. Understanding artemisinin-induced brainstem neurotoxicity. Arch Toxicol. 2008;82(6):379–85. https://doi.org/10.1007/s00204-007-0252-z.

    Article  CAS  PubMed  Google Scholar 

  201. Ernst ME, Franey RJ. Acyclovir- and ganciclovir-induced neurotoxicity. Ann Pharmacother. 1998;32(1):111–3. https://doi.org/10.1345/aph.17135.

    Article  CAS  PubMed  Google Scholar 

  202. Haefeli W, Schoenenberger RAZ, Weiss P, Ritz RF. Acyclovir-induced neurotoxicity: concentration-side effect relationship in acyclovir overdose. Am J Med. 1993;94:212–5.

    Article  CAS  PubMed  Google Scholar 

  203. Watson WA, Rhodes NJ, Echenique IA, Angarone MP, Scheetz MH. Resolution of acyclovir-associated neurotoxicity with the aid of improved clearance estimates using a Bayesian approach: a case report and review of literature. J Clin Pharm Ther. 2018;42(3):350–5. https://doi.org/10.1111/jcpt.12520.

    Article  Google Scholar 

  204. Chatelain E, Deminière C, Lacut JY, Potaux L. Severe renal failure and polyneuritis induced by foscarnet. Nephrol Dial Transplant. 1998;13:2368–9.

    Article  CAS  PubMed  Google Scholar 

  205. Lor E, Liu YQ. Neurologic sequelae associated with foscarnet therapy. Ann Pharmacother. 1994;28(9):1035–7. https://doi.org/10.1177/106002809402800908.

    Article  CAS  PubMed  Google Scholar 

  206. MacGregor RR, Graziani AL, Weiss R, Grunwald JE, Gambertoglio JG. Successful foscarnet therapy for cytomegalovirus retinitis in an AIDS patient undergoing hemodialysis: rationale for empiric dosing and plasma level monitoring. J Infect Dis. 1991;164:785–7.

    Article  CAS  PubMed  Google Scholar 

  207. Kinney RG, Spach DH. Antiretroviral therapy: adverse effects of antiretroviral medications. National HIV Curriculum. 2018. www.hiv.uw.edu/go/antiretroviral-therapy/adverse-effects/core-concept/all/. Accessed 2 Mar 2019.

  208. Reliquet V, Mussini JM, Chennebault JM, Lafeuillade A, Raffi F. Peripheral neuropathy during stavudine-didanosine antiretroviral therapy. HIV Med. 2001;2(2):92–6. https://doi.org/10.1046/j.1468-1293.2001.00066.x.

    Article  CAS  PubMed  Google Scholar 

  209. Arendt G, de Nocker D, von Giesen HJ, Nolting T. Neuropsychiatric side effects of efavirenz therapy. Expert Opin Drug Saf. 2007;6:147–54.

    Article  CAS  PubMed  Google Scholar 

  210. Cohen CJ, Andrade-Villanueva J, Clotet B, Fourie J, et al. Rilpivirine versus efavirenz with two background nucleoside or nucleotide reverse transcriptase inhibitors in treatment-naïve adults infected with HIV-1 (THRIVE): a phase 3, randomized, non-inferiority trial. Lancet. 2011;378:229–37. https://doi.org/10.1016/s0140-6736(11)60983-5.

    Article  CAS  PubMed  Google Scholar 

  211. Chan-Tack KM, Struble KA, Birnkrant DB. Intracranial hemorrhage and liver-associated deaths associated with tipranavir/ritonavir: a review of cases from the FDA’s adverse event reporting system. AIDS Patient Care STDS. 2008;22:843–50. https://doi.org/10.1089/apc.2008.0043.

    Article  PubMed  Google Scholar 

  212. Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiota throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016;8:39. https://doi.org/10.1186/s13073-0160294-z.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Lurie I, Yang YX, Haynes K, Mamtani R, Boursi B. Antibiotic exposure and the risk for depression, anxiety, or psychosis: a nested case-control study. J Clin Psychiatry. 2015;76(11):1522–8. https://doi.org/10.4088/jcp.15m09961.

    Article  PubMed  Google Scholar 

  214. Bercik P, Denou E, Collins J, Jackson W, et al. The intestinal microbiota affect cetral levels of brain-derived neurotropic factor and behavior in mice. Gastroenterol. 2011;141(2):599–609. https://doi.org/10.1053/j.gastro.2011.04.052.

    Article  CAS  Google Scholar 

  215. Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry. 2016;21(6):738–48. https://doi.org/10.1038/mp.2016.50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Fond G, Boukouaci W, Chevalier G, Regnault, et al. The “psychomicrobiotic”: targeting microbiota in major psychiatric disorders: a systematic review. Pathol Biol (Paris). 2015;63(1):35–42. https://doi.org/10.1016/j.patbio.2014.10.003.

    Article  CAS  Google Scholar 

  217. Ye RH, Lin MY, Sung CC, Lin SH. Standard dose of piperacillin induced neurotoxicity in advanced renal failure. Acta Nephrol. 2011;25(2):89–92.

    Google Scholar 

  218. Conil JM, Georges B, Mimoz O, et al. Influence of renal function on trough serum concentrations of piperacillin in intensive care unit patients. Intensive Care Med. 2006;32(2):2063–6.

    Article  CAS  PubMed  Google Scholar 

  219. Lam S, Gomolin IH. Cefepime neurotoxicity: case report, pharmacokinetic considerations, and literature review. Pharmacotherapy. 2006;26(8):1169–74.

    Article  PubMed  Google Scholar 

  220. Hanna RM, Sun S, Gaynor P. A case of ertapenem neurotoxicity resulting in vocal tremor and altered mentation in a dialysis dependent liver transplant patient. Antibiotics. 2019;8:1. https://doi.org/10.3390/antibiotics8010001.

    Article  Google Scholar 

  221. Apodaca K, Baker BA, Bin-Bilal H, Raskin Y, Quinn D. Ertapenem-induced delirium: a case report and literature review. Psychosomatics. 2015;56:561–6.

    Article  PubMed  Google Scholar 

  222. Duquaine S, Kitchell E, Tate T, Rannen RC, Wickremasinghe IM. Central nervous system toxicity associated with ertapenem use. Ann Pharmacother. 2011;45:e6. https://doi.org/10.1354/aph.1p528.

    Article  PubMed  Google Scholar 

  223. Oo Y, Packham D, Yau W, Munckhof WJ. Ertapenem-associated psychosis and encephalopathy. Intern Med J. 2014;1:1. https://doi.org/10.1111/imj.12504.

    Article  Google Scholar 

  224. Muñoz-Gomez S, Gran A, Cunha BA. Meropenem delirium: a previously unrecognized neurologic side effect. J Chemother. 2015;27(2):120–1. https://doi.org/10.1179/1973947814y.0000000179.

    Article  PubMed  Google Scholar 

  225. Umstead GS, Neumann KH. Erythromycin ototoxicity and acute psychotic reaction in cancer patients with hepatic dysfunction. Arch Intern Med. 1986;146:897–9.

    Article  CAS  PubMed  Google Scholar 

  226. Manev H, Favaron M, Candeo P, Fadda E, et al. Macrolide antibiotics protect neurons in culture against the N-methyl-d-aspartate (NMDA) receptor-mediated toxicity of glutamate. Brain Res. 1993;624(1–2):331–5. https://doi.org/10.1016/006-8993(93)90098-8.

    Article  CAS  PubMed  Google Scholar 

  227. Pascuzzi RM. Medications and myasthenia gravis. New York: Myasthenia Gravis Foundation; 2007.

    Google Scholar 

  228. Perrot X, Bernard N, Vial C, Antoine JC, et al. Myasthenia gravis exacerbation or unmasking associated with telithromycin treatment. Neurology. 2006;67(12):2256–8. https://doi.org/10.1212/01.wnl.0000247741.72466.8c.

    Article  CAS  PubMed  Google Scholar 

  229. Idrees N, Almeqdadi M, Balakrishnan VS, Jaber BL. Hemodialysis for treatment of levofloxacin-induced neurotoxicity. Hemodial Int. 2018. https://doi.org/10.1111/hdi.12687.

    Article  PubMed  Google Scholar 

  230. Lambrichts S, Van Oudenhove L, Sienaert. Antibiotics and mania: a systematic review. J Affect Disord. 2017;219:149–56. https://doi.org/10.1016/j.jad.2017.05.029.

    Article  PubMed  Google Scholar 

  231. Schmuck G, Schürmann A, Schlüter G. Determination of the excitatory potencies of fluoroquinolones in the central nervous system by an in vitro model. Antimicrob Agents Chemother. 1998;42(7):1831–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Watling SM, Dasta JF. Aminoglycoside dosing considerations in intensive care unit patients. Ann Pharmacother. 1993;27(3):351–6. https://doi.org/10.1177/106002809302700319.

    Article  CAS  PubMed  Google Scholar 

  233. Hoeprich PD. The polymyxins. Med Clin N Am. 1970;54:1257–65.

    Article  CAS  PubMed  Google Scholar 

  234. Thomas RJ. Neurotoxicity of antibacterial therapy. South Med J. 2001;87:869–74.

    Article  Google Scholar 

  235. Parashar S, Roy N, Osuagwa FC, Khalid Z, Tinklepaugh M, Mehr S, Dillon JE. Trimethoprim-sulfamethoxazole-induced psychosis culminating in catastrophic self-injury: a case report. Prim Care Companion CNS Disord. 2016. https://doi.org/10.4088/pcc.15i01828.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Klibanov OM, Filicko JE, DeSimone JA, Tice DS. Sensorineural hearing loss associated with intrathecal vancomycin. Ann Pharmacother. 2003;37:61–5.

    Article  PubMed  Google Scholar 

  237. Chen AY, Zervos MJ, Vazquez JS. Dalbavancin: a novel antimicrobial. Int J Clin Pract. 2007;61(5):853–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Carpenter CF, Chambers HF. Daptomycin: another novel agent for treating infections due to drug-resistant gram-positive pathogens. Clin Infect Dis. 2004;38:994–1000.

    Article  CAS  PubMed  Google Scholar 

  239. Stein GE. Safety of newer parenteral antibiotics. Clin Infect Dis. 2005;41:S293–302.

    Article  CAS  PubMed  Google Scholar 

  240. Chen R, Shen K, Chang X, Tanaka T, Li L, Hu P. Pharmacokinetics and safety of tedizolid after single and multiple intravenous/oral sequential administrations in healthy Chinese subjects. Clin Ther. 2016;38(8):1869–79. https://doi.org/10.1016/j.clinthera.2016.06.014.

    Article  CAS  PubMed  Google Scholar 

  241. Vasquez JA, Arnold AC, Swanson RN, Biswas P, Bassetti M. Safety of long-term use of linezolid: results of an open-label study. Ther Clin Risk Manag. 2016;12:1347–54. https://doi.org/10.2147/tcrm.s109444.

    Article  CAS  Google Scholar 

  242. De Vriese AS, Coster RV, Smet J, Seneca S, Lovering A, et al. Linezolid-induced inhibition of mitochondrial protein synthesis. CID. 2006;42:1111–7.

    Article  Google Scholar 

  243. Bergeron L, Boulé M, Perreault S. Serotonin toxicity associated with concomitant use of linezolid. Ann Pharmacother. 2005;39:956–61. https://doi.org/10.1345/aph.1e523.

    Article  PubMed  Google Scholar 

  244. Taylor JJ, Wilson JW, Estes LL. Linezolid and serotonergic drug interactions: a retrospective survey. CID. 2006;43:180–7.

    Article  CAS  Google Scholar 

  245. Lamp KC, Freeman CD, Klutman NE, Lacy MK. Pharmacokinetics and pharmacodynamics of the nitroimidazole antimicrobials. Clin Pharmacokinet. 1999;36:353–73.

    Article  CAS  PubMed  Google Scholar 

  246. Rao DN, Mason RP. Generation of nitro radical anions of some 5-nitrofurans, 2- and 5-nitroimidazoles by norepinephrine, dopamine, and serotonin. A possible mechanism for neurotoxicity caused by nitroheterocyclic drugs. J Biol Chem. 1987;262:11731–6.

    CAS  PubMed  Google Scholar 

  247. Bradley WG, Karlsson IJ, Jassol CG. Metronidazole neuropathy. BMJ. 1977;2:610–1.

    Article  CAS  PubMed  Google Scholar 

  248. McGrath NM, Kent-Smith B, Sharp DM. Reversible optic neuropathy due to metronidazole. Clin Exp Ophthalmol. 2007;35:585–6.

    Article  PubMed  Google Scholar 

  249. Rego LL, Glazer CS, Zimmern PE. Risks of long-term use of nitrofurantoin for urinary tract prophylaxis in the older patient. Urol Sci. 2016;27(4):193–8. https://doi.org/10.1016/j.urols.2016.07.004.

    Article  Google Scholar 

  250. Thompson JE. How safe is isoniazid? Med J Aust. 1978;1(3):165–9.

    CAS  PubMed  Google Scholar 

  251. Zaoui A, Abdelghani A, Salem HB, Ouanes W, Hayouni A, et al. Early-onset severe isoniazid-induced motor-dominant neuropathy: a case report. EMHJ. 2012;18(3):298–9.

    CAS  PubMed  Google Scholar 

  252. Masood I, Bhat S, Beigh A, Gupta V. Isoniazid-induced psychosis in a patient on DOTS therapy. Ann Trop Med Public Health. 2011;4:126–7.

    Article  Google Scholar 

  253. Schrestha S, Alao A. Isoniazid-induced psychosis. Psychosomatics. 2009;50(6):640–1. https://doi.org/10.1016/s0033-3182(09)70872-2.

    Article  PubMed  Google Scholar 

  254. Denholm J, McBryde E, Eisen D, Chen C, Penington J, Street A. Adverse effects of isoniazid preventative therapy for latent tuberculosis infection: a prospective cohort study. Drug Healthc Patient Saf. 2014;6:145–9. https://doi.org/10.2147/dhps.s68837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Thomas RHM, Payne CMER, Black MM. Isoniazid-induced pellagra. BMJ. 1981;283:287–8.

    Article  Google Scholar 

  256. Lockman P, Shum S, Allen D. Case report: visual toxicity in acute isoniazid overdose. Internet J Med Toxicol. 2001;4(3):21.

    Google Scholar 

  257. Chen HY, Lai SW, Muo CH, et al. Ethambutol-induced optic neuropathy: a nationwide population-based study from Taiwan. Br J Ophthalmol. 2012;96:1368–71.

    Article  PubMed  Google Scholar 

  258. Estlin KAT, Sadun AA. Risk factors for ethambutol optic toxicity. Int Ophthalmol. 2010;30:63–72. https://doi.org/10.1007/s10792-009-9293-z.

    Article  Google Scholar 

  259. Matsumoto K, Ueno K, Yoshimura H, Morii M, Takada M, Sawai T, Mitsutake K, Shibakawa M. Fluconazole-induced convulsions at serum trough concentrations of approximately 80 microg/mL. Ther Drug Monit. 2000;22:635–6.

    Article  CAS  PubMed  Google Scholar 

  260. Chandrasekar PH. Micafungin: a new echinocandin. Clin Infect Dis. 2006;42(8):1171–8. https://doi.org/10.1086/501020.

    Article  CAS  PubMed  Google Scholar 

  261. Del Brutto OH. Clues to prevent cerebrovascular hazards of cysticidal drug therapy. Stroke. 1997;28:1088.

    PubMed  Google Scholar 

  262. Van Westerloo DJ, Landman GW, Prichard R, Lespine A, Visser LG. Persistent coma in Strongyloides hyperinfection syndrome associated with persistently increased ivermectin levels. Clin Infect Dis. 2014;58:143–4.

    Article  PubMed  Google Scholar 

  263. Rossignol JF, Abaza H, Friedman H. Successful treatment of human fascioliasis with nitazoxanide. Trans R Soc Trop Med Hyg. 1998;92:103–4. https://doi.org/10.1016/s0035-9203(98)90974-9.

    Article  CAS  PubMed  Google Scholar 

  264. Duombo O, Rossignol JF, Pichard E, Traore HA, Dembele TM, et al. Nitazoxanide in the treatment of cyrptosporidial diarrhea and other intestinal parasitic infections associated with acquired immunodeficiency syndrome in tropical Africa. Am J Trop Med Hyg. 1997;56:637–9. https://doi.org/10.4269/ajtmh.1997.56.637.

    Article  Google Scholar 

  265. Rendi-Wagner P, Noedl H, Wernsdorfer WH, Wiedermann G, et al. Unexpected frequency, duration, and spectrum of adverse events after therapeutic dose of mefloquine in health adults. Acta Trop. 2002;81:167–73. https://doi.org/10.1016/s0001-706x(01)00210-8.

    Article  CAS  PubMed  Google Scholar 

  266. TOXNET. Chloroquine. United States National Library of Medicine. American Society of Health System Pharmacists; AHFS Drug Information. 2006. http://toxnet.nlm.nih.gov. Accessed 22 Mar 2019.

  267. TOXNET. Quinine. United States National library of medicine. American Society of Health System Pharmacists; AHFS Drug Information. 2015. http://toxnet.nlm.nih.gov. Accessed 22 Mar 2019.

  268. Schmuck G, Roehrdanz E, Haynes RK, Kahl R. Neurotoxic mode of action of artemisinin. Antimicrob Agents Chemother. 2002;46(3):821–7. https://doi.org/10.1128/aac.46.3.821-827.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Chowdry MA, Derar N, Hasan S, Hinch B, Ratnam S, Assaly R. Acyclovir-induced neurotoxicity: a case report and review of literature. Am J Ther. 2016;23(3):e941–3. https://doi.org/10.1097/mjt.0000000000000093.

    Article  Google Scholar 

  270. Marzolini C, Telenti A, Decosterd LA, Greub G, Biollaz J, Buclin T. Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS. 2001;15:71–5.

    Article  CAS  PubMed  Google Scholar 

  271. Osterholzer DA, Goldman M. Dolutegravir: a next-generation integrase inhibitor for treatment of HIV infection. Clin Infect Dis. 2014;59(2):265–71. https://doi.org/10.1093/cid/ciu22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Hasbun.

Ethics declarations

Funding

No funding was received for this article.

Conflict of interest

RH has received research support from and is a speaker for BioFire® and has participated in the advisory board for Gilead®. MKB has no conflicts of interest that are directly related to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bangert, M.K., Hasbun, R. Neurological and Psychiatric Adverse Effects of Antimicrobials. CNS Drugs 33, 727–753 (2019). https://doi.org/10.1007/s40263-019-00649-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-019-00649-9

Navigation