Skip to main content
Log in

Potential Use of MicroRNA for Monitoring Therapeutic Response to Antidepressants

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Major depressive disorder (MDD) is a serious and common psychiatric disorder that affects millions of people worldwide. The most common treatment methods for MDD are antidepressant drugs, many of which act by regulating monoamines by inhibiting pre-synaptic reuptake and/or by modulating monoamine receptors. Despite advances in antidepressants and other treatment options, therapy is often based on subjective decisions made by the physician. Moreover, it requires time to determine treatment outcome and to define whether the prescribed treatment is effective. Biomarkers may help identify individuals with MDD who are more likely to respond to specific antidepressant treatment and may thus provide more objectivity in treatment decision making. MicroRNA as biomarkers of antidepressant response has engendered substantial enthusiasm. In this review, we give a detailed overview of biomarkers, particularly the major studies that have investigated microRNA in relationship to antidepressant treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lam RW, Kennedy SH, Parikh SV, MacQueen GM, Milev RV, Ravindran AV, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: introduction and methods. Can J Psychiatry. 2016;61(9):506–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bolton JM, Gunnell D, Turecki G. Suicide risk assessment and intervention in people with mental illness. BMJ. 2015;351:h4978.

    Article  PubMed  Google Scholar 

  3. Turecki G, Brent DA. Suicide and suicidal behaviour. Lancet. 2016;387(10024):1227–39.

    Article  PubMed  Google Scholar 

  4. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163(11):1905–17.

    Article  PubMed  Google Scholar 

  5. Kennedy SH, Lam RW, McIntyre RS, Tourjman SV, Bhat V, Blier P, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: section 3. Pharmacological treatments. Can J Psychiatry. 2016;61(9):540–60.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Green CE, Perez AM, et al. Antidepressant efficacy of ketamine in treatment-resistant MDD: a two-site randomized controlled trial. Am J Psychiatry. 2013;170(10):1134–42.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lam RW, Milev R, Rotzinger S, Andreazza AC, Blier P, Brenner C, et al. Discovering biomarkers for antidepressant response: protocol from the Canadian biomarker integration network in depression (CAN-BIND) and clinical characteristics of the first patient cohort. BMC Psychiatry. 2016;16(1):105.

    Article  PubMed  PubMed Central  Google Scholar 

  8. FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource. Silver Spring: US FDA; 2016.

    Google Scholar 

  9. Kraemer HC, Wilson GT, Fairburn CG, Agras WS. Mediators and moderators of treatment effects in randomized clinical trials. Arch Gen Psychiatry. 2002;59(10):877–83.

    Article  PubMed  Google Scholar 

  10. Trivedi MH, McGrath PJ, Fava M, Parsey RV, Kurian BT, Phillips ML, et al. Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): rationale and design. J Psychiatr Res. 2016;78:11–23.

    Article  PubMed  Google Scholar 

  11. Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet. 2016;17(5):257–71.

    Article  CAS  PubMed  Google Scholar 

  12. Labermaier C, Masana M, Muller MB. Biomarkers predicting antidepressant treatment response: how can we advance the field? Dis Mark. 2013;35(1):23–31.

    Article  Google Scholar 

  13. Gururajan A, Clarke G, Dinan TG, Cryan JF. Molecular biomarkers of depression. Neurosci Biobehav Rev. 2016;64:101–33.

    Article  CAS  PubMed  Google Scholar 

  14. Ray P, Le Manach Y, Riou B, Houle TT. Statistical evaluation of a biomarker. Anesthesiology. 2010;112(4):1023–40.

    Article  PubMed  Google Scholar 

  15. Altman DG, Bland JM. Diagnostic tests 2: predictive values. BMJ. 1994;309(6947):102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fan J, Upadhye S, Worster A. Understanding receiver operating characteristic (ROC) curves. CJEM. 2006;8(1):19–20.

    Article  PubMed  Google Scholar 

  17. Deeks JJ, Altman DG. Diagnostic tests 4: likelihood ratios. BMJ. 2004;329(7458):168–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.

    Article  CAS  PubMed  Google Scholar 

  19. Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta. 2010;1803(11):1231–43.

    Article  CAS  PubMed  Google Scholar 

  20. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11(3):228–34.

    Article  CAS  PubMed  Google Scholar 

  21. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    Article  CAS  PubMed  Google Scholar 

  22. Kawase-Koga Y, Otaegi G, Sun T. Different timings of Dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Dev Dyn. 2009;238(11):2800–12.

    Article  PubMed  PubMed Central  Google Scholar 

  23. McLoughlin HS, Fineberg SK, Ghosh LL, Tecedor L, Davidson BL. Dicer is required for proliferation, viability, migration and differentiation in corticoneurogenesis. Neuroscience. 2012;223:285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Choi PS, Zakhary L, Choi WY, Caron S, Alvarez-Saavedra E, Miska EA, et al. Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron. 2008;57(1):41–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meng Y, Zhang Y, Tregoubov V, Janus C, Cruz L, Jackson M, et al. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron. 2002;35(1):121–33.

    Article  CAS  PubMed  Google Scholar 

  26. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, et al. A brain-specific microRNA regulates dendritic spine development. Nature. 2006;439(7074):283–9.

    Article  CAS  PubMed  Google Scholar 

  27. Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL, et al. microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci USA. 2010;107(47):20382–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pathania M, Torres-Reveron J, Yan L, Kimura T, Lin TV, Gordon V, et al. miR-132 enhances dendritic morphogenesis, spine density, synaptic integration, and survival of newborn olfactory bulb neurons. PLoS One. 2012;7(5):e38174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY, et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA. 2008;105(26):9093–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smalheiser NR, Lugli G, Rizavi HS, Zhang H, Torvik VI, Pandey GN, et al. MicroRNA expression in rat brain exposed to repeated inescapable shock: differential alterations in learned helplessness vs. non-learned helplessness. Int J Neuropsychopharmacol. 2011;14(10):1315–25.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao C, Sun G, Li S, Shi Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol. 2009;16(4):365–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Giusti SA, Vogl AM, Brockmann MM, Vercelli CA, Rein ML, Trumbach D, et al. MicroRNA-9 controls dendritic development by targeting REST. Elife. 2014. doi:10.7554/eLife.02755.

    PubMed  PubMed Central  Google Scholar 

  33. Smalheiser NR, Lugli G, Rizavi HS, Torvik VI, Turecki G, Dwivedi Y. MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS One. 2012;7(3):e33201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wei YB, Melas PA, Villaescusa JC, Liu JJ, Xu N, Christiansen SH, et al. MicroRNA 101b is downregulated in the prefrontal cortex of a genetic model of depression and targets the glutamate transporter SLC1A1 (EAAT3) in vitro. Int J Neuropsychopharmacol. 2016;19(12):pyw069.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Smalheiser NR, Lugli G, Zhang H, Rizavi H, Cook EH, Dwivedi Y. Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects. PLoS One. 2014;9(1):e86469.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fan HM, Sun XY, Guo W, Zhong AF, Niu W, Zhao L, et al. Differential expression of microRNA in peripheral blood mononuclear cells as specific biomarker for major depressive disorder patients. J Psychiatr Res. 2014;59:45–52.

    Article  CAS  PubMed  Google Scholar 

  37. Maffioletti E, Cattaneo A, Rosso G, Maina G, Maj C, Gennarelli M, et al. Peripheral whole blood microRNA alterations in MDD and bipolar disorder. J Affect Disord. 2016;200:250–8.

    Article  CAS  PubMed  Google Scholar 

  38. Roy B, Dunbar M, Shelton RC, Dwivedi Y. Identification of MicroRNA-124-3p as a putative epigenetic signature of major depressive disorder. Neuropsychopharmacology. 2017;42(4):864–75.

    Article  CAS  PubMed  Google Scholar 

  39. Torres-Berrio A, Lopez JP, Bagot RC, Nouel D, Dal Bo G, Cuesta S, et al. DCC confers susceptibility to depression-like behaviors in humans and mice and is regulated by miR-218. Biol Psychiatry. 2017;81(4):306–15.

    Article  CAS  PubMed  Google Scholar 

  40. Azevedo JA, Carter BS, Meng F, Turner DL, Dai M, Schatzberg AF, et al. The microRNA network is altered in anterior cingulate cortex of patients with unipolar and bipolar depression. J Psychiatr Res. 2016;82:58–67.

    Article  PubMed  Google Scholar 

  41. Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O. miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science. 2010;329(5998):1537–41.

    Article  CAS  PubMed  Google Scholar 

  42. Launay JM, Mouillet-Richard S, Baudry A, Pietri M, Kellermann O. Raphe-mediated signals control the hippocampal response to SRI antidepressants via miR-16. Transl Psychiatry. 2011;1:e56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Song MF, Dong JZ, Wang YW, He J, Ju X, Zhang L, et al. CSF miR-16 is decreased in MDD patients and its neutralization in rats induces depression-like behaviors via a serotonin transmitter system. J Affect Disord. 2015;178:25–31.

    Article  CAS  PubMed  Google Scholar 

  44. Gururajan A, Naughton ME, Scott KA, O’Connor RM, Moloney G, Clarke G, et al. MicroRNAs as biomarkers for MDD: a role for let-7b and let-7c. Transl Psychiatry. 2016;6(8):e862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Issler O, Haramati S, Paul ED, Maeno H, Navon I, Zwang R, et al. MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity. Neuron. 2014;83(2):344–60.

    Article  CAS  PubMed  Google Scholar 

  46. Lopez JP, Lim R, Cruceanu C, Crapper L, Fasano C, Labonte B, et al. miR-1202 is a primate-specific and brain-enriched microRNA involved in MDD and antidepressant treatment. Nat Med. 2014;20(7):764–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dadkhah T, Rahimi-Aliabadi S, Jamshidi J, Ghaedi H, Taghavi S, Shokraeian P, et al. A genetic variant in miRNA binding site of glutamate receptor 4, metabotropic (GRM4) is associated with increased risk of major depressive disorder. J Affect Disord. 2016;208:218–22.

    Article  PubMed  Google Scholar 

  48. Lopez JP, Pereira F, Richard-Devantoy S, Berlim M, Chachamovich E, Fiori LM, et al. Co-variation of peripheral levels of miR-1202 and brain activity and connectivity during antidepressant treatment. Neuropsychopharmacology. 2017. doi:10.1038/npp.2017.9.

    Google Scholar 

  49. Belzeaux R, Bergon A, Jeanjean V, Loriod B, Formisano-Treziny C, Verrier L, et al. Responder and nonresponder patients exhibit different peripheral transcriptional signatures during major depressive episode. Transl Psychiatry. 2012;2:e185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. He S, Liu X, Jiang K, Peng D, Hong W, Fang Y, et al. Alterations of microRNA-124 expression in peripheral blood mononuclear cells in pre- and post-treatment patients with major depressive disorder. J Psychiatr Res. 2016;78:65–71.

    Article  PubMed  Google Scholar 

  51. Camkurt MA, Acar S, Coskun S, Gunes M, Gunes S, Yilmaz MF, et al. Comparison of plasma MicroRNA levels in drug naive, first episode depressed patients and healthy controls. J Psychiatr Res. 2015;69:67–71.

    Article  PubMed  Google Scholar 

  52. O’Connor RM, Grenham S, Dinan TG, Cryan JF. microRNAs as novel antidepressant targets: converging effects of ketamine and electroconvulsive shock therapy in the rat hippocampus. Int J Neuropsychopharmacol. 2013;16(8):1885–92.

    Article  PubMed  Google Scholar 

  53. Li YJ, Xu M, Gao ZH, Wang YQ, Yue Z, Zhang YX, et al. Alterations of serum levels of BDNF-related miRNAs in patients with depression. PLoS One. 2013;8(5):e63648.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Belzeaux R, Lin CW, Ding Y, Bergon A, el Ibrahim C, Turecki G, et al. Predisposition to treatment response in major depressive episode: a peripheral blood gene coexpression network analysis. J Psychiatr Res. 2016;81:119–26.

    Article  PubMed  Google Scholar 

  55. Enatescu VR, Papava I, Enatescu I, Antonescu M, Anghel A, Seclaman E, et al. Circulating plasma micro RNAs in patients with major depressive disorder treated with antidepressants: a pilot study. Psychiatry Investig. 2016;13(5):549–57.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jasinska AJ, Service S, Choi OW, DeYoung J, Grujic O, Kong SY, et al. Identification of brain transcriptional variation reproduced in peripheral blood: an approach for mapping brain expression traits. Hum Mol Genet. 2009;18(22):4415–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.

    Article  CAS  PubMed  Google Scholar 

  58. Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3(9):e3148.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105(30):10513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Turecki.

Ethics declarations

Funding

GT is supported by grants from the Canadian Institutes of Health Research (FRN: 148374, 141899, 93775, 11260, 119429, and 119430), from the US National Institutes of Health (1R01DA033684), by the Fonds de Recherche du Québec—Santé through the Quebec Network on Suicide, Mood Disorders and Related Disorders, and through an investigator-initiated research grant from Pfizer.

Conflicts of interest

Raoul Belzeaux, Rixing Lin and Gustavo Turecki have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belzeaux, R., Lin, R. & Turecki, G. Potential Use of MicroRNA for Monitoring Therapeutic Response to Antidepressants. CNS Drugs 31, 253–262 (2017). https://doi.org/10.1007/s40263-017-0418-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-017-0418-z

Keywords

Navigation