Skip to main content
Log in

Pharmacological Strategies for the Management of Levodopa-Induced Dyskinesia in Patients with Parkinson’s Disease

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

l-Dopa-induced dyskinesias (LID) are the most common adverse effects of long-term dopaminergic therapy in Parkinson’s disease (PD). However, the exact mechanisms underlying dyskinesia are still unclear. For a long time, nigrostriatal degeneration and pulsatile stimulation of striatal postsynaptic receptors have been highlighted as the key factors for the development of LID. In recent years, PD models have revealed a wide range of non-dopaminergic neurotransmitter systems involved in pre- and postsynaptic changes and thereby contributing to the pathophysiology of LID. In the current review, we focus on therapeutic LID targets, mainly based on agents acting on dopaminergic, glutamatergic, serotoninergic, adrenergic, and cholinergic systems. Despite a large number of clinical trials, currently only amantadine and, to a lesser extent, clozapine are being used as effective strategies in the treatment of LID in clinical settings. Thus, in the second part of the article, we review the placebo-controlled trials on LID treatment in order to disentangle the changing scenario of drug development. Promising results include the extension of l-dopa action without inducing LID of the novel monoamine oxidase B- and glutamate-release inhibitor safinamide; however, this had no obvious effect on existing LID. Others, like the metabotropic glutamate-receptor antagonist AFQ056, showed promising results in some of the studies; however, confirmation is still lacking. Thus, to date, strategies of continuous dopaminergic stimulation seem the most promising to prevent or ameliorate LID. The success of future therapeutic strategies once moderate to severe LID occur will depend on the translation from preclinical experimental models into clinical practice in a bidirectional process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Warren Olanow C, Kieburtz K, Rascol O, Poewe W, Schapira AH, Emre M, et al. Factors predictive of the development of levodopa-induced dyskinesia and wearing-off in Parkinson’s disease. Mov Disord. 2013;28(8):1064–71. doi:10.1002/mds.25364.

  2. Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001;16(3):448–58.

    CAS  PubMed  Google Scholar 

  3. Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA. Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci. 2002;15(1):120–32.

    CAS  PubMed  Google Scholar 

  4. Lundblad M, Picconi B, Lindgren H, Cenci MA. A model of l-dopa-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis. 2004;16(1):110–23. doi:10.1016/j.nbd.2004.01.007.

    CAS  PubMed  Google Scholar 

  5. Cenci MA, Ohlin KE. Rodent models of treatment-induced motor complications in Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(Suppl 4):S13–7. doi:10.1016/S1353-8020(09)70828-4.

    PubMed  Google Scholar 

  6. Jenner P. From the MPTP-treated primate to the treatment of motor complications in Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(Suppl 4):S18–23. doi:10.1016/S1353-8020(09)70829-6.

    PubMed  Google Scholar 

  7. Boyce S, Rupniak NM, Steventon MJ, Iversen SD. Characterisation of dyskinesias induced by l-dopa in MPTP-treated squirrel monkeys. Psychopharmacology. 1990;102(1):21–7.

    CAS  PubMed  Google Scholar 

  8. Cenci MA, Konradi C. Maladaptive striatal plasticity in l-dopa-induced dyskinesia. Prog Brain Res. 2010;183:209–33. doi:10.1016/S0079-6123(10)83011-0.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Hauser RA, McDermott MP, Messing S. Factors associated with the development of motor fluctuations and dyskinesias in Parkinson disease. Arch Neurol. 2006;63(12):1756–60. doi:10.1001/archneur.63.12.1756.

    PubMed  Google Scholar 

  10. Boyce S, Rupniak NM, Steventon MJ, Iversen SD. Nigrostriatal damage is required for induction of dyskinesias by l-dopa in squirrel monkeys. Clin Neuropharmacol. 1990;13(5):448–58.

    CAS  PubMed  Google Scholar 

  11. Horstink MW, Zijlmans JC, Pasman JW, Berger HJ, van’t Hof MA. Severity of Parkinson’s disease is a risk factor for peak-dose dyskinesia. J Neurol Neurosurg Psychiatry. 1990;53(3):224–6.

  12. Jankovic J, Rajput AH, McDermott MP, Perl DP. The evolution of diagnosis in early Parkinson disease. Parkinson Study Group. Arch Neurol. 2000;57(3):369–72.

    CAS  PubMed  Google Scholar 

  13. Becker PM, Jamieson AO, Brown WD. Dopaminergic agents in restless legs syndrome and periodic limb movements of sleep: response and complications of extended treatment in 49 cases. Sleep. 1993;16(8):713–6.

    CAS  PubMed  Google Scholar 

  14. Rajput AH, Fenton M, Birdi S, Macaulay R. Is levodopa toxic to human substantia nigra? Mov Disord. 1997;12(5):634–8. doi:10.1002/mds.870120503.

    CAS  PubMed  Google Scholar 

  15. Grandas F, Galiano ML, Tabernero C. Risk factors for levodopa-induced dyskinesias in Parkinson’s disease. J Neurol. 1999;246(12):1127–33.

    CAS  PubMed  Google Scholar 

  16. Fabbrini G, Defazio G, Colosimo C, Suppa A, Bloise M, Berardelli A. Onset and spread of dyskinesias and motor symptoms in Parkinson’s disease. Mov Disord. 2009;24(14):2091–6. doi:10.1002/mds.22703.

    PubMed  Google Scholar 

  17. Mones RJ, Elizan TS, Siegel GJ. Analysis of l-dopa induced dyskinesias in 51 patients with Parkinsonism. J Neurol Neurosurg Psychiatry. 1971;34(6):668–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Mouradian MM, Heuser IJ, Baronti F, Fabbrini G, Juncos JL, Chase TN. Pathogenesis of dyskinesias in Parkinson’s disease. Ann Neurol. 1989;25(5):523–6. doi:10.1002/ana.410250521.

    CAS  PubMed  Google Scholar 

  19. Di Monte DA, McCormack A, Petzinger G, Janson AM, Quik M, Langston WJ. Relationship among nigrostriatal denervation, parkinsonism, and dyskinesias in the MPTP primate model. Mov Disord. 2000;15(3):459–66.

    PubMed  Google Scholar 

  20. Schneider JS. Levodopa-induced dyskinesias in parkinsonian monkeys: relationship to extent of nigrostriatal damage. Pharmacol Biochem Behav. 1989;34(1):193–6.

    CAS  PubMed  Google Scholar 

  21. Winkler C, Kirik D, Bjorklund A, Cenci MA. l-dopa-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of Parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis. 2002;10(2):165–86.

    PubMed  Google Scholar 

  22. Carlsson T, Carta M, Munoz A, Mattsson B, Winkler C, Kirik D, et al. Impact of grafted serotonin and dopamine neurons on development of l-dopa-induced dyskinesias in parkinsonian rats is determined by the extent of dopamine neuron degeneration. Brain J Neurol. 2009;132(Pt 2):319–35. doi:10.1093/brain/awn305.

    Google Scholar 

  23. Cragg SJ, Rice ME. Dancing past the DAT at a DA synapse. Trends Neurosci. 2004;27(5):270–7. doi:10.1016/j.tins.2004.03.011.

    CAS  PubMed  Google Scholar 

  24. Miller DW, Abercrombie ED. Role of high-affinity dopamine uptake and impulse activity in the appearance of extracellular dopamine in striatum after administration of exogenous l-dopa: studies in intact and 6-hydroxydopamine-treated rats. J Neurochem. 1999;72(4):1516–22.

    CAS  PubMed  Google Scholar 

  25. Cenci MA, Lundblad M. Post-versus presynaptic plasticity in l-dopa-induced dyskinesia. J Neurochem. 2006;99(2):381–92. doi:10.1111/j.1471-4159.2006.04124.x.

    CAS  PubMed  Google Scholar 

  26. Abercrombie ED, Bonatz AE, Zigmond MJ. Effects of l-dopa on extracellular dopamine in striatum of normal and 6-hydroxydopamine-treated rats. Brain Res. 1990;525(1):36–44.

    CAS  PubMed  Google Scholar 

  27. Carta M, Lindgren HS, Lundblad M, Stancampiano R, Fadda F, Cenci MA. Role of striatal l-dopa in the production of dyskinesia in 6-hydroxydopamine lesioned rats. J Neurochem. 2006;96(6):1718–27. doi:10.1111/j.1471-4159.2006.03696.x.

    CAS  PubMed  Google Scholar 

  28. Pavese N, Evans AH, Tai YF, Hotton G, Brooks DJ, Lees AJ, et al. Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology. 2006;67(9):1612–7. doi:10.1212/01.wnl.0000242888.30755.5d.

    CAS  PubMed  Google Scholar 

  29. de la Fuente-Fernandez R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, et al. Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain J Neurol. 2004;127(Pt 12):2747–54. doi:10.1093/brain/awh290.

    Google Scholar 

  30. Herz DM, Haagensen BN, Christensen MS, Madsen KH, Rowe JB, Lokkegaard A, et al. The acute brain response to levodopa heralds dyskinesias in Parkinson disease. Ann Neurol. 2014;75(6):829–36. doi:10.1002/ana.24138.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Raevskii KS, Gainetdinov RR, Budygin EA, Mannisto P, Wightman M. Dopaminergic transmission in the rat striatum in vivo in conditions of pharmacological modulation. Neurosci Behav Physiol. 2002;32(2):183–8.

    CAS  PubMed  Google Scholar 

  32. Sossi V, Dinelle K, Topping GJ, Holden JE, Doudet D, Schulzer M, et al. Dopamine transporter relation to levodopa-derived synaptic dopamine in a rat model of Parkinson’s: an in vivo imaging study. J Neurochem. 2009;109(1):85–92. doi:10.1111/j.1471-4159.2009.05904.x.

    CAS  PubMed  Google Scholar 

  33. Troiano AR, de la Fuente-Fernandez R, Sossi V, Schulzer M, Mak E, Ruth TJ, et al. PET demonstrates reduced dopamine transporter expression in PD with dyskinesias. Neurology. 2009;72(14):1211–6. doi:10.1212/01.wnl.0000338631.73211.56.

    CAS  PubMed  Google Scholar 

  34. Hong JY, Oh JS, Lee I, Sunwoo MK, Ham JH, Lee JE, et al. Presynaptic dopamine depletion predicts levodopa-induced dyskinesia in de novo Parkinson disease. Neurology. 2014;82(18):1597–604. doi:10.1212/WNL.0000000000000385.

    CAS  PubMed  Google Scholar 

  35. Nutt JG. Pharmacokinetics and pharmacodynamics of levodopa. Mov Disord. 2008;23(Suppl 3):S580–4. doi:10.1002/mds.22037.

    PubMed  Google Scholar 

  36. Olanow CW, Obeso JA, Stocchi F. Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. Lancet Neurol. 2006;5(8):677–87. doi:10.1016/S1474-4422(06)70521-X.

    CAS  PubMed  Google Scholar 

  37. Olanow CW, Obeso JA, Stocchi F. Drug insight: continuous dopaminergic stimulation in the treatment of Parkinson’s disease. Nat Clin Pract Neurol. 2006;2(7):382–92. doi:10.1038/ncpneuro0222.

    CAS  PubMed  Google Scholar 

  38. Contin M, Martinelli P. Pharmacokinetics of levodopa. J Neurol. 2010;257(Suppl 2):S253–61. doi:10.1007/s00415-010-5728-8.

    PubMed  Google Scholar 

  39. Schrag A, Quinn N. Dyskinesias and motor fluctuations in Parkinson’s disease. A community-based study. Brain J Neurol. 2000;123(Pt 11):2297–305.

    Google Scholar 

  40. Jenner P. Factors influencing the onset and persistence of dyskinesia in MPTP-treated primates. Ann Neurol. 2000;47(4 Suppl 1):S90–9. (Discussion S9–104).

  41. Smith LA, Tel BC, Jackson MJ, Hansard MJ, Braceras R, Bonhomme C, et al. Repeated administration of piribedil induces less dyskinesia than l-dopa in MPTP-treated common marmosets: a behavioural and biochemical investigation. Mov Disord. 2002;17(5):887–901. doi:10.1002/mds.10200.

    PubMed  Google Scholar 

  42. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE, et al. Development of dyskinesias in a 5-year trial of ropinirole and l-dopa. Mov Disord. 2006;21(11):1844–50. doi:10.1002/mds.20988.

    PubMed  Google Scholar 

  43. Holloway RG, Shoulson I, Fahn S, Kieburtz K, Lang A, Marek K, et al. Pramipexole vs levodopa as initial treatment for Parkinson disease: a 4-year randomized controlled trial. Arch Neurol. 2004;61(7):1044–53. doi:10.1001/archneur.61.7.1044.

    PubMed  Google Scholar 

  44. Smith LA, Jackson MJ, Johnston L, Kuoppamaki M, Rose S, Al-Barghouthy G, et al. Switching from levodopa to the long-acting dopamine D2/D3 agonist piribedil reduces the expression of dyskinesia while maintaining effective motor activity in MPTP-treated primates. Clin Neuropharmacol. 2006;29(3):112–25. doi:10.1097/01.WNF.0000220818.71231.DF.

    CAS  PubMed  Google Scholar 

  45. Bibbiani F, Costantini LC, Patel R, Chase TN. Continuous dopaminergic stimulation reduces risk of motor complications in parkinsonian primates. Exp Neurol. 2005;192(1):73–8. doi:10.1016/j.expneurol.2004.11.013.

    CAS  PubMed  Google Scholar 

  46. Blanchet PJ, Calon F, Martel JC, Bedard PJ, Di Paolo T, Walters RR, et al. Continuous administration decreases and pulsatile administration increases behavioral sensitivity to a novel dopamine D2 agonist (U-91356A) in MPTP-exposed monkeys. J Pharmacol Exp Ther. 1995;272(2):854–9.

    CAS  PubMed  Google Scholar 

  47. Stockwell KA, Scheller DK, Smith LA, Rose S, Iravani MM, Jackson MJ, et al. Continuous rotigotine administration reduces dyskinesia resulting from pulsatile treatment with rotigotine or l-dopa in MPTP-treated common marmosets. Exp Neurol. 2010;221(1):79–85. doi:10.1016/j.expneurol.2009.10.004.

    CAS  PubMed  Google Scholar 

  48. Brotchie JM. Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov Disord. 2005;20(8):919–31. doi:10.1002/mds.20612.

    PubMed  Google Scholar 

  49. Nutt JG. Continuous dopaminergic stimulation: Is it the answer to the motor complications of levodopa? Mov Disord. 2007;22(1):1–9. doi:10.1002/mds.21060.

    PubMed  Google Scholar 

  50. Nadjar A, Gerfen CR, Bezard E. Priming for l-dopa-induced dyskinesia in Parkinson’s disease: a feature inherent to the treatment or the disease? Prog Neurobiol. 2009;87(1):1–9. doi:10.1016/j.pneurobio.2008.09.013.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Maratos EC, Jackson MJ, Pearce RK, Jenner P. Antiparkinsonian activity and dyskinesia risk of ropinirole and l-dopa combination therapy in drug naive MPTP-lesioned common marmosets (Callithrix jacchus). Mov Disord. 2001;16(4):631–41.

    CAS  PubMed  Google Scholar 

  52. Hill MP, Brotchie JM, Crossman AR, Bezard E, Michel A, Grimee R, et al. Levetiracetam interferes with the l-dopa priming process in MPTP-lesioned drug-naive marmosets. Clin Neuropharmacol. 2004;27(4):171–7.

    CAS  PubMed  Google Scholar 

  53. Bedard PJ, Di Paolo T, Falardeau P, Boucher R. Chronic treatment with l-dopa, but not bromocriptine induces dyskinesia in MPTP-parkinsonian monkeys. Correlation with [3H] spiperone binding. Brain Res. 1986;379(2):294–9.

    CAS  PubMed  Google Scholar 

  54. Lera G, Vaamonde J, Muruzabal J, Obeso JA. Cabergoline: a long-acting dopamine agonist in Parkinson’s disease. Ann Neurol. 1990;28(4):593–4. doi:10.1002/ana.410280428.

    CAS  PubMed  Google Scholar 

  55. Montastruc JL, Rascol O, Senard JM, Rascol A. A randomised controlled study comparing bromocriptine to which levodopa was later added, with levodopa alone in previously untreated patients with Parkinson’s disease: a five year follow up. J Neurol Neurosurg Psychiatry. 1994;57(9):1034–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Murray AM, Waddington JL. The interaction of clozapine with dopamine D1 versus dopamine D2 receptor-mediated function: behavioural indices. Eur J Pharmacol. 1990;186(1):79–86.

    CAS  PubMed  Google Scholar 

  57. Maratos EC, Jackson MJ, Pearce RK, Cannizzaro C, Jenner P. Both short- and long-acting D-1/D-2 dopamine agonists induce less dyskinesia than l-dopa in the MPTP-lesioned common marmoset (Callithrix jacchus). Exp Neurol. 2003;179(1):90–102.

    CAS  PubMed  Google Scholar 

  58. Grondin R, Bedard PJ, Britton DR, Shiosaki K. Potential therapeutic use of the selective dopamine D1 receptor agonist, A-86929: an acute study in parkinsonian levodopa-primed monkeys. Neurology. 1997;49(2):421–6.

    CAS  PubMed  Google Scholar 

  59. Pons R, Syrengelas D, Youroukos S, Orfanou I, Dinopoulos A, Cormand B, et al. Levodopa-induced dyskinesias in tyrosine hydroxylase deficiency. Mov Disord. 2013;28(8):1058–63. doi:10.1002/mds.25382.

    CAS  PubMed  Google Scholar 

  60. Hwang WJ, Calne DB, Tsui JK, de la Fuente-Fernandez R. The long-term response to levodopa in dopa-responsive dystonia. Parkinsonism Relat Disord. 2001;8(1):1–5.

    CAS  PubMed  Google Scholar 

  61. Berthet A, Porras G, Doudnikoff E, Stark H, Cador M, Bezard E, et al. Pharmacological analysis demonstrates dramatic alteration of D1 dopamine receptor neuronal distribution in the rat analog of l-dopa-induced dyskinesia. J Neurosci. 2009;29(15):4829–35. doi:10.1523/JNEUROSCI.5884-08.2009.

    CAS  PubMed  Google Scholar 

  62. Oh JD, Russell DS, Vaughan CL, Chase TN. Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and l-dopa administration. Brain Res. 1998;813(1):150–9.

    CAS  PubMed  Google Scholar 

  63. Santini E, Sgambato-Faure V, Li Q, Savasta M, Dovero S, Fisone G, et al. Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in l-dopa-induced dyskinesia. PloS One. 2010;5(8):e12322. doi:10.1371/journal.pone.0012322.

    PubMed Central  PubMed  Google Scholar 

  64. Santini E, Valjent E, Usiello A, Carta M, Borgkvist A, Girault JA, et al. Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in l-dopa-induced dyskinesia. J Neurosci. 2007;27(26):6995–7005. doi:10.1523/JNEUROSCI.0852-07.2007.

    CAS  PubMed  Google Scholar 

  65. Iravani MM, Jenner P. Mechanisms underlying the onset and expression of levodopa-induced dyskinesia and their pharmacological manipulation. J Neural Transm. 2011;118(12):1661–90. doi:10.1007/s00702-011-0698-2.

    CAS  PubMed  Google Scholar 

  66. Gerfen CR, Young WS 3rd. Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Res. 1988;460(1):161–7.

    CAS  PubMed  Google Scholar 

  67. Le Moine C, Normand E, Bloch B. Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proc Natl Acad Sci USA. 1991;88(10):4205–9.

    PubMed Central  PubMed  Google Scholar 

  68. Gertler TS, Chan CS, Surmeier DJ. Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci. 2008;28(43):10814–24. doi:10.1523/JNEUROSCI.2660-08.2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Darmopil S, Martin AB, De Diego IR, Ares S, Moratalla R. Genetic inactivation of dopamine D1 but not D2 receptors inhibits l-dopa-induced dyskinesia and histone activation. Biol Psychiatry. 2009;66(6):603–13. doi:10.1016/j.biopsych.2009.04.025.

    CAS  PubMed  Google Scholar 

  70. Guigoni C, Doudnikoff E, Li Q, Bloch B, Bezard E. Altered D(1) dopamine receptor trafficking in parkinsonian and dyskinetic non-human primates. Neurobiol Dis. 2007;26(2):452–63. doi:10.1016/j.nbd.2007.02.001.

    CAS  PubMed  Google Scholar 

  71. Aubert I, Guigoni C, Hakansson K, Li Q, Dovero S, Barthe N, et al. Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol. 2005;57(1):17–26. doi:10.1002/ana.20296.

    CAS  PubMed  Google Scholar 

  72. Santini E, Valjent E, Fisone G. mTORC1 signaling in Parkinson’s disease and l-dopa-induced dyskinesia: a sensitized matter. Cell Cycle. 2010;9(14):2713–8.

    CAS  PubMed  Google Scholar 

  73. Westin JE, Vercammen L, Strome EM, Konradi C, Cenci MA. Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of l-dopa-induced dyskinesia and the role of dopamine D1 receptors. Biol Psychiatry. 2007;62(7):800–10. doi:10.1016/j.biopsych.2006.11.032.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Pavon N, Martin AB, Mendialdua A, Moratalla R. ERK phosphorylation and FosB expression are associated with l-dopa-induced dyskinesia in hemiparkinsonian mice. Biol Psychiatry. 2006;59(1):64–74. doi:10.1016/j.biopsych.2005.05.044.

    CAS  PubMed  Google Scholar 

  75. Andersson M, Hilbertson A, Cenci MA. Striatal fosB expression is causally linked with l-dopa-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson’s disease. Neurobiol Dis. 1999;6(6):461–74. doi:10.1006/nbdi.1999.0259.

    CAS  PubMed  Google Scholar 

  76. Gerfen CR, Miyachi S, Paletzki R, Brown P. D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci. 2002;22(12):5042–54.

    CAS  PubMed  Google Scholar 

  77. Gerfen CR. D1 dopamine receptor supersensitivity in the dopamine-depleted striatum animal model of Parkinson’s disease. Neuroscientist. 2003;9(6):455–62. doi:10.1177/1073858403255839.

    CAS  PubMed  Google Scholar 

  78. Bezard E, Gross CE, Qin L, Gurevich VV, Benovic JL, Gurevich EV. l-dopa reverses the MPTP-induced elevation of the arrestin2 and GRK6 expression and enhanced ERK activation in monkey brain. Neurobiol Dis. 2005;18(2):323–35. doi:10.1016/j.nbd.2004.10.005.

    CAS  PubMed  Google Scholar 

  79. Konradi C, Westin JE, Carta M, Eaton ME, Kuter K, Dekundy A, et al. Transcriptome analysis in a rat model of l-dopa-induced dyskinesia. Neurobiol Dis. 2004;17(2):219–36. doi:10.1016/j.nbd.2004.07.005.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Chase TN, Oh JD. Striatal dopamine- and glutamate-mediated dysregulation in experimental parkinsonism. Trends Neurosci. 2000;23(10 Suppl):S86–91.

    CAS  PubMed  Google Scholar 

  81. Calabresi P, Giacomini P, Centonze D, Bernardi G. Levodopa-induced dyskinesia: a pathological form of striatal synaptic plasticity? Ann Neurol. 2000;47(4 Suppl 1):S60–8. (Discussion S8–9).

  82. Calon F, Rajput AH, Hornykiewicz O, Bedard PJ, Di Paolo T. Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson’s disease. Neurobiol Dis. 2003;14(3):404–16.

    CAS  PubMed  Google Scholar 

  83. Fiorentini C, Busi C, Spano P, Missale C. Role of receptor heterodimers in the development of l-dopa-induced dyskinesias in the 6-hydroxydopamine rat model of Parkinson’s disease. Parkinsonism Relat Disord. 2008;14(Suppl 2):S159–64. doi:10.1016/j.parkreldis.2008.04.022.

    PubMed  Google Scholar 

  84. Fiorentini C, Rizzetti MC, Busi C, Bontempi S, Collo G, Spano P, et al. Loss of synaptic D1 dopamine/N-methyl-d-aspartate glutamate receptor complexes in l-dopa-induced dyskinesia in the rat. Mol Pharmacol. 2006;69(3):805–12. doi:10.1124/mol.105.016667.

    CAS  PubMed  Google Scholar 

  85. Hallett PJ, Spoelgen R, Hyman BT, Standaert DG, Dunah AW. Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. J Neurosci. 2006;26(17):4690–700. doi:10.1523/JNEUROSCI.0792-06.2006.

    CAS  PubMed  Google Scholar 

  86. Picconi B, Paille V, Ghiglieri V, Bagetta V, Barone I, Lindgren HS, et al. l-dopa dosage is critically involved in dyskinesia via loss of synaptic depotentiation. Neurobiol Dis. 2008;29(2):327–35. doi:10.1016/j.nbd.2007.10.001.

    CAS  PubMed  Google Scholar 

  87. Picconi B, Centonze D, Hakansson K, Bernardi G, Greengard P, Fisone G, et al. Loss of bidirectional striatal synaptic plasticity in l-dopa-induced dyskinesia. Nat Neurosci. 2003;6(5):501–6. doi:10.1038/nn1040.

    CAS  PubMed  Google Scholar 

  88. Hallett PJ, Dunah AW, Ravenscroft P, Zhou S, Bezard E, Crossman AR, et al. Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology. 2005;48(4):503–16. doi:10.1016/j.neuropharm.2004.11.008.

    CAS  PubMed  Google Scholar 

  89. Silverdale MA, Kobylecki C, Hallett PJ, Li Q, Dunah AW, Ravenscroft P, et al. Synaptic recruitment of AMPA glutamate receptor subunits in levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate. Synapse. 2010;64(2):177–80. doi:10.1002/syn.20739.

    CAS  PubMed  Google Scholar 

  90. Hurley MJ, Jackson MJ, Smith LA, Rose S, Jenner P. Immunoautoradiographic analysis of NMDA receptor subunits and associated postsynaptic density proteins in the brain of dyskinetic MPTP-treated common marmosets. Eur J Neurosci. 2005;21(12):3240–50. doi:10.1111/j.1460-9568.2005.04169.x.

    CAS  PubMed  Google Scholar 

  91. Gardoni F, Picconi B, Ghiglieri V, Polli F, Bagetta V, Bernardi G, et al. A critical interaction between NR2B and MAGUK in l-dopa induced dyskinesia. J Neurosci. 2006;26(11):2914–22. doi:10.1523/JNEUROSCI.5326-05.2006.

    CAS  PubMed  Google Scholar 

  92. Sgambato-Faure V, Cenci MA. Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson’s disease. Prog Neurobiol. 2012;96(1):69–86. doi:10.1016/j.pneurobio.2011.10.005.

    CAS  PubMed  Google Scholar 

  93. Ahmed I, Bose SK, Pavese N, Ramlackhansingh A, Turkheimer F, Hotton G, et al. Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain J Neurol. 2011;134(Pt 4):979–86. doi:10.1093/brain/awr028.

    Google Scholar 

  94. Robelet S, Melon C, Guillet B, Salin P, Kerkerian-Le Goff L. Chronic l-dopa treatment increases extracellular glutamate levels and GLT1 expression in the basal ganglia in a rat model of Parkinson’s disease. Eur J Neurosci. 2004;20(5):1255–66. doi:10.1111/j.1460-9568.2004.03591.x.

    CAS  PubMed  Google Scholar 

  95. Ouattara B, Gregoire L, Morissette M, Gasparini F, Vranesic I, Bilbe G, et al. Metabotropic glutamate receptor type 5 in levodopa-induced motor complications. Neurobiol Aging. 2011;32(7):1286–95. doi:10.1016/j.neurobiolaging.2009.07.014.

    CAS  PubMed  Google Scholar 

  96. Luginger E, Wenning GK, Bosch S, Poewe W. Beneficial effects of amantadine on l-dopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2000;15(5):873–8.

    CAS  PubMed  Google Scholar 

  97. Snow BJ, Macdonald L, McAuley D, Wallis W. The effect of amantadine on levodopa-induced dyskinesias in Parkinson’s disease: a double-blind, placebo-controlled study. Clin Neuropharmacol. 2000;23(2):82–5.

    CAS  PubMed  Google Scholar 

  98. Metman LV, Del Dotto P, LePoole K, Konitsiotis S, Fang J, Chase TN. Amantadine for levodopa-induced dyskinesias: a 1-year follow-up study. Arch Neurol. 1999;56(11):1383–6.

    CAS  PubMed  Google Scholar 

  99. Wolf E, Seppi K, Katzenschlager R, Hochschorner G, Ransmayr G, Schwingenschuh P, et al. Long-term antidyskinetic efficacy of amantadine in Parkinson’s disease. Mov Disord. 2010;25(10):1357–63. doi:10.1002/mds.23034.

    PubMed  Google Scholar 

  100. Stocchi F, Rascol O, Destee A, Hattori N, Hauser RA, Lang AE, et al. AFQ056 in Parkinson patients with levodopa-induced dyskinesia: 13-week, randomized, dose-finding study. Mov Disord. 2013;28(13):1838–46. doi:10.1002/mds.25561.

    CAS  PubMed  Google Scholar 

  101. Berg D, Godau J, Trenkwalder C, Eggert K, Csoti I, Storch A, et al. AFQ056 treatment of levodopa-induced dyskinesias: results of 2 randomized controlled trials. Mov Disord. 2011;26(7):1243–50. doi:10.1002/mds.23616.

    PubMed  Google Scholar 

  102. Rylander D, Recchia A, Mela F, Dekundy A, Danysz W, Cenci MA. Pharmacological modulation of glutamate transmission in a rat model of l-dopa-induced dyskinesia: effects on motor behavior and striatal nuclear signaling. J Pharmacol Exp Ther. 2009;330(1):227–35. doi:10.1124/jpet.108.150425.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Carta M, Carlsson T, Kirik D, Bjorklund A. Dopamine released from 5-HT terminals is the cause of l-dopa-induced dyskinesia in parkinsonian rats. Brain J Neurol. 2007;130(Pt 7):1819–33. doi:10.1093/brain/awm082.

    Google Scholar 

  104. Carta M, Carlsson T, Munoz A, Kirik D, Bjorklund A. Serotonin-dopamine interaction in the induction and maintenance of l-dopa-induced dyskinesias. Prog Brain Res. 2008;172:465–78. doi:10.1016/S0079-6123(08)00922-9.

    CAS  PubMed  Google Scholar 

  105. Arai R, Karasawa N, Geffard M, Nagatsu I. l-dopa is converted to dopamine in serotonergic fibers of the striatum of the rat: a double-labeling immunofluorescence study. Neurosci Lett. 1995;195(3):195–8.

    CAS  PubMed  Google Scholar 

  106. Arai R, Karasawa N, Geffard M, Nagatsu T, Nagatsu I. Immunohistochemical evidence that central serotonin neurons produce dopamine from exogenous l-dopa in the rat, with reference to the involvement of aromatic l-amino acid decarboxylase. Brain Res. 1994;667(2):295–9.

    CAS  PubMed  Google Scholar 

  107. Lavoie B, Parent A. Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey. J Comp Neurol. 1990;299(1):1–16. doi:10.1002/cne.902990102.

    CAS  PubMed  Google Scholar 

  108. Maeda T, Nagata K, Yoshida Y, Kannari K. Serotonergic hyperinnervation into the dopaminergic denervated striatum compensates for dopamine conversion from exogenously administered l-dopa. Brain Res. 2005;1046(1–2):230–3. doi:10.1016/j.brainres.2005.04.019.

    CAS  PubMed  Google Scholar 

  109. Yamada H, Aimi Y, Nagatsu I, Taki K, Kudo M, Arai R. Immunohistochemical detection of l-dopa-derived dopamine within serotonergic fibers in the striatum and the substantia nigra pars reticulata in Parkinsonian model rats. Neurosci Res. 2007;59(1):1–7. doi:10.1016/j.neures.2007.05.002.

    CAS  PubMed  Google Scholar 

  110. Carta M, Carlsson T, Munoz A, Kirik D, Bjorklund A. Role of serotonin neurons in the induction of levodopa- and graft-induced dyskinesias in Parkinson’s disease. Mov Disord. 2010;25(Suppl 1):S174–9. doi:10.1002/mds.22792.

    PubMed  Google Scholar 

  111. Carta M, Bezard E. Contribution of pre-synaptic mechanisms to l-dopa-induced dyskinesia. Neuroscience. 2011;198:245–51. doi:10.1016/j.neuroscience.2011.07.070.

    CAS  PubMed  Google Scholar 

  112. Lopez A, Munoz A, Guerra MJ, Labandeira-Garcia JL. Mechanisms of the effects of exogenous levodopa on the dopamine-denervated striatum. Neuroscience. 2001;103(3):639–51.

    CAS  PubMed  Google Scholar 

  113. Tanaka H, Kannari K, Maeda T, Tomiyama M, Suda T, Matsunaga M. Role of serotonergic neurons in l-dopa-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. Neuroreport. 1999;10(3):631–4.

    CAS  PubMed  Google Scholar 

  114. Eskow KL, Dupre KB, Barnum CJ, Dickinson SO, Park JY, Bishop C. The role of the dorsal raphe nucleus in the development, expression, and treatment of l-dopa-induced dyskinesia in hemiparkinsonian rats. Synapse. 2009;63(7):610–20. doi:10.1002/syn.20630.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Carlsson T, Carta M, Winkler C, Bjorklund A, Kirik D. Serotonin neuron transplants exacerbate l-dopa-induced dyskinesias in a rat model of Parkinson’s disease. J Neurosci. 2007;27(30):8011–22. doi:10.1523/JNEUROSCI.2079-07.2007.

    CAS  PubMed  Google Scholar 

  116. Lindgren HS, Andersson DR, Lagerkvist S, Nissbrandt H, Cenci MA. l-dopa-induced dopamine efflux in the striatum and the substantia nigra in a rat model of Parkinson’s disease: temporal and quantitative relationship to the expression of dyskinesia. J Neurochem. 2010;112(6):1465–76. doi:10.1111/j.1471-4159.2009.06556.x.

    CAS  PubMed  Google Scholar 

  117. Kannari K, Yamato H, Shen H, Tomiyama M, Suda T, Matsunaga M. Activation of 5-HT(1A) but not 5-HT(1B) receptors attenuates an increase in extracellular dopamine derived from exogenously administered l-dopa in the striatum with nigrostriatal denervation. J Neurochem. 2001;76(5):1346–53.

    CAS  PubMed  Google Scholar 

  118. Munoz A, Carlsson T, Tronci E, Kirik D, Bjorklund A, Carta M. Serotonin neuron-dependent and -independent reduction of dyskinesia by 5-HT1A and 5-HT1B receptor agonists in the rat Parkinson model. Exp Neurol. 2009;219(1):298–307. doi:10.1016/j.expneurol.2009.05.033.

    CAS  PubMed  Google Scholar 

  119. Munoz A, Li Q, Gardoni F, Marcello E, Qin C, Carlsson T, et al. Combined 5-HT1A and 5-HT1B receptor agonists for the treatment of l-dopa-induced dyskinesia. Brain J Neurol. 2008;131(Pt 12):3380–94. doi:10.1093/brain/awn235.

    Google Scholar 

  120. Nahimi A, Holtzermann M, Landau AM, Simonsen M, Jakobsen S, Alstrup AK, et al. Serotonergic modulation of receptor occupancy in rats treated with l-dopa after unilateral 6-OHDA lesioning. J Neurochem. 2012;120(5):806–17. doi:10.1111/j.1471-4159.2011.07598.x.

    CAS  PubMed  Google Scholar 

  121. Navailles S, Bioulac B, Gross C, De Deurwaerdere P. Serotonergic neurons mediate ectopic release of dopamine induced by l-dopa in a rat model of Parkinson’s disease. Neurobiol Dis. 2010;38(1):136–43. doi:10.1016/j.nbd.2010.01.012.

    CAS  PubMed  Google Scholar 

  122. Politis M, Wu K, Loane C, Quinn NP, Brooks DJ, Rehncrona S, et al. Serotonergic neurons mediate dyskinesia side effects in Parkinson’s patients with neural transplants. Sci Transl Med. 2010;2(38):38ra46. doi:10.1126/scitranslmed.3000976.

  123. Politis M, Oertel WH, Wu K, Quinn NP, Pogarell O, Brooks DJ, et al. Graft-induced dyskinesias in Parkinson’s disease: High striatal serotonin/dopamine transporter ratio. Mov Disord. 2011;26(11):1997–2003. doi:10.1002/mds.23743.

    PubMed  Google Scholar 

  124. Hagell P, Piccini P, Bjorklund A, Brundin P, Rehncrona S, Widner H, et al. Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci. 2002;5(7):627–8. doi:10.1038/nn863.

    CAS  PubMed  Google Scholar 

  125. Zeng BY, Iravani MM, Jackson MJ, Rose S, Parent A, Jenner P. Morphological changes in serotoninergic neurites in the striatum and globus pallidus in levodopa primed MPTP treated common marmosets with dyskinesia. Neurobiol Dis. 2010;40(3):599–607. doi:10.1016/j.nbd.2010.08.004.

    CAS  PubMed  Google Scholar 

  126. Rylander D, Parent M, O’Sullivan SS, Dovero S, Lees AJ, Bezard E, et al. Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann Neurol. 2010;68(5):619–28. doi:10.1002/ana.22097.

    CAS  PubMed  Google Scholar 

  127. Guerra MJ, Liste I, Labandeira-Garcia JL. Effects of lesions of the nigrostriatal pathway and of nigral grafts on striatal serotonergic innervation in adult rats. Neuroreport. 1997;8(16):3485–8.

    CAS  PubMed  Google Scholar 

  128. Fornai F, di Poggio AB, Pellegrini A, Ruggieri S, Paparelli A. Noradrenaline in Parkinson’s disease: from disease progression to current therapeutics. Curr Med Chem. 2007;14(22):2330–4.

    CAS  PubMed  Google Scholar 

  129. Grenhoff J, Nisell M, Ferre S, Aston-Jones G, Svensson TH. Noradrenergic modulation of midbrain dopamine cell firing elicited by stimulation of the locus coeruleus in the rat. J Neural Transm Gen Sect. 1993;93(1):11–25.

    CAS  PubMed  Google Scholar 

  130. Bucheler MM, Hadamek K, Hein L. Two alpha(2)-adrenergic receptor subtypes, alpha(2A) and alpha(2C), inhibit transmitter release in the brain of gene-targeted mice. Neuroscience. 2002;109(4):819–26.

    CAS  PubMed  Google Scholar 

  131. Foote SL, Bloom FE, Aston-Jones G. Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev. 1983;63(3):844–914.

    CAS  PubMed  Google Scholar 

  132. Jones BE, Yang TZ. The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J Comp Neurol. 1985;242(1):56–92. doi:10.1002/cne.902420105.

    CAS  PubMed  Google Scholar 

  133. Gaspar P, Stepniewska I, Kaas JH. Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys. J Comp Neurol. 1992;325(1):1–21. doi:10.1002/cne.903250102.

    CAS  PubMed  Google Scholar 

  134. Ordway GA, Jaconetta SM, Halaris AE. Characterization of subtypes of alpha-2 adrenoceptors in the human brain. J Pharmacol Exp Ther. 1993;264(2):967–76.

    CAS  PubMed  Google Scholar 

  135. Uhlen S, Lindblom J, Tiger G, Wikberg JE. Quantification of alpha2A and alpha2C adrenoceptors in the rat striatum and in different regions of the spinal cord. Acta Physiol Scand. 1997;160(4):407–12. doi:10.1046/j.1365-201X.1997.00175.x.

    CAS  PubMed  Google Scholar 

  136. Hill MP, Brotchie JM. The adrenergic receptor agonist, clonidine, potentiates the anti-parkinsonian action of the selective kappa-opioid receptor agonist, enadoline, in the monoamine-depleted rat. Br J Pharmacol. 1999;128(7):1577–85. doi:10.1038/sj.bjp.0702943.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Zhang W, Ordway GA. The alpha2C-adrenoceptor modulates GABA release in mouse striatum. Brain Res Mol Brain Res. 2003;112(1–2):24–32.

    CAS  PubMed  Google Scholar 

  138. Alachkar A, Brotchie JM, Jones OT. Changes in the mRNA levels of alpha2A and alpha2C adrenergic receptors in rat models of Parkinson’s disease and l-dopa-induced dyskinesia. J Mol Neurosci. 2012;46(1):145–52. doi:10.1007/s12031-011-9539-x.

    CAS  PubMed  Google Scholar 

  139. Barnum CJ, Bhide N, Lindenbach D, Surrena MA, Goldenberg AA, Tignor S, et al. Effects of noradrenergic denervation on l-dopa-induced dyskinesia and its treatment by alpha- and beta-adrenergic receptor antagonists in hemiparkinsonian rats. Pharmacol Biochem Behav. 2012;100(3):607–15. doi:10.1016/j.pbb.2011.09.009.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Fulceri F, Biagioni F, Ferrucci M, Lazzeri G, Bartalucci A, Galli V, et al. Abnormal involuntary movements (AIMs) following pulsatile dopaminergic stimulation: severe deterioration and morphological correlates following the loss of locus coeruleus neurons. Brain Res. 2007;1135(1):219–29. doi:10.1016/j.brainres.2006.12.030.

    CAS  PubMed  Google Scholar 

  141. Piccini P, Weeks RA, Brooks DJ. Alterations in opioid receptor binding in Parkinson’s disease patients with levodopa-induced dyskinesias. Ann Neurol. 1997;42(5):720–6. doi:10.1002/ana.410420508.

    CAS  PubMed  Google Scholar 

  142. Cohen RM, Carson RE, Aigner TG, Doudet DJ. Opiate receptor avidity is reduced in non-motor impaired MPTP-lesioned rhesus monkeys. Brain Res. 1998;806(2):292–6.

    CAS  PubMed  Google Scholar 

  143. Aubert I, Guigoni C, Li Q, Dovero S, Bioulac BH, Gross CE, et al. Enhanced preproenkephalin-B-derived opioid transmission in striatum and subthalamic nucleus converges upon globus pallidus internalis in l-3,4-dihydroxyphenylalanine-induced dyskinesia. Biol Psychiatry. 2007;61(7):836–44. doi:10.1016/j.biopsych.2006.06.038.

    CAS  PubMed  Google Scholar 

  144. Gerdeman G, Lovinger DM. CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. J Neurophysiol. 2001;85(1):468–71.

    CAS  PubMed  Google Scholar 

  145. Mailleux P, Parmentier M, Vanderhaeghen JJ. Distribution of cannabinoid receptor messenger RNA in the human brain: an in situ hybridization histochemistry with oligonucleotides. Neurosci Lett. 1992;143(1–2):200–4.

    CAS  PubMed  Google Scholar 

  146. Wang Y, Zhang QJ, Wang HS, Wang T, Liu J. Genome-wide microarray analysis identifies a potential role for striatal retrograde endocannabinoid signaling in the pathogenesis of experimental l-dopa-induced dyskinesia. Synapse. 2014;. doi:10.1002/syn.21740.

    Google Scholar 

  147. Ferre S, Popoli P, Gimenez-Llort L, Rimondini R, Muller CE, Stromberg I, et al. Adenosine/dopamine interaction: implications for the treatment of Parkinson’s disease. Parkinsonism Relat Disord. 2001;7(3):235–41.

    PubMed  Google Scholar 

  148. Kase H. New aspects of physiological and pathophysiological functions of adenosine A2A receptor in basal ganglia. Biosci Biotechnol Biochem. 2001;65(7):1447–57.

    CAS  PubMed  Google Scholar 

  149. Calon F, Dridi M, Hornykiewicz O, Bedard PJ, Rajput AH, Di Paolo T. Increased adenosine A2A receptors in the brain of Parkinson’s disease patients with dyskinesias. Brain J Neurol. 2004;127(Pt 5):1075–84. doi:10.1093/brain/awh128.

    Google Scholar 

  150. Xiao D, Bastia E, Xu YH, Benn CL, Cha JH, Peterson TS, et al. Forebrain adenosine A2A receptors contribute to l-3,4-dihydroxyphenylalanine-induced dyskinesia in hemiparkinsonian mice. J Neurosci. 2006;26(52):13548–55. doi:10.1523/JNEUROSCI.3554-06.2006.

    CAS  PubMed  Google Scholar 

  151. Koranda JL, Cone JJ, McGehee DS, Roitman MF, Beeler JA, Zhuang X. Nicotinic receptors regulate the dynamic range of dopamine release in vivo. J Neurophysiol. 2014;111(1):103–11. doi:10.1152/jn.00269.2013.

    CAS  PubMed  Google Scholar 

  152. Perez XA, O’Leary KT, Parameswaran N, McIntosh JM, Quik M. Prominent role of alpha3/alpha6beta2* nAChRs in regulating evoked dopamine release in primate putamen: effect of long-term nicotine treatment. Mol Pharmacol. 2009;75(4):938–46. doi:10.1124/mol.108.053801.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Garcao P, Szabo EC, Wopereis S, Castro AA, Tome AR, Prediger RD, et al. Functional interaction between pre-synaptic alpha6beta2-containing nicotinic and adenosine A2A receptors in the control of dopamine release in the rat striatum. Br J Pharmacol. 2013;169(7):1600–11. doi:10.1111/bph.12234.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Moreno E, Hoffmann H, Gonzalez-Sepulveda M, Navarro G, Casado V, Cortes A, et al. Dopamine D1-histamine H3 receptor heteromers provide a selective link to MAPK signaling in GABAergic neurons of the direct striatal pathway. J Biol Chem. 2011;286(7):5846–54. doi:10.1074/jbc.M110.161489.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Prast H, Tran MH, Fischer H, Kraus M, Lamberti C, Grass K, et al. Histaminergic neurons modulate acetylcholine release in the ventral striatum: role of H3 histamine receptors. Naunyn Schmiedebergs Arch Pharmacol. 1999;360(5):558–64.

    CAS  PubMed  Google Scholar 

  156. Molina-Hernandez A, Nunez A, Arias-Montano JA. Histamine H3-receptor activation inhibits dopamine synthesis in rat striatum. Neuroreport. 2000;11(1):163–6.

    CAS  PubMed  Google Scholar 

  157. Gomez-Ramirez J, Johnston TH, Visanji NP, Fox SH, Brotchie JM. Histamine H3 receptor agonists reduce l-dopa-induced chorea, but not dystonia, in the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov Disord. 2006;21(6):839–46. doi:10.1002/mds.20828.

    PubMed  Google Scholar 

  158. Lindgren HS, Ohlin KE, Cenci MA. Differential involvement of D1 and D2 dopamine receptors in l-dopa-induced angiogenic activity in a rat model of Parkinson’s disease. Neuropsychopharmacology. 2009;34(12):2477–88. doi:10.1038/npp.2009.74.

    CAS  PubMed  Google Scholar 

  159. Westin JE, Lindgren HS, Gardi J, Nyengaard JR, Brundin P, Mohapel P, et al. Endothelial proliferation and increased blood-brain barrier permeability in the basal ganglia in a rat model of 3,4-dihydroxyphenyl-l-alanine-induced dyskinesia. J Neurosci. 2006;26(37):9448–61. doi:10.1523/JNEUROSCI.0944-06.2006.

    CAS  PubMed  Google Scholar 

  160. Ohlin KE, Francardo V, Lindgren HS, Sillivan SE, O’Sullivan SS, Luksik AS, et al. Vascular endothelial growth factor is upregulated by l-dopa in the parkinsonian brain: implications for the development of dyskinesia. Brain J Neurol. 2011;134(Pt 8):2339–57. doi:10.1093/brain/awr165.

    Google Scholar 

  161. Lieu CA, Subramanian T. The interhemispheric connections of the striatum: Implications for Parkinson’s disease and drug-induced dyskinesias. Brain Res Bull. 2012;87(1):1–9. doi:10.1016/j.brainresbull.2011.09.013.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Lieu CA, Deogaonkar M, Bakay RA, Subramanian T. Dyskinesias do not develop after chronic intermittent levodopa therapy in clinically hemiparkinsonian rhesus monkeys. Parkinsonism Relat Disord. 2011;17(1):34–9. doi:10.1016/j.parkreldis.2010.10.010.

    PubMed Central  PubMed  Google Scholar 

  163. Fahn S. A new look at levodopa based on the ELLDOPA study. J Neural Transm Suppl. 2006;70:419–26.

    CAS  PubMed  Google Scholar 

  164. Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 2004;351(24):2498–508. doi:10.1056/NEJMoa033447.

    CAS  PubMed  Google Scholar 

  165. Sage JI, Mark MH. Comparison of controlled-release Sinemet (CR4) and standard Sinemet (25 mg/100 mg) in advanced Parkinson’s disease: a double-blind, crossover study. Clin Neuropharmacol. 1988;11(2):174–9.

    CAS  PubMed  Google Scholar 

  166. Ahlskog JE, Muenter MD, McManis PG, Bell GN, Bailey PA. Controlled-release Sinemet (CR-4): a double-blind crossover study in patients with fluctuating Parkinson’s disease. Mayo Clin Proc. 1988;63(9):876–86.

    CAS  PubMed  Google Scholar 

  167. Hutton JT, Morris JL, Bush DF, Smith ME, Liss CL, Reines S. Multicenter controlled study of Sinemet CR vs Sinemet (25/100) in advanced Parkinson’s disease. Neurology. 1989;39(11 Suppl 2):67–72. (Discussion 3).

  168. Jankovic J, Schwartz K, Vander Linden C. Comparison of Sinemet CR4 and standard Sinemet: double blind and long-term open trial in parkinsonian patients with fluctuations. Mov Disord. 1989;4(4):303–9. doi:10.1002/mds.870040403.

    CAS  PubMed  Google Scholar 

  169. Lieberman A, Gopinathan G, Miller E, Neophytides A, Baumann G, Chin L. Randomized double-blind cross-over study of Sinemet-controlled release (CR4 50/200) versus Sinemet 25/100 in Parkinson’s disease. Eur Neurol. 1990;30(2):75–8.

    CAS  PubMed  Google Scholar 

  170. Wolters EC, Horstink MW, Roos RA, Jansen EN. Clinical efficacy of Sinemet CR 50/200 versus Sinemet 25/100 in patients with fluctuating Parkinson’s disease. An open, and a double-blind, double-dummy, multicenter treatment evaluation. The Dutch Sinemet CR Study Group. Clin Neurol Neurosurg. 1992;94(3):205–11.

    CAS  PubMed  Google Scholar 

  171. Dupont E, Andersen A, Boas J, Boisen E, Borgmann R, Helgetveit AC, et al. Sustained-release Madopar HBS compared with standard Madopar in the long-term treatment of de novo parkinsonian patients. Acta Neurol Scand. 1996;93(1):14–20.

    CAS  PubMed  Google Scholar 

  172. Block G, Liss C, Reines S, Irr J, Nibbelink D. Comparison of immediate-release and controlled release carbidopa/levodopa in Parkinson’s disease. A multicenter 5-year study. The CR First Study Group. Eur Neurol. 1997;37(1):23–7.

    CAS  PubMed  Google Scholar 

  173. Koller WC, Hutton JT, Tolosa E, Capilldeo R. Immediate-release and controlled-release carbidopa/levodopa in PD: a 5-year randomized multicenter study. Carbidopa/Levodopa Study Group. Neurology. 1999;53(5):1012–9.

    CAS  PubMed  Google Scholar 

  174. Stocchi F, Fabbri L, Vecsei L, Krygowska-Wajs A, Monici Preti PA, Ruggieri SA. Clinical efficacy of a single afternoon dose of effervescent levodopa-carbidopa preparation (CHF 1512) in fluctuating Parkinson disease. Clin Neuropharmacol. 2007;30(1):18–24. doi:10.1097/01.WNF.0000236762.77913.C6.

  175. Stocchi F, Zappia M, Dall’Armi V, Kulisevsky J, Lamberti P, Obeso JA. Melevodopa/carbidopa effervescent formulation in the treatment of motor fluctuations in advanced Parkinson’s disease. Mov Disord. 2010;25(12):1881–7. doi:10.1002/mds.23206.

    PubMed  Google Scholar 

  176. Djaldetti R, Inzelberg R, Giladi N, Korczyn AD, Peretz-Aharon Y, Rabey MJ, et al. Oral solution of levodopa ethylester for treatment of response fluctuations in patients with advanced Parkinson’s disease. Mov Disord. 2002;17(2):297–302.

    PubMed  Google Scholar 

  177. Metman LV, Hoff J, Mouradian MM, Chase TN. Fluctuations in plasma levodopa and motor responses with liquid and tablet levodopa/carbidopa. Mov Disord. 1994;9(4):463–5. doi:10.1002/mds.870090416.

    CAS  PubMed  Google Scholar 

  178. Kurth MC, Tetrud JW, Tanner CM, Irwin I, Stebbins GT, Goetz CG, et al. Double-blind, placebo-controlled, crossover study of duodenal infusion of levodopa/carbidopa in Parkinson’s disease patients with ‘on-off’ fluctuations. Neurology. 1993;43(9):1698–703.

    CAS  PubMed  Google Scholar 

  179. Antonini A, Odin P. Pros and cons of apomorphine and l-dopa continuous infusion in advanced Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(Suppl 4):S97–100. doi:10.1016/S1353-8020(09)70844-2.

    PubMed  Google Scholar 

  180. Nilsson D, Nyholm D, Aquilonius SM. Duodenal levodopa infusion in Parkinson’s disease—long-term experience. Acta Neurol Scand. 2001;104(6):343–8.

    CAS  PubMed  Google Scholar 

  181. Eggert K, Schrader C, Hahn M, Stamelou M, Russmann A, Dengler R, et al. Continuous jejunal levodopa infusion in patients with advanced parkinson disease: practical aspects and outcome of motor and non-motor complications. Clin Neuropharmacol. 2008;31(3):151–66. doi:10.1097/wnf.0b013e31814b113e.

    CAS  PubMed  Google Scholar 

  182. Manson AJ, Turner K, Lees AJ. Apomorphine monotherapy in the treatment of refractory motor complications of Parkinson’s disease: long-term follow-up study of 64 patients. Mov Disord. 2002;17(6):1235–41. doi:10.1002/mds.10281.

    PubMed  Google Scholar 

  183. Katzenschlager R, Hughes A, Evans A, Manson AJ, Hoffman M, Swinn L, et al. Continuous subcutaneous apomorphine therapy improves dyskinesias in Parkinson’s disease: a prospective study using single-dose challenges. Mov Disord. 2005;20(2):151–7. doi:10.1002/mds.20276.

    PubMed  Google Scholar 

  184. Garcia Ruiz PJ, Sesar Ignacio A, Ares Pensado B, Castro Garcia A, Alonso Frech F, Alvarez Lopez M, et al. Efficacy of long-term continuous subcutaneous apomorphine infusion in advanced Parkinson’s disease with motor fluctuations: a multicenter study. Mov Disord. 2008;23(8):1130–6. doi:10.1002/mds.22063.

  185. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med. 2000;342(20):1484–91. doi:10.1056/NEJM200005183422004.

    CAS  PubMed  Google Scholar 

  186. Watts RL, Lyons KE, Pahwa R, Sethi K, Stern M, Hauser RA, et al. Onset of dyskinesia with adjunct ropinirole prolonged-release or additional levodopa in early Parkinson’s disease. Mov Disord. 2010;25(7):858–66. doi:10.1002/mds.22890.

    PubMed  Google Scholar 

  187. Bracco F, Battaglia A, Chouza C, Dupont E, Gershanik O, Marti Masso JF, et al. The long-acting dopamine receptor agonist cabergoline in early Parkinson’s disease: final results of a 5-year, double-blind, levodopa-controlled study. CNS Drugs. 2004;18(11):733–46.

  188. Fox SH, Katzenschlager R, Lim SY, Ravina B, Seppi K, Coelho M, et al. The movement disorder society evidence-based medicine review update: treatments for the motor symptoms of Parkinson’s disease. Mov Disord. 2011;26(Suppl 3):S2–41. doi:10.1002/mds.23829.

    PubMed  Google Scholar 

  189. Stowe R, Ives N, Clarke CE, Handley K, Furmston A, Deane K, et al. Meta-analysis of the comparative efficacy and safety of adjuvant treatment to levodopa in later Parkinson’s disease. Mov Disord. 2011;26(4):587–98. doi:10.1002/mds.23517.

    PubMed  Google Scholar 

  190. Tayarani-Binazir K, Jackson MJ, Rose S, McCreary AC, Jenner P. The partial dopamine agonist pardoprunox (SLV308) administered in combination with l-dopa improves efficacy and decreases dyskinesia in MPTP treated common marmosets. Exp Neurol. 2010;226(2):320–7. doi:10.1016/j.expneurol.2010.09.007.

    CAS  PubMed  Google Scholar 

  191. Johnston LC, Jackson MJ, Rose S, McCreary AC, Jenner P. Pardoprunox reverses motor deficits but induces only mild dyskinesia in MPTP-treated common marmosets. Mov Disord. 2010;25(13):2059–66. doi:10.1002/mds.23249.

    PubMed  Google Scholar 

  192. Bronzova J, Sampaio C, Hauser RA, Lang AE, Rascol O, Theeuwes A, et al. Double-blind study of pardoprunox, a new partial dopamine agonist, in early Parkinson’s disease. Mov Disord. 2010;25(6):738–46. doi:10.1002/mds.22948.

    PubMed  Google Scholar 

  193. Sampaio C, Bronzova J, Hauser RA, Lang AE, Rascol O, van de Witte SV, et al. Pardoprunox in early Parkinson’s disease: results from 2 large, randomized double-blind trials. Mov Disord. 2011;26(8):1464–76. doi:10.1002/mds.23590.

    PubMed  Google Scholar 

  194. Rascol O, Bronzova J, Hauser RA, Lang AE, Sampaio C, Theeuwes A, et al. Pardoprunox as adjunct therapy to levodopa in patients with Parkinson’s disease experiencing motor fluctuations: results of a double-blind, randomized, placebo-controlled, trial. Parkinsonism Relat Disord. 2012;18(4):370–6. doi:10.1016/j.parkreldis.2011.12.006.

    CAS  PubMed  Google Scholar 

  195. Stocchi F, Ruggieri S, Vacca L, Olanow CW. Prospective randomized trial of lisuride infusion versus oral levodopa in patients with Parkinson’s disease. Brain J Neurol. 2002;125(Pt 9):2058–66.

    Google Scholar 

  196. Parkinson_Study_Group. A randomized placebo-controlled trial of rasagiline in levodopa-treated patients with Parkinson disease and motor fluctuations: the PRESTO study. Arch Neurol. 2005;62(2):241–8. doi:10.1001/archneur.62.2.241.

  197. Shoulson I, Oakes D, Fahn S, Lang A, Langston JW, LeWitt P, et al. Impact of sustained deprenyl (selegiline) in levodopa-treated Parkinson’s disease: a randomized placebo-controlled extension of the deprenyl and tocopherol antioxidative therapy of parkinsonism trial. Ann Neurol. 2002;51(5):604–12. doi:10.1002/ana.10191.

    CAS  PubMed  Google Scholar 

  198. Mahmood I. Clinical pharmacokinetics and pharmacodynamics of selegiline. An update. Clin Pharmacokinet. 1997;33(2):91–102. doi:10.2165/00003088-199733020-00002.

    CAS  PubMed  Google Scholar 

  199. Lew MF. Selegiline orally disintegrating tablets for the treatment of Parkinson’s disease. Expert Rev Neurother. 2005;5(6):705–12. doi:10.1586/14737175.5.6.705.

    CAS  PubMed  Google Scholar 

  200. Waters CH, Sethi KD, Hauser RA, Molho E, Bertoni JM. Zydis selegiline reduces off time in Parkinson’s disease patients with motor fluctuations: a 3-month, randomized, placebo-controlled study. Mov Disord. 2004;19(4):426–32. doi:10.1002/mds.20036.

    PubMed  Google Scholar 

  201. Ondo WG, Sethi KD, Kricorian G. Selegiline orally disintegrating tablets in patients with Parkinson disease and “wearing off” symptoms. Clin Neuropharmacol. 2007;30(5):295–300. doi:10.1097/WNF.0b013e3180616570.

    CAS  PubMed  Google Scholar 

  202. Talati R, Reinhart K, Baker W, White CM, Coleman CI. Pharmacologic treatment of advanced Parkinson’s disease: a meta-analysis of COMT inhibitors and MAO-B inhibitors. Parkinsonism Relat Disord. 2009;15(7):500–5. doi:10.1016/j.parkreldis.2008.12.007.

    PubMed  Google Scholar 

  203. Gregoire L, Morin N, Ouattara B, Gasparini F, Bilbe G, Johns D, et al. The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist, in l-dopa-treated parkinsonian monkeys. Parkinsonism Relat Disord. 2011;17(4):270–6. doi:10.1016/j.parkreldis.2011.01.008.

    PubMed  Google Scholar 

  204. Schapira AH, Stocchi F, Borgohain R, Onofrj M, Bhatt M, Lorenzana P, et al. Long-term efficacy and safety of safinamide as add-on therapy in early Parkinson’s disease. Eur J Neurol. 2013;20(2):271–80. doi:10.1111/j.1468-1331.2012.03840.x.

    CAS  PubMed  Google Scholar 

  205. Stocchi F, Borgohain R, Onofrj M, Schapira AH, Bhatt M, Lucini V, et al. A randomized, double-blind, placebo-controlled trial of safinamide as add-on therapy in early Parkinson’s disease patients. Mov Disord. 2012;27(1):106–12. doi:10.1002/mds.23954.

    CAS  PubMed  Google Scholar 

  206. Ferreira JJ, Katzenschlager R, Bloem BR, Bonuccelli U, Burn D, Deuschl G, et al. Summary of the recommendations of the EFNS/MDS-ES review on therapeutic management of Parkinson’s disease. Eur J Neurol. 2013;20(1):5–15. doi:10.1111/j.1468-1331.2012.03866.x.

    CAS  PubMed  Google Scholar 

  207. Verhagen Metman L, Del Dotto P, van den Munckhof P, Fang J, Mouradian MM, Chase TN. Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson’s disease. Neurology. 1998;50(5):1323–6.

  208. Del Dotto P, Pavese N, Gambaccini G, Bernardini S, Metman LV, Chase TN, et al. Intravenous amantadine improves levadopa-induced dyskinesias: an acute double-blind placebo-controlled study. Mov Disord. 2001;16(3):515–20.

    PubMed  Google Scholar 

  209. da Silva-Junior FP, Braga-Neto P, Sueli Monte F, de Bruin VM. Amantadine reduces the duration of levodopa-induced dyskinesia: a randomized, double-blind, placebo-controlled study. Parkinsonism Relat Disord. 2005;11(7):449–52. doi:10.1016/j.parkreldis.2005.05.008.

  210. Sawada H, Oeda T, Kuno S, Nomoto M, Yamamoto K, Yamamoto M, et al. Amantadine for dyskinesias in Parkinson’s disease: a randomized controlled trial. PLoS One. 2010;5(12):e15298. doi:10.1371/journal.pone.0015298.

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Thomas A, Iacono D, Luciano AL, Armellino K, Di Iorio A, Onofrj M. Duration of amantadine benefit on dyskinesia of severe Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2004;75(1):141–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  212. Ory-Magne F, Corvol JC, Azulay JP, Bonnet AM, Brefel-Courbon C, Damier P, et al. Withdrawing amantadine in dyskinetic patients with Parkinson disease: the AMANDYSK trial. Neurology. 2014;82(4):300–7. doi:10.1212/WNL.0000000000000050.

    CAS  PubMed  Google Scholar 

  213. Hely MA, Morris JG, Reid WG, Trafficante R. Sydney Multicenter Study of Parkinson’s disease: non-l-dopa-responsive problems dominate at 15 years. Mov Disord. 2005;20(2):190–9. doi:10.1002/mds.20324.

    PubMed  Google Scholar 

  214. Rascol O, Brooks DJ, Melamed E, Oertel W, Poewe W, Stocchi F, et al. Rasagiline as an adjunct to levodopa in patients with Parkinson’s disease and motor fluctuations (LARGO, lasting effect in adjunct therapy with rasagiline given once daily, study): a randomised, double-blind, parallel-group trial. Lancet. 2005;365(9463):947–54. doi:10.1016/S0140-6736(05)71083-7.

    CAS  PubMed  Google Scholar 

  215. Factor SA, Molho ES, Brown DL. Acute delirium after withdrawal of amantadine in Parkinson’s disease. Neurology. 1998;50(5):1456–8.

    CAS  PubMed  Google Scholar 

  216. Ossola B, Schendzielorz N, Chen SH, Bird GS, Tuominen RK, Mannisto PT, et al. Amantadine protects dopamine neurons by a dual action: reducing activation of microglia and inducing expression of GDNF in astroglia [corrected]. Neuropharmacology. 2011;61(4):574–82. doi:10.1016/j.neuropharm.2011.04.030.

    CAS  PubMed Central  PubMed  Google Scholar 

  217. Inzelberg R, Bonuccelli U, Schechtman E, Miniowich A, Strugatsky R, Ceravolo R, et al. Association between amantadine and the onset of dementia in Parkinson’s disease. Mov Disord. 2006;21(9):1375–9. doi:10.1002/mds.20968.

    PubMed  Google Scholar 

  218. Jahangirvand A, Rajput A. Early use of amantadine to prevent or delay onset of levodopa-induced dyskinesia in Parkinson’s disease. Mov Disord. 2013;28(Suppl 1):S207.

    Google Scholar 

  219. Pahwa RTC, Hauser RA. Randomized trial of extended release amantadine in Parkinson’s disease patients with l-dopa-induced dyskinesia (EASED study). Mov Disord. 2013;28(Suppl 1):S158.

    Google Scholar 

  220. Hanagasi HA, Kaptanoglu G, Sahin HA, Emre M. The use of NMDA antagonist memantine in drug-resistant dyskinesias resulting from l-dopa. Mov Disord. 2000;15(5):1016–7.

    CAS  PubMed  Google Scholar 

  221. Varanese S, Howard J, Di Rocco A. NMDA antagonist memantine improves levodopa-induced dyskinesias and “on-off” phenomena in Parkinson’s disease. Mov Disord. 2010;25(4):508–10. doi:10.1002/mds.22917.

    PubMed  Google Scholar 

  222. Moreau C, Delval A, Tiffreau V, Defebvre L, Dujardin K, Duhamel A, et al. Memantine for axial signs in Parkinson’s disease: a randomised, double-blind, placebo-controlled pilot study. J Neurol Neurosurg Psychiatry. 2013;84(5):552–5. doi:10.1136/jnnp-2012-303182.

    PubMed Central  PubMed  Google Scholar 

  223. Merello M, Nouzeilles MI, Cammarota A, Leiguarda R. Effect of memantine (NMDA antagonist) on Parkinson’s disease: a double-blind crossover randomized study. Clin Neuropharmacol. 1999;22(5):273–6.

    CAS  PubMed  Google Scholar 

  224. Emre M, Tsolaki M, Bonuccelli U, Destee A, Tolosa E, Kutzelnigg A, et al. Memantine for patients with Parkinson’s disease dementia or dementia with Lewy bodies: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9(10):969–77. doi:10.1016/S1474-4422(10)70194-0.

    CAS  PubMed  Google Scholar 

  225. Verhagen Metman L, Del Dotto P, Natte R, van den Munckhof P, Chase TN. Dextromethorphan improves levodopa-induced dyskinesias in Parkinson’s disease. Neurology. 1998;51(1):203–6.

  226. Braz CA, Borges V, Ferraz HB. Effect of riluzole on dyskinesia and duration of the on state in Parkinson disease patients: a double-blind, placebo-controlled pilot study. Clin Neuropharmacol. 2004;27(1):25–9.

    CAS  PubMed  Google Scholar 

  227. Wessell RH, Ahmed SM, Menniti FS, Dunbar GL, Chase TN, Oh JD. NR2B selective NMDA receptor antagonist CP-101,606 prevents levodopa-induced motor response alterations in hemi-parkinsonian rats. Neuropharmacology. 2004;47(2):184–94. doi:10.1016/j.neuropharm.2004.03.011.

    CAS  PubMed  Google Scholar 

  228. Morissette M, Dridi M, Calon F, Hadj Tahar A, Meltzer LT, Bedard PJ, et al. Prevention of levodopa-induced dyskinesias by a selective NR1A/2B N-methyl-d-aspartate receptor antagonist in parkinsonian monkeys: implication of preproenkephalin. Mov Disord. 2006;21(1):9–17. doi:10.1002/mds.20654.

  229. Tamim MK, Samadi P, Morissette M, Gregoire L, Ouattara B, Levesque D, et al. Effect of non-dopaminergic drug treatment on Levodopa induced dyskinesias in MPTP monkeys: common implication of striatal neuropeptides. Neuropharmacology. 2010;58(1):286–96. doi:10.1016/j.neuropharm.2009.06.030.

    CAS  PubMed  Google Scholar 

  230. Loftis JM, Janowsky A. The N-methyl-d-aspartate receptor subunit NR2B: localization, functional properties, regulation, and clinical implications. Pharmacol Ther. 2003;97(1):55–85.

    CAS  PubMed  Google Scholar 

  231. Nutt JG, Gunzler SA, Kirchhoff T, Hogarth P, Weaver JL, Krams M, et al. Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and parkinsonism. Mov Disord. 2008;23(13):1860–6. doi:10.1002/mds.22169.

    PubMed Central  PubMed  Google Scholar 

  232. Duty S. Targeting glutamate receptors to tackle the pathogenesis, clinical symptoms and levodopa-induced dyskinesia associated with Parkinson’s disease. CNS Drugs. 2012;26(12):1017–32. doi:10.1007/s40263-012-0016-z.

    CAS  PubMed  Google Scholar 

  233. Samadi P, Gregoire L, Morissette M, Calon F, Hadj Tahar A, Dridi M, et al. mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiol Aging. 2008;29(7):1040–51. doi:10.1016/j.neurobiolaging.2007.02.005.

  234. Mela F, Marti M, Dekundy A, Danysz W, Morari M, Cenci MA. Antagonism of metabotropic glutamate receptor type 5 attenuates l-dopa-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson’s disease. J Neurochem. 2007;101(2):483–97. doi:10.1111/j.1471-4159.2007.04456.x.

    CAS  PubMed  Google Scholar 

  235. Morin N, Gregoire L, Gomez-Mancilla B, Gasparini F, Di Paolo T. Effect of the metabotropic glutamate receptor type 5 antagonists MPEP and MTEP in parkinsonian monkeys. Neuropharmacology. 2010;58(7):981–6. doi:10.1016/j.neuropharm.2009.12.024.

    CAS  PubMed  Google Scholar 

  236. Johnston TH, Fox SH, McIldowie MJ, Piggott MJ, Brotchie JM. Reduction of l-dopa-induced dyskinesia by the selective metabotropic glutamate receptor 5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Pharmacol Exp Ther. 2010;333(3):865–73. doi:10.1124/jpet.110.166629.

    CAS  PubMed  Google Scholar 

  237. Tison F DF, Christophe J. Safety, tolerability and anti-dyskinetic efficacy of dipraglurant, a novel mGluR5 negative allosteric modulator (NAM) in Parkinson’s disease (PD) patients with l-dopa-induced dyskinesia. Poster presented at: 65th American Academy of Neurology Annual Meeting, San Diego; 2013.

  238. Konitsiotis S, Blanchet PJ, Verhagen L, Lamers E, Chase TN. AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology. 2000;54(8):1589–95.

    CAS  PubMed  Google Scholar 

  239. Klockgether T, Turski L, Honore T, Zhang ZM, Gash DM, Kurlan R, et al. The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys. Ann Neurol. 1991;30(5):717–23. doi:10.1002/ana.410300513.

    CAS  PubMed  Google Scholar 

  240. Marin C, Jimenez A, Bonastre M, Vila M, Agid Y, Hirsch EC, et al. LY293558, an AMPA glutamate receptor antagonist, prevents and reverses levodopa-induced motor alterations in parkinsonian rats. Synapse. 2001;42(1):40–7. doi:10.1002/syn.1097.

    CAS  PubMed  Google Scholar 

  241. Lees A, Fahn S, Eggert KM, Jankovic J, Lang A, Micheli F, et al. Perampanel, an AMPA antagonist, found to have no benefit in reducing “off” time in Parkinson’s disease. Mov Disord. 2012;27(2):284–8. doi:10.1002/mds.23983.

    CAS  PubMed  Google Scholar 

  242. Rascol O, Barone P, Behari M, Emre M, Giladi N, Olanow CW, et al. Perampanel in Parkinson disease fluctuations: a double-blind randomized trial with placebo and entacapone. Clin Neuropharmacol. 2012;35(1):15–20. doi:10.1097/WNF.0b013e318241520b.

    CAS  PubMed  Google Scholar 

  243. Calabresi P, Di Filippo M, Ghiglieri V, Tambasco N, Picconi B. Levodopa-induced dyskinesias in patients with Parkinson’s disease: filling the bench-to-bedside gap. Lancet Neurol. 2010;9(11):1106–17. doi:10.1016/S1474-4422(10)70218-0.

    CAS  PubMed  Google Scholar 

  244. Kobylecki C, Cenci MA, Crossman AR, Ravenscroft P. Calcium-permeable AMPA receptors are involved in the induction and expression of l-dopa-induced dyskinesia in Parkinson’s disease. J Neurochem. 2010;114(2):499–511. doi:10.1111/j.1471-4159.2010.06776.x.

    CAS  PubMed  Google Scholar 

  245. Price PA, Parkes JD, Marsden CD. Sodium valproate in the treatment of levodopa-induced dyskinesia. J Neurol Neurosurg Psychiatry. 1978;41(8):702–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  246. Van Blercom N, Lasa A, Verger K, Masramon X, Sastre VM, Linazasoro G. Effects of gabapentin on the motor response to levodopa: a double-blind, placebo-controlled, crossover study in patients with complicated Parkinson disease. Clin Neuropharmacol. 2004;27(3):124–8.

    PubMed  Google Scholar 

  247. Murata M, Hasegawa K, Kanazawa I. Zonisamide improves motor function in Parkinson disease: a randomized, double-blind study. Neurology. 2007;68(1):45–50. doi:10.1212/01.wnl.0000250236.75053.16.

    CAS  PubMed  Google Scholar 

  248. Kobylecki C, Burn DJ, Kass-Iliyya L, Kellett MW, Crossman AR, Silverdale MA. Randomized clinical trial of topiramate for levodopa-induced dyskinesia in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(4):452–5. doi:10.1016/j.parkreldis.2014.01.016.

    PubMed  Google Scholar 

  249. Stathis P, Konitsiotis S, Tagaris G, Peterson D. Levetiracetam for the management of levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2011;26(2):264–70. doi:10.1002/mds.23355.

    CAS  PubMed  Google Scholar 

  250. Wong KK, Alty JE, Goy AG, Raghav S, Reutens DC, Kempster PA. A randomized, double-blind, placebo-controlled trial of levetiracetam for dyskinesia in Parkinson’s disease. Mov Disord. 2011;26(8):1552–5. doi:10.1002/mds.23687.

    PubMed  Google Scholar 

  251. Wolz M, Lohle M, Strecker K, Schwanebeck U, Schneider C, Reichmann H, et al. Levetiracetam for levodopa-induced dyskinesia in Parkinson’s disease: a randomized, double-blind, placebo-controlled trial. J Neural Transm. 2010;117(11):1279–86. doi:10.1007/s00702-010-0472-x.

    CAS  PubMed  Google Scholar 

  252. Nevalainen N, Af Bjerken S, Lundblad M, Gerhardt GA, Stromberg I. Dopamine release from serotonergic nerve fibers is reduced in l-dopa-induced dyskinesia. J Neurochem. 2011;118(1):12–23. doi:10.1111/j.1471-4159.2011.07292.x.

  253. Dupre KB, Ostock CY, Eskow Jaunarajs KL, Button T, Savage LM, Wolf W, et al. Local modulation of striatal glutamate efflux by serotonin 1A receptor stimulation in dyskinetic, hemiparkinsonian rats. Exp Neurol. 2011;229(2):288–99. doi:10.1016/j.expneurol.2011.02.012.

  254. Olanow CW, Damier P, Goetz CG, Mueller T, Nutt J, Rascol O, et al. Multicenter, open-label, trial of sarizotan in Parkinson disease patients with levodopa-induced dyskinesias (the SPLENDID Study). Clin Neuropharmacol. 2004;27(2):58–62.

    CAS  PubMed  Google Scholar 

  255. Kannari K, Kurahashi K, Tomiyama M, Maeda T, Arai A, Baba M, et al. Tandospirone citrate, a selective 5-HT1A agonist, alleviates l-dopa-induced dyskinesia in patients with Parkinson’s disease. No To Shinkei. 2002;54(2):133–7.

    PubMed  Google Scholar 

  256. Rascol ODP, Goetz CG. A large phase III study to evaluate the safety and efficacy of sarizotan in the treatment of l-dopa-induced dyskinesia associated with Parkinson’s disease: the Paddy-1 study. Mov Disord. 2006;21(Suppl 15):S492–3.

    Google Scholar 

  257. Müller TOC, Nutt J. The PADDY-2 study: the evaluation of sarizotan for treatment-associated dyskinesia in Parkinson’s disease patients. Mov Disord. 2006;21(Suppl 15):S591.

    Google Scholar 

  258. Goetz CG, Damier P, Hicking C, Laska E, Muller T, Olanow CW, et al. Sarizotan as a treatment for dyskinesias in Parkinson’s disease: a double-blind placebo-controlled trial. Mov Disord. 2007;22(2):179–86. doi:10.1002/mds.21226.

    PubMed  Google Scholar 

  259. Tani Y, Ogata A, Koyama M, Inoue T. Effects of piclozotan (SUN N4057), a partial serotonin 1A receptor agonist, on motor complications induced by repeated administration of levodopa in parkinsonian rats. Eur J Pharmacol. 2010;649(1–3):218–23. doi:10.1016/j.ejphar.2010.09.013.

    CAS  PubMed  Google Scholar 

  260. Bezard E, Tronci E, Pioli EY, Li Q, Porras G, Bjorklund A, et al. Study of the antidyskinetic effect of eltoprazine in animal models of levodopa-induced dyskinesia. Mov Disord. 2013;28(8):1088–96. doi:10.1002/mds.25366.

    CAS  PubMed  Google Scholar 

  261. Visanji NP, Gomez-Ramirez J, Johnston TH, Pires D, Voon V, Brotchie JM, et al. Pharmacological characterization of psychosis-like behavior in the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov Disord. 2006;21(11):1879–91. doi:10.1002/mds.21073.

    PubMed  Google Scholar 

  262. Reddy S, Factor SA, Molho ES, Feustel PJ. The effect of quetiapine on psychosis and motor function in parkinsonian patients with and without dementia. Mov Disord. 2002;17(4):676–81. doi:10.1002/mds.10176.

    PubMed  Google Scholar 

  263. Katzenschlager R, Manson AJ, Evans A, Watt H, Lees AJ. Low dose quetiapine for drug induced dyskinesias in Parkinson’s disease: a double blind cross over study. J Neurol Neurosurg Psychiatry. 2004;75(2):295–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  264. Durif F, Debilly B, Galitzky M, Morand D, Viallet F, Borg M, et al. Clozapine improves dyskinesias in Parkinson disease: a double-blind, placebo-controlled study. Neurology. 2004;62(3):381–8.

    CAS  PubMed  Google Scholar 

  265. Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM. The pharmacology of l-dopa-induced dyskinesia in Parkinson’s disease. Pharmacol Rev. 2013;65(1):171–222. doi:10.1124/pr.111.005678.

    CAS  PubMed  Google Scholar 

  266. Johnston TH, Fox SH, Piggott MJ, Savola JM, Brotchie JM. The alpha(2) adrenergic antagonist fipamezole improves quality of levodopa action in Parkinsonian primates. Mov Disord. 2010;25(13):2084–93. doi:10.1002/mds.23172.

    PubMed  Google Scholar 

  267. Savola JM, Hill M, Engstrom M, Merivuori H, Wurster S, McGuire SG, et al. Fipamezole (JP-1730) is a potent alpha2 adrenergic receptor antagonist that reduces levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Mov Disord. 2003;18(8):872–83. doi:10.1002/mds.10464.

    PubMed  Google Scholar 

  268. Henry B, Fox SH, Peggs D, Crossman AR, Brotchie JM. The alpha2-adrenergic receptor antagonist idazoxan reduces dyskinesia and enhances anti-parkinsonian actions of l-dopa in the MPTP-lesioned primate model of Parkinson’s disease. Mov Disord. 1999;14(5):744–53.

    CAS  PubMed  Google Scholar 

  269. Manson AJ, Iakovidou E, Lees AJ. Idazoxan is ineffective for levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2000;15(2):336–7.

    CAS  PubMed  Google Scholar 

  270. Rascol O, Arnulf I, Peyro-Saint Paul H, Brefel-Courbon C, Vidailhet M, Thalamas C, et al. Idazoxan, an alpha-2 antagonist, and l-dopa-induced dyskinesias in patients with Parkinson’s disease. Mov Disord. 2001;16(4):708–13.

  271. Lewitt PA, Hauser RA, Lu M, Nicholas AP, Weiner W, Coppard N, et al. Randomized clinical trial of fipamezole for dyskinesia in Parkinson disease (FJORD study). Neurology. 2012;79(2):163–9. doi:10.1212/WNL.0b013e31825f0451.

    CAS  PubMed  Google Scholar 

  272. Henry B, Fox SH, Crossman AR, Brotchie JM. Mu- and delta-opioid receptor antagonists reduce levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Exp Neurol. 2001;171(1):139–46. doi:10.1006/exnr.2001.7727.

    CAS  PubMed  Google Scholar 

  273. Rascol O, Fabre N, Blin O, Poulik J, Sabatini U, Senard JM, et al. Naltrexone, an opiate antagonist, fails to modify motor symptoms in patients with Parkinson’s disease. Mov Disord. 1994;9(4):437–40. doi:10.1002/mds.870090410.

    CAS  PubMed  Google Scholar 

  274. Manson AJ, Katzenschlager R, Hobart J, Lees AJ. High dose naltrexone for dyskinesias induced by levodopa. J Neurol Neurosurg Psychiatry. 2001;70(4):554–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  275. Fox S, Silverdale M, Kellett M, Davies R, Steiger M, Fletcher N, et al. Non-subtype-selective opioid receptor antagonism in treatment of levodopa-induced motor complications in Parkinson’s disease. Mov Disord. 2004;19(5):554–60. doi:10.1002/mds.10693.

    PubMed  Google Scholar 

  276. Di Marzo V, Hill MP, Bisogno T, Crossman AR, Brotchie JM. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson’s disease. FASEB J. 2000;14(10):1432–8.

    PubMed  Google Scholar 

  277. Fox SH, Henry B, Hill M, Crossman A, Brotchie J. Stimulation of cannabinoid receptors reduces levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov Disord. 2002;17(6):1180–7. doi:10.1002/mds.10289.

    PubMed  Google Scholar 

  278. Venderova K, Ruzicka E, Vorisek V, Visnovsky P. Survey on cannabis use in Parkinson’s disease: subjective improvement of motor symptoms. Mov Disord. 2004;19(9):1102–6. doi:10.1002/mds.20111.

    PubMed  Google Scholar 

  279. Sieradzan KA, Fox SH, Hill M, Dick JP, Crossman AR, Brotchie JM. Cannabinoids reduce levodopa-induced dyskinesia in Parkinson’s disease: a pilot study. Neurology. 2001;57(11):2108–11.

    CAS  PubMed  Google Scholar 

  280. Carroll CB, Bain PG, Teare L, Liu X, Joint C, Wroath C, et al. Cannabis for dyskinesia in Parkinson disease: a randomized double-blind crossover study. Neurology. 2004;63(7):1245–50.

    CAS  PubMed  Google Scholar 

  281. Hasko G, Linden J, Cronstein B, Pacher P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov. 2008;7(9):759–70. doi:10.1038/nrd2638.

    CAS  PubMed Central  PubMed  Google Scholar 

  282. Morelli M, Di Paolo T, Wardas J, Calon F, Xiao D, Schwarzschild MA. Role of adenosine A2A receptors in parkinsonian motor impairment and l-dopa-induced motor complications. Prog Neurobiol. 2007;83(5):293–309. doi:10.1016/j.pneurobio.2007.07.001.

    CAS  PubMed  Google Scholar 

  283. Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferre S. Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol. 2007;83(5):277–92. doi:10.1016/j.pneurobio.2007.05.001.

    CAS  PubMed Central  PubMed  Google Scholar 

  284. Mori A, Shindou T. Modulation of GABAergic transmission in the striatopallidal system by adenosine A2A receptors: a potential mechanism for the antiparkinsonian effects of A2A antagonists. Neurology. 2003;61(11 Suppl 6):S44–8.

    CAS  PubMed  Google Scholar 

  285. Carta AR, Pinna A, Cauli O, Morelli M. Differential regulation of GAD67, enkephalin and dynorphin mRNAs by chronic-intermittent l-dopa and A2A receptor blockade plus l-dopa in dopamine-denervated rats. Synapse. 2002;44(3):166–74. doi:10.1002/syn.10066.

    CAS  PubMed  Google Scholar 

  286. Jenner P, Mori A, Hauser R, Morelli M, Fredholm BB, Chen JF. Adenosine, adenosine A 2A antagonists, and Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(6):406–13. doi:10.1016/j.parkreldis.2008.12.006.

    CAS  PubMed  Google Scholar 

  287. Hodgson RA, Bedard PJ, Varty GB, Kazdoba TM, Di Paolo T, Grzelak ME, et al. Preladenant, a selective A(2A) receptor antagonist, is active in primate models of movement disorders. Exp Neurol. 2010;225(2):384–90. doi:10.1016/j.expneurol.2010.07.011.

    CAS  PubMed  Google Scholar 

  288. Hauser RA, Cantillon M, Pourcher E, Micheli F, Mok V, Onofrj M, et al. Preladenant in patients with Parkinson’s disease and motor fluctuations: a phase 2, double-blind, randomised trial. Lancet Neurol. 2011;10(3):221–9. doi:10.1016/S1474-4422(11)70012-6.

    CAS  PubMed  Google Scholar 

  289. Factor SA, Wolski K, Togasaki DM, Huyck S, Cantillon M, Ho TW, et al. Long-term safety and efficacy of preladenant in subjects with fluctuating Parkinson’s disease. Mov Disord. 2013;28(6):817–20. doi:10.1002/mds.25395.

    PubMed  Google Scholar 

  290. Hauser RA, Olanow C, Kieburtz K, Neale A, Resburg C, Maya U, Bandaket S. A phase 2, placebo-controlled, randomized, double-blind trial of tozadenant (SYN-115) in patients with Parkinson’s disease with wearing-off fluctuations on l-dopa. Mov Disord. 2013;28(Suppl 1):S158.

  291. Bara-Jimenez W, Dimitrova TD, Sherzai A, Aksu M, Chase TN. Glutamate release inhibition ineffective in levodopa-induced motor complications. Mov Disord. 2006;21(9):1380–3. doi:10.1002/mds.20976.

    PubMed  Google Scholar 

  292. Zhou FM, Liang Y, Dani JA. Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci. 2001;4(12):1224–9. doi:10.1038/nn769.

    CAS  PubMed  Google Scholar 

  293. Zhang D, Bordia T, McGregor M, McIntosh JM, Decker MW, Quik M. ABT-089 and ABT-894 reduce levodopa-induced dyskinesias in a monkey model of Parkinson’s disease. Mov Disord. 2014;29(4):508–17. doi:10.1002/mds.25817.

    CAS  PubMed  Google Scholar 

  294. Xie CL, Pan JL, Zhang SF, Gan J, Liu ZG. Effect of nicotine on l-dopa-induced dyskinesia in animal models of Parkinson’s disease: a systematic review and meta-analysis. Neurol Sci. 2014;35(5):653–62. doi:10.1007/s10072-014-1652-5.

    PubMed  Google Scholar 

  295. Bordia T, Campos C, McIntosh JM, Quik M. Nicotinic receptor-mediated reduction in l-dopa-induced dyskinesias may occur via desensitization. J Pharmacol Exp Ther. 2010;333(3):929–38. doi:10.1124/jpet.109.162396.

    CAS  PubMed Central  PubMed  Google Scholar 

  296. Parkinson_Study_Group. Randomized placebo-controlled study of the nicotinic agonist SIB-1508Y in Parkinson disease. Neurology. 2006;66(3):408–10. doi:10.1212/01.wnl.0000196466.99381.5c.

  297. Mango D, Bonito-Oliva A, Ledonne A, Cappellacci L, Petrelli R, Nistico R, et al. Adenosine A1 receptor stimulation reduces D1 receptor-mediated GABAergic transmission from striato-nigral terminals and attenuates l-dopa-induced dyskinesia in dopamine-denervated mice. Exp Neurol. 2014;. doi:10.1016/j.expneurol.2014.08.022.

    PubMed  Google Scholar 

  298. Park HY, Kang YM, Kang Y, Park TS, Ryu YK, Hwang JH, et al. Inhibition of adenylyl cyclase type 5 prevents l-dopa-induced dyskinesia in an animal model of Parkinson’s disease. J Neurosci. 2014;34(35):11744–53. doi:10.1523/JNEUROSCI.0864-14.2014.

    CAS  PubMed  Google Scholar 

  299. Goetz CG, Laska E, Hicking C, Damier P, Muller T, Nutt J, et al. Placebo influences on dyskinesia in Parkinson’s disease. Mov Disord. 2008;23(5):700–7. doi:10.1002/mds.21897.

    PubMed Central  PubMed  Google Scholar 

  300. Foltynie T, Cheeran B, Williams-Gray CH, Edwards MJ, Schneider SA, Weinberger D, et al. BDNF val66met influences time to onset of levodopa induced dyskinesia in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2009;80(2):141–4. doi:10.1136/jnnp.2008.154294.

    CAS  PubMed  Google Scholar 

  301. Zappia M, Annesi G, Nicoletti G, Arabia G, Annesi F, Messina D, et al. Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: an exploratory study. Arch Neurol. 2005;62(4):601–5. doi:10.1001/archneur.62.4.601.

    PubMed  Google Scholar 

  302. Goetz CG, Stebbins GT, Chung KA, Hauser RA, Miyasaki JM, Nicholas AP, et al. Which dyskinesia scale best detects treatment response? Mov Disord. 2013;28(3):341–6. doi:10.1002/mds.25321.

    CAS  PubMed  Google Scholar 

  303. Pietracupa S, Fasano A, Fabbrini G, Sarchioto M, Bloise M, Latorre A, et al. Poor self-awareness of levodopa-induced dyskinesias in Parkinson’s disease: clinical features and mechanisms. Parkinsonism Relat Disord. 2013;19(11):1004–8. doi:10.1016/j.parkreldis.2013.07.002.

    PubMed  Google Scholar 

  304. Manson AJ, Brown P, O’Sullivan JD, Asselman P, Buckwell D, Lees AJ. An ambulatory dyskinesia monitor. J Neurol Neurosurg Psychiatry. 2000;68(2):196–201.

    CAS  PubMed Central  PubMed  Google Scholar 

  305. Maetzler W, Domingos J, Srulijes K, Ferreira JJ, Bloem BR. Quantitative wearable sensors for objective assessment of Parkinson’s disease. Mov Disord. 2013;28(12):1628–37. doi:10.1002/mds.25628.

    PubMed  Google Scholar 

  306. No authors listed. A comparison of Madopar CR and standard Madopar in the treatment of nocturnal and early-morning disability in Parkinson’s disease. The UK Madopar CR Study Group. Clin Neuropharmacol. 1989;12(6):498–505.

  307. Moller JC, Oertel WH, Koster J, Pezzoli G, Provinciali L. Long-term efficacy and safety of pramipexole in advanced Parkinson’s disease: results from a European multicenter trial. Mov Disord. 2005;20(5):602–10. doi:10.1002/mds.20397.

    PubMed  Google Scholar 

  308. Poewe WH, Rascol O, Quinn N, Tolosa E, Oertel WH, Martignoni E, et al. Efficacy of pramipexole and transdermal rotigotine in advanced Parkinson’s disease: a double-blind, double-dummy, randomised controlled trial. Lancet Neurol. 2007;6(6):513–20. doi:10.1016/S1474-4422(07)70108-4.

    CAS  PubMed  Google Scholar 

  309. Mizuno Y, Abe T, Hasegawa K, Kuno S, Kondo T, Yamamoto M, et al. Ropinirole is effective on motor function when used as an adjunct to levodopa in Parkinson’s disease: STRONG study. Mov Disord. 2007;22(13):1860–5. doi:10.1002/mds.21313.

    PubMed  Google Scholar 

  310. Barone P, Lamb J, Ellis A, Clarke Z. Sumanirole versus placebo or ropinirole for the adjunctive treatment of patients with advanced Parkinson’s disease. Mov Disord. 2007;22(4):483–9. doi:10.1002/mds.21191.

    PubMed  Google Scholar 

  311. Pahwa R, Stacy MA, Factor SA, Lyons KE, Stocchi F, Hersh BP, et al. Ropinirole 24-hour prolonged release: randomized, controlled study in advanced Parkinson disease. Neurology. 2007;68(14):1108–15. doi:10.1212/01.wnl.0000258660.74391.c1.

    CAS  PubMed  Google Scholar 

  312. LeWitt PA, Lyons KE, Pahwa R. Advanced Parkinson disease treated with rotigotine transdermal system: PREFER Study. Neurology. 2007;68(16):1262–7. doi:10.1212/01.wnl.0000259516.61938.bb.

    CAS  PubMed  Google Scholar 

  313. Borgohain R, Szasz J, Stanzione P, Meshram C, Bhatt MH, Chirilineau D, et al. Two-year, randomized, controlled study of safinamide as add-on to levodopa in mid to late Parkinson’s disease. Mov Disord. 2014;. doi:10.1002/mds.25961.

    Google Scholar 

  314. Borgohain R, Szasz J, Stanzione P, Meshram C, Bhatt M, Chirilineau D, et al. Randomized trial of safinamide add-on to levodopa in Parkinson’s disease with motor fluctuations. Mov Disord. 2014;29(2):229–37. doi:10.1002/mds.25751.

    CAS  PubMed  Google Scholar 

  315. Poewe WH, Deuschl G, Gordin A, Kultalahti ER, Leinonen M. Efficacy and safety of entacapone in Parkinson’s disease patients with suboptimal levodopa response: a 6-month randomized placebo-controlled double-blind study in Germany and Austria (Celomen Study). Acta Neurol Scand. 2002;105(4):245–55.

    CAS  PubMed  Google Scholar 

  316. Fenelon G, Gimenez-Roldan S, Montastruc JL, Bermejo F, Durif F, Bourdeix I, et al. Efficacy and tolerability of entacapone in patients with Parkinson’s disease treated with levodopa plus a dopamine agonist and experiencing wearing-off motor fluctuations. A randomized, double-blind, multicentre study. J Neural Transm. 2003;110(3):239–51. doi:10.1007/s00702-002-0799-z.

    CAS  PubMed  Google Scholar 

  317. Brooks DJ, Sagar H. Entacapone is beneficial in both fluctuating and non-fluctuating patients with Parkinson’s disease: a randomised, placebo controlled, double blind, six month study. J Neurol Neurosurg Psychiatry. 2003;74(8):1071–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  318. Reichmann H, Boas J, Macmahon D, Myllyla V, Hakala A, Reinikainen K. Efficacy of combining levodopa with entacapone on quality of life and activities of daily living in patients experiencing wearing-off type fluctuations. Acta Neurol Scand. 2005;111(1):21–8. doi:10.1111/j.1600-0404.2004.00363.x.

    CAS  PubMed  Google Scholar 

  319. Mizuno Y, Kanazawa I, Kuno S, Yanagisawa N, Yamamoto M, Kondo T. Placebo-controlled, double-blind dose-finding study of entacapone in fluctuating parkinsonian patients. Mov Disord. 2007;22(1):75–80. doi:10.1002/mds.21218.

    PubMed  Google Scholar 

  320. Baas H, Beiske AG, Ghika J, Jackson M, Oertel WH, Poewe W, et al. Catechol-O-methyltransferase inhibition with tolcapone reduces the “wearing off” phenomenon and levodopa requirements in fluctuating parkinsonian patients. J Neurol Neurosurg Psychiatry. 1997;63(4):421–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  321. Waters CH, Kurth M, Bailey P, Shulman LM, LeWitt P, Dorflinger E, et al. Tolcapone in stable Parkinson’s disease: efficacy and safety of long-term treatment. The Tolcapone Stable Study Group. Neurology. 1997;49(3):665–71.

    CAS  PubMed  Google Scholar 

  322. Rajput AH, Martin W, Saint-Hilaire MH, Dorflinger E, Pedder S. Tolcapone improves motor function in parkinsonian patients with the “wearing-off” phenomenon: a double-blind, placebo-controlled, multicenter trial. Neurology. 1997;49(4):1066–71.

    CAS  PubMed  Google Scholar 

  323. Parkinson Study Group. Evaluation of dyskinesias in a pilot, randomized, placebo-controlled trial of remacemide in advanced Parkinson disease. Arch Neurol. 2001;58(10):1660–8.

  324. Eggert K, Squillacote D, Barone P, Dodel R, Katzenschlager R, Emre M, et al. Safety and efficacy of perampanel in advanced Parkinson’s disease: a randomized, placebo-controlled study. Mov Disord. 2010;25(7):896–905. doi:10.1002/mds.22974.

    PubMed  Google Scholar 

  325. Muller T, Russ H. Levodopa, motor fluctuations and dyskinesia in Parkinson’s disease. Expert Opin Pharmacother. 2006;7(13):1715–30. doi:10.1517/14656566.7.13.1715.

    PubMed  Google Scholar 

  326. Dimitrova TDB-JW, Savola J-M. Alpha-2 adrenergic antagonist effects in Parkinson’s disease. Mov Disord. 2009;19(Suppl 9):S222.

    Google Scholar 

  327. Bara-Jimenez W, Sherzai A, Dimitrova T, Favit A, Bibbiani F, Gillespie M, et al. Adenosine A(2A) receptor antagonist treatment of Parkinson’s disease. Neurology. 2003;61(3):293–6.

    CAS  PubMed  Google Scholar 

  328. LeWitt PA. “Off” time reduction from adjunctive use of istradefylline (KW-6002) in levodopa-treated patients with advanced Parkinson’s disease. Mov Disord. 2004;19(Suppl 9):S222.

    Google Scholar 

  329. Stacy M, Silver D, Mendis T, Sutton J, Mori A, Chaikin P, et al. A 12-week, placebo-controlled study (6002-US-006) of istradefylline in Parkinson disease. Neurology. 2008;70(23):2233–40. doi:10.1212/01.wnl.0000313834.22171.17.

    CAS  PubMed  Google Scholar 

  330. Hauser RA, Shulman LM, Trugman JM, Roberts JW, Mori A, Ballerini R, et al. Study of istradefylline in patients with Parkinson’s disease on levodopa with motor fluctuations. Mov Disord. 2008;23(15):2177–85. doi:10.1002/mds.22095.

    PubMed  Google Scholar 

  331. LeWitt PA, Guttman M, Tetrud JW, Tuite PJ, Mori A, Chaikin P, et al. Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces “off” time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol. 2008;63(3):295–302. doi:10.1002/ana.21315.

    CAS  PubMed  Google Scholar 

  332. Mizuno Y, Kondo T. Adenosine A2A receptor antagonist istradefylline reduces daily OFF time in Parkinson’s disease. Mov Disord. 2013;28(8):1138–41. doi:10.1002/mds.25418.

    CAS  PubMed Central  PubMed  Google Scholar 

  333. Pourcher E, Fernandez HH, Stacy M, Mori A, Ballerini R, Chaikin P. Istradefylline for Parkinson’s disease patients experiencing motor fluctuations: results of the KW-6002-US-018 study. Parkinsonism Relat Disord. 2012;18(2):178–84. doi:10.1016/j.parkreldis.2011.09.023.

    PubMed  Google Scholar 

  334. Hauser RA, Olanow CW, Kieburtz KD, Pourcher E, Docu-Axelerad A, Lew M et al. Tozadenant (SYN115) in patients with Parkinson’s disease who have motor fluctuations on levodopa: a phase 2b, double-blind, randomised trial. Lancet Neurol. 2014;13(8):767–76. doi:10.1016/S1474-4422(14)70148-6.

Download references

Disclosure

The authors Eva Schaeffer, Andrea Pilotto, and Daniela Berg report no conflicts of interest and no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Berg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaeffer, E., Pilotto, A. & Berg, D. Pharmacological Strategies for the Management of Levodopa-Induced Dyskinesia in Patients with Parkinson’s Disease. CNS Drugs 28, 1155–1184 (2014). https://doi.org/10.1007/s40263-014-0205-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-014-0205-z

Keywords

Navigation