Skip to main content
Log in

A Systematic Review of the Clinical Pharmacokinetics, Pharmacodynamics and Toxicodynamics of Ganciclovir/Valganciclovir in Allogeneic Haematopoietic Stem Cell Transplant Patients

  • Systematic Review
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Ganciclovir (GCV) and valganciclovir (VGCV) are the first-line agents used to prevent and treat cytomegalovirus (CMV) infection in allogeneic haematopoietic stem cell transplant (alloHCT) patients.

Objective

The aim of this work was to describe available data for the clinical pharmacokinetics, pharmacodynamics and toxicodynamics of GCV and VGCV and the potential of a therapeutic drug monitoring strategy to improve outcomes in the alloHCT population.

Methods

We systematically reviewed the pharmacokinetics (dose-exposure), pharmacodynamics (exposure-efficacy) and toxicodynamics (exposure-toxicity) of GCV and VGCV in alloHCT patients with CMV infection. Studies including alloHCT patients treated for CMV infection reporting the pharmacokinetics, pharmacodynamics and toxicodynamics of GCV or VGCV were searched for using the PUBMED and EMBASE databases from 1946 to 2019. Only studies involving participants > 12 years of age and available in the English language were included.

Results

A total of 179 patients were included in the 14 studies that met the inclusion criteria, of which 6 examined GCV pharmacokinetics only, while 8 also examined GCV pharmacodynamics and toxicodynamics. Reported pharmacokinetic parameters showed considerable interpatient variability and were different from other populations, such as solid organ transplant and human immunodeficiency virus-infected patients. Only one study found a correlation between neutropenia and elevated peak and trough GCV concentrations, with no other significant pharmacodynamic and toxicodynamic relationships identified. While therapeutic drug monitoring of GCV is performed in some institutions, no association between GCV therapeutic drug monitoring and clinical outcomes was identified.

Conclusion

Further studies of the pharmacokinetics, pharmacodynamics and toxicodynamics of GCV/VGCV in alloHCT patients are required to identify a more robust therapeutic range and to subsequently quantify the potential value of therapeutic drug monitoring of GCV/VGCV in the alloHCT population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Li J, Smith A, Crouch S, Oliver S, Roman E. Estimating the prevalence of hematological malignancies and precursor conditions using data from Haematological Malignancy Research Network (HMRN). Cancer Causes Control. 2016;27(8):1019–26.

    PubMed  PubMed Central  Google Scholar 

  2. Australian Bureau of Statistics. Australia's leading causes of death 2018. Australian Bureau of Statistics. https://www.abs.gov.au/ausstats/abs@.nsf/PrimaryMainFeatures/3302.0?OpenDocument2018. Accessed Dec 2019.

  3. Nivison-Smith I, Bardy P, Dodds AJ, Ma DDF, Aarons D, Tran S, et al. A review of hematopoietic cell transplantation in Australia and New Zealand, 2005 to 2013. Biol Blood Marrow Transplant. 2016;22(2):284–91. https://doi.org/10.1016/j.bbmt.2015.09.009.

    Article  PubMed  Google Scholar 

  4. Nivison-Smith I, Bradstock KF, Dodds AJ, Hawkins PA, Szer J. Haemopoietic stem cell transplantation in Australia and New Zealand, 1992–2001: progress report from the Australasian Bone Marrow Transplant Recipient Registry. Intern Med J. 2005;35(1):18–27.

    CAS  PubMed  Google Scholar 

  5. Chan ST, Logan AC. The clinical impact of cytomegalovirus infection following allogeneic hematopoietic cell transplantation: why the quest for meaningful prophylaxis still matters. Blood Rev. 2017;31(3):173–83. https://doi.org/10.1016/j.blre.2017.01.002.

    Article  PubMed  Google Scholar 

  6. Ljungman P, Hakki M, Boeckh M. Cytomegalovirus in hematopoietic stem cell transplant recipients. Hematol Oncol Clin N Am. 2011;25(1):151–69. https://doi.org/10.1016/j.hoc.2010.11.011.

    Article  Google Scholar 

  7. Machado CM, Dulley FL, Boas L, Castelli JB, Macedo MCA, Silva RL, et al. CMV pneumonia in allogeneic BMT recipients undergoing early treatment or pre-emptive ganciclovir therapy. Bone Marrow Transplant. 2000;26:413.

    CAS  PubMed  Google Scholar 

  8. Emery V, Zuckerman M, Jackson G, Aitken C, Osman H, Pagliuca A, et al. Management of cytomegalovirus infection in haemopoietic stem cell transplantation. Br J Haematol. 2013;162(1):25–39.

    CAS  PubMed  Google Scholar 

  9. Pollack M, Heugel J, Xie H, Leisenring W, Storek J, Young J-A, et al. An international comparison of current strategies to prevent herpesvirus and fungal infections in hematopoietic cell transplant recipients. Biol Blood Marrow Transplant. 2011;17(5):664–73. https://doi.org/10.1016/j.bbmt.2010.07.026.

    Article  PubMed  Google Scholar 

  10. Meesing A, Razonable RR. Pharmacologic and immunologic management of cytomegalovirus infection after solid organ and hematopoietic stem cell transplantation. Expert Rev Clin Pharmacol. 2018;11(8):773–88.

    CAS  PubMed  Google Scholar 

  11. Broers AE, van Der Holt R, van Esser JW, Gratama JW, Henzen-Logmans S, Kuenen-Boumeester V, et al. Increased transplant-related morbidity and mortality in CMV-seropositive patients despite highly effective prevention of CMV disease after allogeneic T-cell-depleted stem cell transplantation. Blood. 2000;95(7):2240.

    CAS  PubMed  Google Scholar 

  12. Barkam C, Kamal H, Dammann E, Diedrich H, Buchholz S, Eder M, et al. Improving safety of preemptive therapy with oral valganciclovir for cytomegalovirus infection after allogeneic hematopoietic stem cell transplantation. Bone Marrow Res. 2012;2012:874601.

    PubMed  PubMed Central  Google Scholar 

  13. Fishman JA, Doran MT, Volpicelli SA, Cosimi AB, Flood JG, Rubin RH. Dosing of intravenous ganciclovir for the prophylaxis and treatment of cytomegalovirus infection in solid organ transplant recipients. Transplantation. 2000;69(3):389.

    CAS  PubMed  Google Scholar 

  14. Fletcher C, Sawchuk R, Chinnock B. Human pharmacokinetics of the antiviral drug DHPG. Clin Pharmacol Ther. 1986;40(3):281–6.

    CAS  PubMed  Google Scholar 

  15. Sommadossi J-P, Rae B, Teck L, Lee F, Barbara M, Melvin DC, et al. Clinical pharmacokinetics of ganciclovir in patients with normal and impaired renal function. Rev Infect Dis. 1988;10:S507–14.

    PubMed  Google Scholar 

  16. Jager NGL, van Hest RM, Lipman J, Taccone FS, Roberts JA. Therapeutic drug monitoring of anti-infective agents in critically ill patients. Expert Rev Clin Pharmacol. 2016;9(7):961–79.

    CAS  PubMed  Google Scholar 

  17. Giudice V, Serio B, Sessa M, Pezzullo L, Fontana R, Annunziata S, et al. Daily low-dose valgancyclovir is safe and effective CMV-reactivation prophylaxis in HLA-identical sibling hematopoietic stem cell transplantation. Bone Marrow Transplant. 2014;1:S466–7. https://doi.org/10.1038/bmt.2014.50.

    Article  Google Scholar 

  18. Park SY, Lee SO, Choi SH, Kim YS, Woo JH, Baek S, et al. Efficacy and safety of low-dose ganciclovir preemptive therapy in allogeneic haematopoietic stem cell transplant recipients compared with conventional-dose ganciclovir: a prospective observational study. J Antimicrob Chemother. 2012;67(6):1486–92. https://doi.org/10.1093/jac/dks043.

    Article  CAS  PubMed  Google Scholar 

  19. Saleh AJM, Al Mohareb F, Al Rabiah F, Chaudhri N, Al Sharif F, Al Zahrani H, et al. High efficacy and low toxicity of short-course oral valganciclovir as pre-emptive therapy for hematopoietic stem cell transplant cytomegalovirus infection. Hematol Oncol Stem Cell Ther. 2010;3(3):116–20.

    CAS  PubMed  Google Scholar 

  20. Palladino M, Laurenti L, Chiusolo P, Piccioni P, Innocenti I, Tarnani M, et al. Low-dose valganciclovir as preemptive therapy for cytomegalovirus infection occurring in allogeneic stem cell transplant recipients. Acta Haematol. 2010;123(4):230–4. https://doi.org/10.1159/000313639.

    Article  CAS  PubMed  Google Scholar 

  21. Kim ST, Lee MH, Kim SY, Kim SJ, Kim DH, Jang JH, et al. A randomized trial of preemptive therapy for prevention of cytomegalovirus disease after allogeneic hematopoietic stem cell transplantation. Int J Hematol. 2010;91(5):886–91. https://doi.org/10.1007/s12185-010-0580-2.

    Article  CAS  PubMed  Google Scholar 

  22. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13.

    PubMed  PubMed Central  Google Scholar 

  23. Boeckh M, Zaia JA, Jung D, Skettino S, Chauncey TR, Bowden RA. A study of the pharmacokinetics, antiviral activity, and tolerability of oral ganciclovir for CMV prophylaxis in marrow transplantation. Biol Blood Marrow Transplant. 1998;4(1):13–9.

    CAS  PubMed  Google Scholar 

  24. Shibata N, Kitamura A, Yoshikawa Y, Inoue T, Bamba T, Takada K. Simultaneous determination of aciclovir and ganciclovir in plasma by HPLC and pharmacokinetic interactions. Pharm Pharmacol Commun. 2000;6(11):501–6. https://doi.org/10.1211/146080800128735593.

    Article  CAS  Google Scholar 

  25. Asano-Mori Y, Kanda Y, Oshima K, Watanabe T, Shoda E, Motokura T, et al. Pharmacokinetics of ganciclovir in haematopoietic stem cell transplantation recipients with or without renal impairment. J Antimicrob Chemother. 2006;57(5):1004–7. https://doi.org/10.1093/jac/dkl089.

    Article  CAS  PubMed  Google Scholar 

  26. Winston DJ, Baden LR, Gabriel DA, Emmanouilides C, Shaw LM, Lange WR, et al. Pharmacokinetics of ganciclovir after oral valganciclovir versus intravenous ganciclovir in allogeneic stem cell transplant patients with graft-versus-host disease of the gastrointestinal tract. Biol Blood Marrow Transplant. 2006;12(6):635–40. https://doi.org/10.1016/j.bbmt.2005.12.038.

    Article  CAS  PubMed  Google Scholar 

  27. Shepp DH, Dandliker PS, de Miranda P, Burnette TC, Cederberg DM, Kirk LE, et al. Activity of 9-[2-hydroxy-1-(hydroxymethyl)ethoxymethyl]guanine in the treatment of cytomegalovirus pneumonia. Ann Intern Med. 1985;103(3):368–73.

    CAS  PubMed  Google Scholar 

  28. Erice A, Jordan MC, Chace BA, Fletcher C, Chinnock BJ, Balfour HH Jr. Ganciclovir treatment of cytomegalovirus disease in transplant recipients and other immunocompromised hosts. JAMA. 1987;257(22):3082–7.

    CAS  PubMed  Google Scholar 

  29. Winston DJ, Ho WG, Bartoni K, Holland GN, Mitsuyasu RT, Gale RP, et al. Ganciclovir therapy for cytomegalovirus infections in recipients of bone marrow transplants and other immunosuppressed patients. Rev Infect Dis. 1988;10(Suppl 3):S547–53.

    PubMed  Google Scholar 

  30. Einsele H, Reusser P, Bornhauser M, Kalhs P, Ehninger G, Hebart H, et al. Oral valganciclovir leads to higher exposure to ganciclovir than intravenous ganciclovir in patients following allogeneic stem cell transplantation. Blood. 2006;107(7):3002–8. https://doi.org/10.1182/blood-2005-09-3786.

    Article  CAS  PubMed  Google Scholar 

  31. Lim ZY, Cook G, Johnson PR, Parker A, Zuckerman M, Marks D, et al. Results of a phase I/II British Society of Bone Marrow Transplantation study on PCR-based pre-emptive therapy with valganciclovir or ganciclovir for active CMV infection following alemtuzumab-based reduced intensity allogeneic stem cell transplantation. Leuk Res. 2009;33(2):244–9. https://doi.org/10.1016/j.leukres.2008.07.016.

    Article  CAS  PubMed  Google Scholar 

  32. Awada SM. Pharmacokinetic study of ganciclovir (GCV) after single and multiple dose in hematopoietic stem cell transplant (HSCT) patients with cytomegalovirus (CMV) infection. Clin Ther. 2013;35(8 Suppl 1):e85–6.

    Google Scholar 

  33. Gimenez E, Solano C, Azanza JR, Amat P, Navarro D. Monitoring of trough plasma ganciclovir levels and peripheral blood cytomegalovirus (CMV)-specific CD8+ T cells to predict CMV DNAemia clearance in preemptively treated allogeneic stem cell transplant recipients. Antimicrob Agents Chemother. 2014;58(9):5602–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ritchie BM, Barreto JN, Barreto EF, Crow SA, Dierkhising RA, Jannetto PJ, et al. Relationship of ganciclovir therapeutic drug monitoring with clinical efficacy and patient safety. Antimicrob Agents Chemother. 2019;63(3):e01855-18.

    PubMed  PubMed Central  Google Scholar 

  35. Wiltshire H, Paya CV, Pescovitz MD, Humar A, Dominguez E, Washburn K, et al. Pharmacodynamics of oral ganciclovir and valganciclovir in solid organ transplant recipients. Transplantation. 2005;79(11):1477–83.

    CAS  PubMed  Google Scholar 

  36. Cymevene (ganciclovir) Australian product information. The Australian Register of Therapeutic Goods. Therapeutic Goods Administration. https://www.ebs.tga.gov.au/ebs/picmi/picmirepository.nsf/pdf?OpenAgent&id=CP-2019-PI-01802-1&d=201912171016933.

  37. Valcycte (valganciclovir hydrochloride) Australian product information. The Australian Register of Therapeutic Goods. Therapeutic Goods Administration. https://www.ebs.tga.gov.au/ebs/picmi/picmirepository.nsf/pdf?OpenAgent&id=CP-2010-PI-04140-3.

  38. Perrottet N, Decosterd LA, Meylan P, Pascual M, Biollaz J, Buclin T. Valganciclovir in adult solid organ transplant recipients: pharmacokinetic and pharmacodynamic characteristics and clinical interpretation of plasma concentration measurements. Clin Pharmacokinet. 2009;48(6):399–418.

    CAS  PubMed  Google Scholar 

  39. Lake KD, Fletcher CV, Love KR, Brown DC, Joyce LD, Pritzker MR. Ganciclovir pharmacokinetics during renal impairment. Antimicrob Agents Chemother. 1988;32(12):1899–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hingorani S, Pao E, Schoch G, Gooley T, Schwartz GJ. Estimating GFR in adult patients with hematopoietic cell transplant: comparison of estimating equations with an iohexol reference standard. Clin J Am Soc Nephrol. 2015;10(4):601–10. https://doi.org/10.2215/CJN.06470614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Palacio-Lacambra ME, Comas-Reixach I, Blanco-Grau A, Suñé-Negre JM, Segarra-Medrano A, Montoro-Ronsano JB. Comparison of the Cockcroft–Gault, MDRD and CKD-EPI equations for estimating ganciclovir clearance. Br J Clin Pharmacol. 2018;84(9):2120–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tabbara IA, Zimmerman K, Morgan C, Nahleh Z. Allogeneic hematopoietic stem cell transplantation: complications and results. JAMA Intern Med. 2002;162(14):1558–66.

    Google Scholar 

  43. Hiemenz JW. Management of infections complicating allogeneic hematopoietic stem cell transplantation. Semin Hematol. 2009;46(3):289–312.

    PubMed  Google Scholar 

  44. Pea F. Plasma pharmacokinetics of antimicrobial agents in critically ill patients. Curr Clin Pharmacol. 2013;8(1):5–12.

    CAS  PubMed  Google Scholar 

  45. Salzberger B, Bowden RA, Hackman RC, Davis C, Boeckh M. Neutropenia in allogeneic marrow transplant recipients receiving ganciclovir for prevention of cytomegalovirus disease: risk factors and outcome. Blood. 1997;90(6):2502–8.

    CAS  PubMed  Google Scholar 

  46. Fink JC, Cooper MA, Burkhart KM, McDonald GB, Zager RA. Marked enzymuria after bone marrow transplantation: a correlate of veno-occlusive disease-induced “hepatorenal syndrome.” J Am Soc Nephrol. 1995;6(6):1655–60.

    CAS  PubMed  Google Scholar 

  47. Matthews T, Boehme R. Antiviral activity and mechanism of action of ganciclovir. Rev Infect Dis. 1988;10:S490–4.

    CAS  PubMed  Google Scholar 

  48. Sommadossi JP, Carlisle R. Toxicity of 3’-azido-3’-deoxythymidine and 9-(1,3-dihydroxy-2-propoxymethyl)guanine for normal human hematopoietic progenitor cells in vitro. Antimicrob Agents Chemother. 1987;31(3):452–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Heagy W, Crumpacker C, Lopez PA, Finberg RW. Inhibition of immune functions by antiviral drugs. J Clin Invest. 1991;87(6):1916–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Biron KK, Stanat SC, Sorrell JB, Fyfe JA, Keller PM, Lambe CU, et al. Metabolic activation of the nucleoside analog 9-[(2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine in human diploid fibroblasts infected with human cytomegalovirus. Proc Natl Acad Sci USA. 1985;82(8):2473–7.

    CAS  PubMed  Google Scholar 

  51. Freitas VR, Smee DF, Chernow M, Boehme R, Matthews TR. Activity of 9-(1,3-dihydroxy-2-propoxymethyl)guanine compared with that of acyclovir against human, monkey, and rodent cytomegaloviruses. Antimicrob Agents Chemother. 1985;28(2):240–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Janoly-Dumenil A, Rouvet I, Bleyzac N, Bertrand Y, Aulagner G, Zabot M-T. Effect of duration and intensity of ganciclovir exposure on lymphoblastoid cell toxicity. Antiviral Chem Chemother. 2009;19(6):257–62.

    CAS  Google Scholar 

  53. Janoly-Dumenil A, Rouvet I, Bleyzac N, Morfin F, Zabot MT, Tod M. A pharmacodynamic model of ganciclovir antiviral effect and toxicity for lymphoblastoid cells suggests a new dosing regimen to treat cytomegalovirus infection. Antimicrob Agents Chemother. 2012;56(7):3732–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Scott JC, Partovi N, Ensom MH. Ganciclovir in solid organ transplant recipients: is there a role for clinical pharmacokinetic monitoring? Ther Drug Monit. 2004;26(1):68–77.

    CAS  PubMed  Google Scholar 

  55. Bedino G, Esposito P, Bosio F, Corradetti V, Valsania T, Rocca C, et al. The role of therapeutic drug monitoring in the treatment of cytomegalovirus disease in kidney transplantation. Int Urol Nephrol. 2013;45(6):1809–13.

    CAS  PubMed  Google Scholar 

  56. Autmizguine J, Theoret Y, Launay E, Duval M, Rousseau C, Tapiero B, et al. Low systemic ganciclovir exposure and preemptive treatment failure of cytomegalovirus reactivation in a transplanted child. J Popul Ther Clin Pharmacol. 2011;18(2):e257–60.

    PubMed  Google Scholar 

  57. Perrottet N, Csajka C, Pascual M, Manuel O, Lamoth F, Meylan P, et al. Population pharmacokinetics of ganciclovir in solid-organ transplant recipients receiving oral valganciclovir. Antimicrob Agents Chemother. 2009;53(7):3017–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wong DD, van Zuylen WJ, Craig ME, Rawlinson WD. Systematic review of ganciclovir pharmacodynamics during the prevention of cytomegalovirus infection in adult solid organ transplant recipients. Rev Med Virol. 2019;29(2):e2023.

    PubMed  Google Scholar 

  59. Billat PA, Woillard JB, Essig M, Sauvage FL, Picard N, Alain S, et al. Plasma and intracellular exposure to ganciclovir in adult renal transplant recipients: is there an association with haematological toxicity? J Antimicrob Chemother. 2016;71(2):484–9.

    CAS  PubMed  Google Scholar 

  60. Billat PA, Ossman T, Saint-Marcoux F, Essig M, Rerolle JP, Kamar N, et al. Multidrug resistance-associated protein 4 (MRP4) controls ganciclovir intracellular accumulation and contributes to ganciclovir-induced neutropenia in renal transplant patients. Pharmacol Res. 2016;111:501–8.

    CAS  PubMed  Google Scholar 

  61. Nakamae H, Storer B, Sandmaier BM, Maloney DG, Davis C, Corey L, et al. Cytopenias after day 28 in allogeneic hematopoietic cell transplantation: impact of recipient/donor factors, transplant conditions and myelotoxic drugs. Haematologica. 2011;96(12):1838–45.

    PubMed  PubMed Central  Google Scholar 

  62. Tomonari A, Iseki T, Takahashi S, Ooi J, Yamada T, Takasugi K, et al. Ganciclovir-related neutropenia after preemptive therapy for cytomegalovirus infection: comparison between cord blood and bone marrow transplantation. Ann Hematol. 2004;83(9):573–7.

    PubMed  Google Scholar 

  63. Venton G, Crocchiolo R, Furst S, Granata A, Oudin C, Faucher C, et al. Risk factors of Ganciclovir-related neutropenia after allogeneic stem cell transplantation: a retrospective monocentre study on 547 patients. Clin Microbiol Infect. 2014;20(2):160–6. https://doi.org/10.1111/1469-0691.12222.

    Article  CAS  PubMed  Google Scholar 

  64. Varani S, Landini MP. Cytomegalovirus-induced immunopathology and its clinical consequences. Herpesviridae. 2011;2(1):6.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Camargo JF, Kimble E, Rosa R, Shimose LA, Bueno MX, Jeyakumar N, et al. Impact of cytomegalovirus viral load on probability of spontaneous clearance and response to preemptive therapy in allogeneic stem cell transplantation recipients. Biol Blood Marrow Transplant. 2018;24(4):806–14.

    PubMed  Google Scholar 

  66. Matsumoto K, Shigemi A, Ikawa K, Kanazawa N, Fujisaki Y, Morikawa N, et al. Risk factors for ganciclovir-induced thrombocytopenia and leukopenia. Biol Pharm Bull. 2015;38(2):235–8. https://doi.org/10.1248/bpb.b14-00588.

    Article  CAS  PubMed  Google Scholar 

  67. Einsele H, Ljungman P, Boeckh M. How I treat CMV reactivation after allogeneic hematopoietic stem cell transplantation. Blood. 2020;135(19):1619–29.

    PubMed  PubMed Central  Google Scholar 

  68. Snell GI, Kotsimbos TC, Levvey BJ, Skiba M, Rutherford DM, Kong DC, et al. Pharmacokinetic assessment of oral ganciclovir in lung transplant recipients with cystic fibrosis. J Antimicrob Chemother. 2000;45(4):511–6.

    CAS  PubMed  Google Scholar 

  69. Jelliffe RW, Schumitzky A. Modeling, adaptive control, and optimal drug therapy. Med Prog Technol. 1990;16(1–2):95–110.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Roland Selby.

Ethics declarations

Funding

Philip R. Selby is the recipient of an Australian Government Research Training Program Scholarship.

Conflict of interest

Philip R. Selby has received financial support from Merck Sharp & Dohme to attend symposia. David Yeung has received honoraria from Novartis, Bristol Myers Squibb, Pfizer, Amgen and Takeda, and research funding from Novartis and Bristol Myers Squibb. Jason A. Roberts has received grants, consultancies or speaker fees from Biomerieux, Merck Sharp & Dohme, Discuva, Accelerate Diagnostics, The Medicines Company, Qpex and Pfizer. Sepehr Shakib, Sandra L. Peake, Morgyn S. Warner and Uwe Hahn have no conflicts of interest to declare.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Authors’ contributions

PS, SS, MW and JR conceived the presented idea. PS and SS undertook the database search, determined study eligibility for the review and extracted the relevant data from the studies for review. PS, SS, SP, MW, DY, UH and JR evaluated and interpreted the included studies. PR wrote the first draft of the manuscript and critical revision was undertaken by SS, SP, MW, DY, UH and JR. All authors read and approved the final version of the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selby, P.R., Shakib, S., Peake, S.L. et al. A Systematic Review of the Clinical Pharmacokinetics, Pharmacodynamics and Toxicodynamics of Ganciclovir/Valganciclovir in Allogeneic Haematopoietic Stem Cell Transplant Patients. Clin Pharmacokinet 60, 727–739 (2021). https://doi.org/10.1007/s40262-020-00982-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-020-00982-z

Navigation