Skip to main content
Log in

Clinical Pharmacokinetics of Anaplastic Lymphoma Kinase Inhibitors in Non-Small-Cell Lung Cancer

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The identification of anaplastic lymphoma kinase rearrangements in 2–5% of patients with non-small-cell lung cancer led to rapid advances in the clinical development of oral tyrosine kinase inhibitors. Anaplastic lymphoma kinase inhibitors are an effective treatment in preclinical models and patients with anaplastic lymphoma kinase-translocated cancers. Four anaplastic lymphoma kinase inhibitors (crizotinib, ceritinib, alectinib, and brigatinib) have recently been approved. Post-marketing studies provided additional pharmacokinetic information on their pharmacokinetic parameters. The pharmacokinetic properties of approved anaplastic lymphoma kinase inhibitors have been reviewed herein. Findings from additional studies on the effects of drug-metabolizing enzymes, drug transporters, and drug–drug interactions have been incorporated. Crizotinib, ceritinib, and alectinib reach their maximum plasma concentrations after approximately 6 h and brigatinib after 1–4 h. These drugs are primarily metabolized by cytochrome P450 3A with other cytochrome P450 enzymes. They are mainly excreted in the feces, with only a minor fraction being eliminated in urine. Crizotinib, ceritinib, and brigatinib are substrates for the adenosine triphosphate binding-cassette transporter B1, whereas alectinib is not. The different substrate specificities of the transporters play a key role in superior blood–brain barrier penetration by alectinib than by crizotinib and ceritinib. Although the absorption, distribution, and excretion of anaplastic lymphoma kinase inhibitors are regulated by drug transporters, their transporter-mediated pharmacokinetics have not yet been elucidated in detail in patients with non-small-cell lung cancer. Further research to analyze the contribution of drug transporters to the pharmacokinetics of anaplastic lymphoma kinase inhibitors in patients with non-small-cell lung cancer will be helpful for understanding the mechanisms of the inter-individual differences in the pharmacokinetics of anaplastic lymphoma kinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Janku F, Stewart DJ, Kurzrock R. Targeted therapy in non-small-cell lung cancer: is it becoming a reality? Nat Rev Clin Oncol. 2010;7:401–14.

    Article  PubMed  CAS  Google Scholar 

  2. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.

    Article  PubMed  Google Scholar 

  3. Scagliotti GV, Parikh P, von Pawel J, Biesma B, Vansteenkiste J, Manegold C, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26:3543–51.

    Article  PubMed  CAS  Google Scholar 

  4. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.

    Article  PubMed  CAS  Google Scholar 

  5. Orscheschek K, Merz H, Hell J, Binder T, Bartels H, Feller AC. Large-cell anaplastic lymphoma-specific translocation (t [2, 5] [p23;q35]) in Hodgkin’s disease: indication of a common pathogenesis? Lancet. 1995;345:87–90.

    Article  PubMed  CAS  Google Scholar 

  6. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990;61:203–12.

    Article  PubMed  CAS  Google Scholar 

  7. Roskoski R. Anaplastic lymphoma kinase (ALK): structure, oncogenic activation, and pharmacological inhibition. Pharmacol Res. 2013;68:68–94.

    Article  PubMed  CAS  Google Scholar 

  8. Bullrich F, Morris SW, Hummel M, Pileri S, Stein H, Croce CM. Nucleophosmin (NPM) gene rearrangements in Ki-1-positive lymphomas. Cancer Res. 1994;54:2873–7.

    PubMed  CAS  Google Scholar 

  9. Shackelford RE, Vora M, Mayhall K, Cotelingam J. ALK-rearrangements and testing methods in non-small cell lung cancer: a review. Genes Cancer. 2014;5:1–14.

    PubMed  PubMed Central  Google Scholar 

  10. Mano H. Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci. 2008;99:2349–55.

    Article  PubMed  CAS  Google Scholar 

  11. Horn L, Pao W. EML4-ALK: honing in on a new target in non-small-cell lung cancer. J Clin Oncol. 2009;27:4232–5.

    Article  PubMed  CAS  Google Scholar 

  12. Zhao F, Xu M, Lei H, Zhou Z, Wang L, Li P, et al. Clinicopathological characteristics of patients with non-small-cell lung cancer who harbor EML4-ALK fusion gene: a meta-analysis. PLoS ONE. 2015;10:e0117333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009;27:4247–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Camidge DR, Doebele RC. Treating ALK-positive lung cancer: early successes and future challenges. Nat Rev Clin Oncol. 2012;9:268–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Blackhall FH, Peters S, Bubendorf L, Dafni U, Kerr KM, Hager H, et al. Prevalence and clinical outcomes for patients with ALK-positive resected stage I to III adenocarcinoma: results from the European Thoracic Oncology Platform Lungscape Project. J Clin Oncol. 2014;32:2780–7.

    Article  PubMed  Google Scholar 

  16. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med. 2010;363:1734–9.

    Article  PubMed  CAS  Google Scholar 

  17. Kwak EL, Bang Y-JJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Shaw AT, Felip E, Bauer TM, Besse B, Navarro A, Postel-Vinay S, et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol. 2017;18:1590–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cui JJ, Tran-Dubé M, Shen H, Nambu M, Kung P-PP, Pairish M, et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 2011;54:6342–63.

    Article  PubMed  CAS  Google Scholar 

  20. Camidge DR, Bang Y-JJ, Kwak EL, Iafrate AJ, Varella-Garcia M, Fox SB, et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 2012;13:1011–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Shaw AT, Yeap BY, Solomon BJ, Riely GJ, Gainor J, Engelman JA, et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 2011;12:1004–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Shaw AT, Kim D-WW, Nakagawa K, Seto T, Crinó L, Ahn M-JJ, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368:2385–94.

    Article  PubMed  CAS  Google Scholar 

  23. Sahu A, Prabhash K, Noronha V, Joshi A, Desai S. Crizotinib: a comprehensive review. South Asian J Cancer. 2013;2:91–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Qian H, Gao F, Wang H, Ma F. The efficacy and safety of crizotinib in the treatment of anaplastic lymphoma kinase-positive non-small cell lung cancer: a meta-analysis of clinical trials. BMC Cancer. 2014;14:683.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Malik SM, Maher VE, Bijwaard KE, Becker RL, Zhang L, Tang SW, et al. U.S. Food and Drug Administration approval: crizotinib for treatment of advanced or metastatic non-small cell lung cancer that is anaplastic lymphoma kinase positive. Clin Cancer Res. 2014;20:2029–34.

    Article  PubMed  CAS  Google Scholar 

  26. Choi YL, Takeuchi K, Soda M, Inamura K, Togashi Y, Hatano S, et al. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res. 2008;68:4971–6.

    Article  PubMed  CAS  Google Scholar 

  27. Sasaki T, Okuda K, Zheng W, Butrynski J, Capelletti M, Wang L, et al. The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers. Cancer Res. 2010;70:10038–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012;18:1472–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Tan W, Wilner KD, Bang Y, Kwak EL, Maki RG, Camidge DR, et al. Pharmacokinetics (PK) of PF-02341066, a dual ALK/MET inhibitor after multiple oral doses to advanced cancer patients [abstract]. J Clin Oncol. 2010;28:2596.

    Article  Google Scholar 

  30. Johnson TR, Tan W, Goulet L, Smith EB, Yamazaki S, Walker GS, et al. Metabolism, excretion and pharmacokinetics of [14C]crizotinib following oral administration to healthy subjects. Xenobiotica. 2015;45:45–59.

    Article  PubMed  CAS  Google Scholar 

  31. Xu H, O’Gorman M, Boutros T, Brega N, Kantaridis C, Tan W, et al. Evaluation of crizotinib absolute bioavailability, the bioequivalence of three oral formulations, and the effect of food on crizotinib pharmacokinetics in healthy subjects. J Clin Pharmacol. 2015;55:104–13.

    Article  PubMed  CAS  Google Scholar 

  32. Tan W, Yamazaki S, Johnson TR, Wang R, O’Gorman MT, Kirkovsky L, et al. Effects of renal function on crizotinib pharmacokinetics: dose recommendations for patients with ALK-positive non-small cell lung cancer. Clin Drug Investig. 2017;37:363–73.

    Article  PubMed  CAS  Google Scholar 

  33. Shi J, Montay G, Chapel S, Hardy P, Barrett JS, Sack M, et al. Pharmacokinetics and safety of the ketolide telithromycin in patients with renal impairment. J Clin Pharmacol. 2004;44:234–44.

    Article  PubMed  CAS  Google Scholar 

  34. Pfizer Inc. Xalkori (crizotinib capsules, for oral use): US prescribing information. 2016. http://labeling.pfizer.com/showlabeling.aspx?id=676. Accessed 27 Apr 2018.

  35. Li C, Alvey C, Bello A, Wilner KD, Tan W. Pharmacokinetics (PK) of crizotinib (PF-02341066) in patients with advanced non- small cell lung cancer (NSCLC) and other solid tumors. ASCO Meet Abstr. 2011;29:e13065.

    Google Scholar 

  36. Tan W, Wilner KD, Bang Y, Kwak EL, Maki RG, Camidge DR, et al. Pharmacokinetics (PK) of PF-02341066, a dual ALK/MET inhibitor after multiple oral doses to advanced cancer patients. ASCO Meet Abstr. 2010;28:2596.

    Google Scholar 

  37. El-Khoueiry AB, Sarantopoulos J, O’Bryant CL, Ciombor KK, Xu H, O’Gorman M, et al. Evaluation of hepatic impairment on pharmacokinetics and safety of crizotinib in patients with advanced cancer. Cancer Chemother Pharmacol. 2018;81:659–70.

    Article  PubMed  CAS  Google Scholar 

  38. Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55:3–29.

    Article  PubMed  CAS  Google Scholar 

  39. Zhou WJ, Zhang X, Cheng C, Wang F, Wang XK, Liang YJ, et al. Crizotinib (PF-02341066) reverses multidrug resistance in cancer cells by inhibiting the function of P-glycoprotein. Br J Pharmacol. 2012;166:1669–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Tang SC, Nguyen LN, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Int J Cancer. 2014;134:1484–94.

    Article  PubMed  CAS  Google Scholar 

  41. Raza A, Kopp SR, Kotze AC. Synergism between ivermectin and the tyrosine kinase/P-glycoprotein inhibitor crizotinib against Haemonchus contortus larvae in vitro. Vet Parasitol. 2016;227:64–8.

    Article  PubMed  CAS  Google Scholar 

  42. Eliesen GAMA, van den Broek P, van den Heuvel JJ, Bilos A, Pertijs J, van Drongelen J, et al. Editor’s highlight: placental disposition and effects of crizotinib: an ex vivo study in the isolated dual-side perfused human cotyledon. Toxicol Sci. 2017;157:500–9.

    Article  PubMed  CAS  Google Scholar 

  43. Costa DB, Kobayashi S, Pandya SS, Yeo W-LL, Shen Z, Tan W, et al. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J Clin Oncol. 2011;29:e443–5.

    Article  PubMed  Google Scholar 

  44. Abe T, Kakyo M, Tokui T, Nakagomi R, Nishio T, Nakai D, et al. Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J Biol Chem. 1999;274:17159–63.

    Article  PubMed  CAS  Google Scholar 

  45. König J, Cui Y, Nies AT, Keppler D. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol. 2000;278:G156–64.

    Article  PubMed  Google Scholar 

  46. Hagenbuch B, Gui C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica. 2008;38:778–801.

    Article  PubMed  CAS  Google Scholar 

  47. Abe T, Suzuki T, Unno M, Tokui T, Ito S. Thyroid hormone transporters: recent advances. Trends Endocrinol Metab. 2002;13:215–20.

    Article  PubMed  CAS  Google Scholar 

  48. Sato T, Yamaguchi H, Kogawa T, Abe T, Mano N. Organic anion transporting polypeptides 1B1 and 1B3 play an important role in uremic toxin handling and drug-uremic toxin interactions in the liver. J Pharm Pharm Sci. 2014;17:475–84.

    Article  PubMed  Google Scholar 

  49. Zimmerman EI, Hu S, Roberts JL, Gibson AA, Orwick SJ, Li L, et al. Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013;19:1458–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Sato T, Ito H, Hirata A, Abe T, Mano N, Yamaguchi H. Interactions of crizotinib and gefitinib with organic anion-transporting polypeptides (OATP)1B1, OATP1B3 and OATP2B1: gefitinib shows contradictory interaction with OATP1B3. Xenobiotica. 2018;48:73–8.

    Article  PubMed  CAS  Google Scholar 

  51. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA. 2000;97:3473–8.

    Article  PubMed  CAS  Google Scholar 

  52. Kurata Y, Ieiri I, Kimura M, Morita T, Irie S, Urae A, et al. Role of human MDR1 gene polymorphism in bioavailability and interaction of digoxin, a substrate of P-glycoprotein. Clin Pharmacol Ther. 2002;72:209–19.

    Article  PubMed  CAS  Google Scholar 

  53. Sakaeda T, Nakamura T, Okumura K. Pharmacogenetics of MDR1 and its impact on the pharmacokinetics and pharmacodynamics of drugs. Pharmacogenomics. 2003;4:397–410.

    Article  PubMed  CAS  Google Scholar 

  54. Dessilly G, Elens L, Panin N, Karmani L. Demoulin J-BB, Haufroid V. ABCB1 1199G>A polymorphism (rs2229109) affects the transport of imatinib, nilotinib and dasatinib. Pharmacogenomics. 2016;17:883–90.

    Article  PubMed  CAS  Google Scholar 

  55. Fujiwara Y, Hamada A, Mizugaki H, Aikawa H, Hata T, Horinouchi H, et al. Pharmacokinetic profiles of significant adverse events with crizotinib in Japanese patients with ABCB1 polymorphism. Cancer Sci. 2016;107:1117–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Xu H, O’Gorman M, Tan W, Brega N, Bello A. The effects of ketoconazole and rifampin on the single-dose pharmacokinetics of crizotinib in healthy subjects. Eur J Clin Pharmacol. 2015;71:1441–9.

    Article  PubMed  CAS  Google Scholar 

  57. Ou SI, Govindan R, Eaton KD, Otterson GA, Gutierrez ME, Mita AC, et al. Phase I results from a study of crizotinib in combination with erlotinib in patients with advanced nonsquamous non-small cell lung cancer. J Thorac Oncol. 2017;12:145–51.

    Article  PubMed  Google Scholar 

  58. Kubomura Y, Ise Y, Wako T, Katayama S, Noro R, Kubota K. A drug interaction between crizotinib and warfarin in non-small-cell lung cancer: a case report. J Nippon Med Sch. 2017;84:291–3.

    Article  PubMed  Google Scholar 

  59. Cropp JS, Bussey HI. A review of enzyme induction of warfarin metabolism with recommendations for patient management. Pharmacotherapy. 1997;17:917–28.

    PubMed  CAS  Google Scholar 

  60. Ferrari M, Pengo V, Barolo M, Bezzo F, Padrini R. Assessing the relative potency of (S)- and (R)-warfarin with a new PK-PD model, in relation to VKORC1 genotypes. Eur J Clin Pharmacol. 2017;73:699–707.

    Article  PubMed  CAS  Google Scholar 

  61. Yamazaki S, Johnson TR, Smith BJ. Prediction of drug-drug interactions with crizotinib as the CYP3A substrate using a physiologically based pharmacokinetic model. Drug Metab Dispos. 2015;43:1417–29.

    Article  PubMed  CAS  Google Scholar 

  62. Wang E, Nickens DJ, Bello A, Khosravan R, Amantea M, Wilner KD, et al. Clinical implications of the pharmacokinetics of crizotinib in populations of patients with non-small cell lung cancer. Clin Cancer Res. 2016;22:5722–8.

    Article  PubMed  CAS  Google Scholar 

  63. Friboulet L, Li N, Katayama R, Lee CC, Gainor JF, Crystal AS, et al. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov. 2014;4:662–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Shaw AT, Kim D-WW, Mehra R, Tan DS, Felip E, Chow LQ, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370:1189–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Marsilje TH, Pei W, Chen B, Lu W, Uno T, Jin Y, et al. Synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)pyrimidine-2,4-diamine (LDK378) currently in phase 1 and phase 2 clinical trials. J Med Chem. 2013;56:5675–90.

    Article  PubMed  CAS  Google Scholar 

  66. Novartis Pharmaceuticals Corporation. Zykadia (ceritinib capsules, for oral use): US prescribing information. 2017. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/205755s009lbl.pdf. Accessed 27 Apr 2018.

  67. Khozin S, Blumenthal GM, Zhang L, Tang S, Brower M, Fox E, et al. FDA approval: ceritinib for the treatment of metastatic anaplastic lymphoma kinase-positive non-small cell lung cancer. Clin Cancer Res. 2015;21:2436–9.

    Article  PubMed  CAS  Google Scholar 

  68. Kim D, Mehra R, Tan DSW, Felip E, Chow LQM, Camidge DR, et al. Efficacy and safety of ceritinib in patients with advanced anaplastic lymphoma kinase (ALK)-rearranged (ALK +) non-small cell lung cancer (NSCLC): an update of ASCEND-1. Int J Radiat Oncol Biol Phys. 2014;9(5):S33–4.

    Article  Google Scholar 

  69. Katayama R, Friboulet L, Koike S, Lockerman EL, Khan TM, Gainor JF, et al. Two novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor alectinib. Clin Cancer Res. 2014;20:5686–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Nishio M, Murakami H, Horiike A, Takahashi T, Hirai F, Suenaga N, et al. Phase I study of ceritinib (LDK378) in Japanese patients with advanced, anaplastic lymphoma kinase-rearranged non-small-cell lung cancer or other tumors. J Thorac Oncol. 2015;10:1058–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Gainor JF, Friboulet L, Katayama R, Awad MM, Lockerman EL, Schultz K, et al. Evolution of resistance in ALK-positive patients treated with ALK tyrosine kinase inhibitors (TKIs). J Clin Oncol. 2014;32(15 Suppl):8031. https://doi.org/10.1200/jco.2014.32.15_suppl.8031.

    Article  Google Scholar 

  72. US Food and Drug Administration. Clinical pharmacology and biopharmaceutics review(s) of ceritinib. 2014. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/205755Orig1s000ClinPharmR.pdf. Accessed 27 Apr 2018.

  73. Lau YY, Gu W, Lin T, Viraswami-Appanna K, Cai C, Scott JW, et al. Assessment of drug-drug interaction potential between ceritinib and proton pump inhibitors in healthy subjects and in patients with ALK-positive non-small cell lung cancer. Cancer Chemother Pharmacol. 2017;79:1119–28.

    Article  PubMed  CAS  Google Scholar 

  74. Lau YY, Gu W, Lin T, Song D, Yu R, Scott JW. Effects of meal type on the oral bioavailability of the ALK inhibitor ceritinib in healthy adult subjects. J Clin Pharmacol. 2016;56:559–66.

    Article  PubMed  CAS  Google Scholar 

  75. Hong Y, Passos VQ. Huang P-HH, Lau YY. Population pharmacokinetics of ceritinib in adult patients with tumors characterized by genetic abnormalities in anaplastic lymphoma kinase. J Clin Pharmacol. 2017;57:652–62.

    Article  PubMed  CAS  Google Scholar 

  76. Novartis Europharm Limited. Zykadia (hard capsules): EU summary of product characteristics. 2015. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/003819/WC500187506.pdf. Accessed 27 Apr 2018.

  77. Kort A, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Brain accumulation of the EML4-ALK inhibitor ceritinib is restricted by P-glycoprotein (P-GP/ABCB1) and breast cancer resistance protein (BCRP/ABCG2). Pharmacol Res. 2015;102:200–7.

    Article  PubMed  CAS  Google Scholar 

  78. Katayama R, Sakashita T, Yanagitani N, Ninomiya H, Horiike A, Friboulet L, et al. P-glycoprotein mediates ceritinib resistance in anaplastic lymphoma kinase-rearranged non-small cell lung cancer. EBioMedicine. 2016;3:54–66.

    Article  PubMed  Google Scholar 

  79. Hu J, Zhang X, Wang F, Wang X, Yang K, Xu M, et al. Effect of ceritinib (LDK378) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo. Oncotarget. 2015;6:44643–59.

    PubMed  PubMed Central  Google Scholar 

  80. Koide H, Tsujimoto M, Takeuchi A, Tanaka M, Ikegami Y, Tagami M, et al. Substrate-dependent effects of molecular-targeted anticancer agents on activity of organic anion transporting polypeptide 1B1. Xenobiotica. 2017;10:1–13. https://doi.org/10.1080/00498254.2017.1393582 (Epub ahead of print).

  81. Novartis Pharmaceuticals Corporation. Gleevec (imatinib mesylate tablets, for oral use): US prescribing information. 2017. https://www.pharma.us.novartis.com/sites/www.pharma.us.novartis.com/files/gleevec_tabs.pdf. Accessed 27 Apr 2018.

  82. Abbas R, Hug BA, Leister C, Gaaloul ME, Chalon S, Sonnichsen D. A phase I ascending single-dose study of the safety, tolerability, and pharmacokinetics of bosutinib (SKI-606) in healthy adult subjects. Cancer Chemother Pharmacol. 2012;69:221–7.

    Article  PubMed  CAS  Google Scholar 

  83. Cho BC, Kim D-WW, Bearz A, Laurie SA, McKeage M, Borra G, et al. ASCEND-8: a randomized phase 1 study of ceritinib, 450 mg or 600 mg, taken with a low-fat meal versus 750 mg in fasted state in patients with anaplastic lymphoma kinase (ALK)-rearranged metastatic non-small cell lung cancer (NSCLC). J Thorac Oncol. 2017;12:1357–67.

    Article  PubMed  Google Scholar 

  84. Wilder-Smith C, Röhss K, Bokelund Singh S, Sagar M, Nagy P. The effects of dose and timing of esomeprazole administration on 24-h, daytime and night-time acid inhibition in healthy volunteers. Aliment Pharmacol Ther. 2010;32:1249–56.

    Article  PubMed  CAS  Google Scholar 

  85. Kinoshita K, Asoh K, Furuichi N, Ito T, Kawada H, Hara S, et al. Design and synthesis of a highly selective, orally active and potent anaplastic lymphoma kinase inhibitor (CH5424802). Bioorg Med Chem. 2012;20:1271–80.

    Article  PubMed  CAS  Google Scholar 

  86. Kodama T, Tsukaguchi T, Satoh Y, Yoshida M, Watanabe Y, Kondoh O, et al. Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer. Mol Cancer Ther. 2014;13:2910–8.

    Article  PubMed  CAS  Google Scholar 

  87. Gadgeel SM, Gandhi L, Riely GJ, Chiappori AA, West HL, Azada MC, et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 2014;15:1119–28.

    Article  PubMed  CAS  Google Scholar 

  88. Gainor JF. Ou S-HIH, Logan J, Borges LF, Shaw AT. The central nervous system as a sanctuary site in ALK-positive non-small-cell lung cancer. J Thorac Oncol. 2013;8:1570–3.

    Article  PubMed  CAS  Google Scholar 

  89. Costa DB, Shaw AT, Ou S-HIH, Solomon BJ, Riely GJ, Ahn M-JJ, et al. Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J Clin Oncol. 2015;33:1881–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Seto T, Kiura K, Nishio M, Nakagawa K, Maemondo M, Inoue A, et al. CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, phase 1-2 study. Lancet Oncol. 2013;14:590–8.

    Article  PubMed  CAS  Google Scholar 

  91. Gadgeel SM, Shaw AT, Govindan R, Gandhi L, Socinski MA, Camidge DR, et al. Pooled analysis of CNS response to alectinib in two studies of pretreated patients with ALK-positive non-small-cell lung cancer. J Clin Oncol. 2016;34:4079–85.

    Article  PubMed  CAS  Google Scholar 

  92. US Food and Drug Administration. Approval letter: application number 208434Orig1s000. 2015. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/208434Orig1s000Approv.pdf. Accessed 27 Apr 2018.

  93. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: non-small cell lung cancer, version 2. 2018. https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf. Accessed 5 Feb 2018.

  94. Takeuchi S, Murayama T, Yoshimura K, Kawakami T, Takahara S, Imai Y, et al. Phase I/II study of alectinib in lung cancer with RET fusion gene: study protocol. J Med Invest. 2017;64:317–20.

    Article  PubMed  Google Scholar 

  95. Morcos PN, Yu L, Bogman K, Sato M, Katsuki H, Kawashima K, et al. Absorption, distribution, metabolism and excretion (ADME) of the ALK inhibitor alectinib: results from an absolute bioavailability and mass balance study in healthy subjects. Xenobiotica. 2017;47:217–29.

    Article  PubMed  CAS  Google Scholar 

  96. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10:1093–5.

    Article  PubMed  CAS  Google Scholar 

  97. Kodama T, Hasegawa M, Takanashi K, Sakurai Y, Kondoh O, Sakamoto H. Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases. Cancer Chemother Pharmacol. 2014;74:1023–8.

    Article  PubMed  CAS  Google Scholar 

  98. Sakamoto H, Tsukaguchi T, Hiroshima S, Kodama T, Kobayashi T, Fukami TA, et al. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell. 2011;19:679–90.

    Article  PubMed  CAS  Google Scholar 

  99. Morcos PN, Parrott N, Banken L, Timpe C, Lindenberg M, Guerini E, et al. Effect of the wetting agent sodium lauryl sulfate on the pharmacokinetics of alectinib: results from a bioequivalence study in healthy subjects. Clin Pharmacol Drug Dev. 2017;6:266–79.

    Article  PubMed  CAS  Google Scholar 

  100. Hida T, Nakagawa K, Seto T, Satouchi M, Nishio M, Hotta K, et al. Pharmacologic study (JP28927) of alectinib in Japanese patients with ALK + non-small-cell lung cancer with or without prior crizotinib therapy. Cancer Sci. 2016;107:1642–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Nakagawa T, Fowler S, Takanashi K, Youdim K, Yamauchi T, Kawashima K, et al. In vitro metabolism of alectinib, a novel potent ALK inhibitor, in human: contribution of CYP3A enzymes. Xenobiotica. 2018;48:546–54.

    Article  PubMed  CAS  Google Scholar 

  102. Sekiguchi N, Nagao S, Takanashi K, Kato M, Kaneko A, Morita K, et al. Preclinical evaluation of the potential for cytochrome P450 inhibition and induction of the selective ALK inhibitor, alectinib. Xenobiotica. 2017;47:1042–51.

    Article  PubMed  CAS  Google Scholar 

  103. Cleary Y, Gertz M, Morcos PN, Yu L, Youdim K, Phipps A, et al. Model-based assessments of CYP-mediated drug–drug interaction risk of alectinib: physiologically based pharmacokinetic modeling supported clinical development. Clin Pharmacol Ther. 2017. https://doi.org/10.1002/cpt.956 (Epub ahead of print).

  104. Morcos PN, Cleary Y, Guerini E, Dall G, Bogman K, De Petris L, et al. Clinical drug-drug interactions through cytochrome P450 3A (CYP3A) for the selective ALK inhibitor alectinib. Clin Pharmacol Drug Dev. 2017;6:280–91.

    Article  PubMed  CAS  Google Scholar 

  105. Roche Group. Alecensa (alectinib capsules, for oral use): US prescribing information. 2015. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/208434s000lbl.pdf. Accessed 27 Apr 2018.

  106. Yang K, Chen Y, To KK, Wang F, Li D, Chen L, et al. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo. Exp Mol Med. 2017;49:e303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Morcos PN, Guerini E, Parrott N, Dall G, Blotner S, Bogman K, et al. Effect of food and esomeprazole on the pharmacokinetics of alectinib, a highly selective ALK inhibitor, in healthy subjects. Clin Pharmacol Drug Dev. 2017;6:388–97.

    Article  PubMed  CAS  Google Scholar 

  108. Hsu J, Carnac R, Henschel V, Bogman K, Martin-Facklam M, Guerini E, et al. Population pharmacokinetics (popPK) and exposure-response (ER) analyses to confirm alectinib 600 mg BID dose selection in a crizotinib-progressed or intolerant population [abstract]. J Clin Oncol. 2016;34 Suppl:e20598.

  109. Zhang S, Anjum R, Squillace R, Nadworny S, Zhou T, Keats J, et al. The potent ALK inhibitor brigatinib (AP26113) overcomes mechanisms of resistance to first- and second-generation ALK inhibitors in preclinical models. Clin Cancer Res. 2016;22:5527–38.

    Article  PubMed  CAS  Google Scholar 

  110. Gettinger SN, Bazhenova LA, Langer CJ, Salgia R, Gold KA, Rosell R, et al. Activity and safety of brigatinib in ALK-rearranged non-small-cell lung cancer and other malignancies: a single-arm, open-label, phase 1/2 trial. Lancet Oncol. 2016;17:1683–96.

    Article  PubMed  CAS  Google Scholar 

  111. Markham A. Brigatinib: first global approval. Drugs. 2017;77:1131–5.

    Article  PubMed  CAS  Google Scholar 

  112. ARIAD Pharmaceuticals Inc. Alunbrig (brigatinib): US prescribing information. 2017. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208772lbl.pdf. Accessed 27 Apr 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Ieiri.

Ethics declarations

Funding

No funding was received for the preparation of this article.

Conflict of interest

Takeshi Hirota, Shota Muraki, and Ichiro Ieiri have no conflicts of interests directly relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirota, T., Muraki, S. & Ieiri, I. Clinical Pharmacokinetics of Anaplastic Lymphoma Kinase Inhibitors in Non-Small-Cell Lung Cancer. Clin Pharmacokinet 58, 403–420 (2019). https://doi.org/10.1007/s40262-018-0689-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-018-0689-7

Navigation