Skip to main content
Log in

Clinical Pharmacokinetics and Pharmacodynamics of Cediranib

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Cediranib potently and selectively inhibits all three vascular endothelial growth factor receptors (VEGFR-1, -2 and -3), and clinical studies have shown that it is effective in patients with ovarian cancer at a dose of 20 mg/day. Cediranib is absorbed moderately slowly; a high-fat meal reduced the cediranib area under the plasma concentration–time curve (AUC) by 24% and maximum plasma concentration (C max) by 33%. Cediranib binds to serum albumin and α1-acid glycoprotein; protein binding in human plasma is approximately 95%. The cediranib AUC and C max increase proportionally with dose from 0.5 to 60 mg, and cediranib has linear pharmacokinetics (PK) over time. Cediranib is metabolized via flavin-containing monooxygenase 1 and 3 (FMO1, FMO3) and uridine 5′-diphospho-glucuronosyltransferase (UGT) 1A4. Cediranib and its metabolites are mainly excreted in faeces (59%), with <1% of unchanged drug being excreted in urine. The apparent oral clearance is moderate and the mean terminal half-life is 22 h. Cediranib is a substrate of multidrug resistance-1 (MDR1) protein (also known as P-glycoprotein [P-gp]). Coadministration with ketoconazole, a potent P-gp inhibitor, increases cediranib AUC at steady-state (AUCss) in patients by 21%, while coadministration with rifampicin, a potent inducer of P-gp, decreases cediranib AUCss by 39%. Administration of cediranib with chemotherapies demonstrated minimal PK impact on each other. No dose adjustment is recommended for patients with mild or moderate hepatic or renal impairment, and no dose adjustment is needed on the basis of age and body weight. A pooled analysis at doses of 0.5–60 mg showed no significant increase in QTc intervals. Increases in blood pressure and the incidence of diarrhoea were associated with increased cediranib dose and systemic exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wedge SR, Kendrew J, Hennequin LF, Valentine PJ, Barry ST, Brave SR, et al. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res. 2005;65:4389–400.

    Article  CAS  PubMed  Google Scholar 

  2. Heckman CA, Holopainen T, Wirzenius M, Keskitalo S, Jeltsch M, Ylä-Herttuala S, et al. The tyrosine kinase inhibitor cediranib blocks ligand-induced vascular endothelial growth factor receptor-3 activity and lymphangiogenesis. Cancer Res. 2008;68:4754–62.

    Article  CAS  PubMed  Google Scholar 

  3. Li J, Al-Huniti N, Henningsson A, Tang W, Masson E. Population pharmacokinetic (PK) and exposure simulation analyses for cediranib (AZD2171) in pooled phase I/II studies in patients with cancer. J Pharmacokinet Pharmacodyn. 2016;43:S60.

    Google Scholar 

  4. Dietrich J, Wang D, Batchelor TT. Cediranib: profile of a novel anti-angiogenic agent in patients with glioblastoma. Expert Opin Investig Drugs. 2009;18:1549–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ruscito I, Gasparri ML, Marchetti C, Medici CD, Bracchi C, Palaia I, et al. Cediranib in ovarian cancer: state of the art and future perspectives. Tumour Biol. 2016;37:2833–9.

    Article  CAS  PubMed  Google Scholar 

  6. Ledermann JA, Andrew C, Embleton AC, Raja F, Perren TJ, Jayson GC, et al.; on behalf of the ICON6 collaborators. Cediranib in patients with relapsed platinum-sensitive ovarian cancer (ICON6): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016;387:1066–74.

  7. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer. 2002;2:795–803.

    Article  CAS  PubMed  Google Scholar 

  8. Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C, et al. AVOREN trial Investigators. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370:2103–11.

    Article  PubMed  Google Scholar 

  9. Padera TP, Kuo AH, Hoshida T, Liao S, Lobo J, Kozak KR, et al. Differential response of primary tumor versus lymphatic metastasis to VEGFR-2 and VEGFR-3 kinase inhibitors cediranib and vandetanib. Mol Cancer Ther. 2008;7:2272–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brave SR, Ratcliffe K, Wilson Z, James NH, Ashton S, Wainwright A, et al. Assessing the activity of cediranib, a VEGFR-2/3 tyrosine kinase inhibitor, against VEGFR-1 and members of the structurally related PDGFR family. Mol Cancer Ther. 2011;10:861–73.

    Article  CAS  PubMed  Google Scholar 

  11. Goodlad RA, Ryan AJ, Wedge SR, Pyrah IT, Alferez D, Poulsom R, et al. Inhibiting vascular endothelial growth factor receptor-2 signaling reduces tumor burden in the ApcMin/+ mouse model of early intestinal cancer. Carcinogenesis. 2006;27:2133–9.

    Article  CAS  PubMed  Google Scholar 

  12. Miller KD, Miller M, Mehrotra S, Agarwal B, Mock BH, Zheng QH, et al. A physiologic imaging pilot study of breast cancer treated with AZD2171. Clin Cancer Res. 2006;12:281–8.

    Article  CAS  PubMed  Google Scholar 

  13. Smith NR, James NH, Oakley I, Wainwright A, Copley C, Kendrew J, et al. Acute pharmacodynamic and antivascular effects of the vascular endothelial growth factor signaling inhibitor AZD2171 in Calu-6 human lung tumor xenografts. Mol Cancer Ther. 2007;6:2198–208.

    Article  CAS  PubMed  Google Scholar 

  14. Gomez-Rivera F, Santillan-Gomez AA, Younes MN, Kim S, Fooshee D, Zhao M, et al. The tyrosine kinase inhibitor, AZD2171, inhibits vascular endothelial growth factor receptor signaling and growth of anaplastic thyroid cancer in an orthotopic nude mouse model. Clin Cancer Res. 2007;13(15 Pt 1):4519–27.

    Article  CAS  PubMed  Google Scholar 

  15. Takeda M, Arao T, Yokote H, Komatsu T, Yanagihara K, Sasaki H, et al. AZD2171 shows potent antitumor activity against gastric cancer over-expressing fibroblast growth factor receptor 2/keratinocyte growth factor receptor. Clin Cancer Res. 2007;13:3051–7.

    Article  CAS  PubMed  Google Scholar 

  16. Drevs J, Siegert P, Medinger M, Mross K, Strecker R, Zirrgiebel U, et al. Phase I clinical study of AZD2171, an oral vascular endothelial growth factor signaling inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2007;25:3045–54.

    Article  CAS  PubMed  Google Scholar 

  17. Ryan CJ, Stadler WM, Roth B, Hutcheon D, Conry S, Puchalski T, et al. Phase I dose escalation and pharmacokinetic study of AZD2171, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinase, in patients with hormone refractory prostate cancer (HRPC). Invest New Drugs. 2007;25:445–51.

    Article  CAS  PubMed  Google Scholar 

  18. Saura C, Baselga J, Herbst R, del Campo J, Marotti M, Tessier J, et al. Antitumor activity of cediranib in patients with metastatic or recurrent head and neck cancer (HNC) or recurrent non-small cell lung cancer (NSCLC): an open-label exploratory study. J Clin Oncol. 2009;27 Suppl:abstract no. 6023.

  19. Reid A, Tang A, Spicer J, Gallerani E, Mears D, Shaw H, et al. An exploration of the ability of DCE-CT scans to evaluate blood flow in an open, pharmacokinetic (PK) and mass balance study of 14[C]-cediranib. Mol Cancer Ther. 2007;6 (11 Suppl):abstract no. B259.

  20. van Cruijsen H, Voest EE, Punt CJ, Hoekman K, Witteveen PO, Meijerink MR, et al. Phase I evaluation of cediranib, a selective VEGFR signaling inhibitor, in combination with gefitinib in patients with advanced tumours. Eur J Cancer. 2010;46:901–11.

    Article  PubMed  Google Scholar 

  21. Lorusso P, Shields AF, Gadgeel S, Vaishampayan U, Guthrie T, Puchalski T, et al. Cediranib in combination with various anticancer regimens: results of a phase I multi-cohort study. Invest New Drugs. 2011;29:1395–405.

    Article  CAS  PubMed  Google Scholar 

  22. Laurie SA, Gauthier I, Arnold A, Shepherd FA, Ellis PM, Chen E, et al. Phase I and pharmacokinetic study of daily oral AZD2171, an inhibitor of vascular endothelial growth factor tyrosine kinases, in combination with carboplatin and paclitaxel in patients with advanced non–small-cell lung cancer: the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2008;26:1871–8.

    Article  CAS  PubMed  Google Scholar 

  23. Goss G, Shepherd FA, Laurie S, Gauthier I, Leighl N, Chen E, et al. A phase I and pharmacokinetic study of daily oral cediranib, an inhibitor of vascular endothelial growth factor tyrosine kinases, in combination with cisplatin and gemcitabine in patients with advanced non-small cell lung cancer: a study of the National Cancer Institute of Canada Clinical Trials Group. Eur J Cancer. 2009;45:782–8.

    Article  CAS  PubMed  Google Scholar 

  24. Laurie SA, Solomon BJ, Seymour L, Ellis PM, Goss GD, Shepherd FA, et al. Randomised, double-blind trial of carboplatin and paclitaxel with daily oral cediranib or placebo in patients with advanced non-small cell lung cancer: NCIC Clinical Trials Group study BR29. Eur J Cancer. 2014;50:706–12.

    Article  CAS  PubMed  Google Scholar 

  25. Yamamoto N, Tamura T, Yamamoto N, Yamada K, Yamada Y, Nokihara H, et al. Phase I, dose escalation and pharmacokinetic study of cediranib (RECENTIN™), a highly potent and selective VEGFR signaling inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 2009;64:1165–72.

    Article  CAS  PubMed  Google Scholar 

  26. van Herpen CM, Lassen U, Desar IM, Brown KH, Marotti M, de Jonge MJ. Pharmacokinetics and tolerability of cediranib, a potent VEGF signalling inhibitor, in cancer patients with hepatic impairment. Anticancer Drugs. 2013;24:204–11.

    Article  PubMed  Google Scholar 

  27. Satoh T, Yamaguchi K, Boku N, Okamoto W, Shimamura T, Yamazaki K, et al. Phase I results from a two-part phase I/II study of cediranib in combination with mFOLFOX6 in Japanese patients with metastatic colorectal cancer. Invest New Drugs. 2012;30:1511–8.

    Article  CAS  PubMed  Google Scholar 

  28. Satoh T, Yamada Y, Muro K, Hayashi H, Shimada Y, Takahari D, et al. Phase I study of cediranib in combination with cisplatin plus fluoropyrimidine (S-1 or capecitabine) in Japanese patients with previously untreated advanced gastric cancer. Cancer Chemother Pharmacol. 2012;69:439–46.

    Article  CAS  PubMed  Google Scholar 

  29. Lassen U, Miller WH, Hotte S, Evans TR, Kollmansberger C, Adamson D, et al. Phase I evaluation of the effects of ketoconazole and rifampicin on cediranib pharmacokinetics in patients with solid tumours. Cancer Chemother Pharmacol. 2013;71:543–9.

    Article  CAS  PubMed  Google Scholar 

  30. Mitchell CL, O’Connor JP, Roberts C, Watson Y, Jackson A, Cheung S, et al. A two-part phase II study of cediranib in patients with advanced solid tumours: the effect of food on single-dose pharmacokinetics and an evaluation of safety, efficacy and imaging pharmacodynamics. Cancer Chemother Pharmacol. 2011;68:631–41.

    Article  CAS  PubMed  Google Scholar 

  31. Langenberg MH, van Herpen CM, De Bono J, Schellens JH, Unger C, Hoekman K, et al. Effective strategies for management of hypertension after vascular endothelial growth factor signaling inhibition therapy: results from a phase II randomized, factorial, double-blind study of cediranib in patients with advanced solid tumors. J Clin Oncol. 2009;27:6152–9.

    Article  CAS  PubMed  Google Scholar 

  32. Mulders P, Hawkins R, Nathan P, de Jong I, Osanto S, Porfiri E, et al. Cediranib monotherapy in patients with advanced renal cell carcinoma: results of a randomised phase II study. Eur J Cancer. 2012;48:527–37.

    Article  CAS  PubMed  Google Scholar 

  33. Judson I, Scurr M, Gardner K, Barquin E, Marotti M, Collins B, et al. Phase II study of cediranib in patients with advanced gastrointestinal stromal tumors or soft-tissue sarcoma. Clin Cancer Res. 2014;20:3603–12.

    Article  CAS  PubMed  Google Scholar 

  34. Ings RM. The melanin binding of drugs and its implications. Drug Metab Rev. 1984;15:1183–212.

    Article  CAS  PubMed  Google Scholar 

  35. Schulz-Utermoehl T, Spear M, Pollard CR, Pattison C, Rollison H, Sarda S, et al. In vitro hepatic metabolism of cediranib, a potent vascular endothelial growth factor tyrosine kinase inhibitor: interspecies comparison and human enzymology. Drug Metab Dispos. 2010;38:1688–97.

    Article  CAS  PubMed  Google Scholar 

  36. Fox E, Aplenc R, Bagatell R, Chuk MK, Dombi E, Goodspeed W, et al. A phase 1 trial and pharmacokinetic study of cediranib, an orally bioavailable pan-vascular endothelial growth factor receptor inhibitor, in children and adolescents with refractory solid tumors. J Clin Oncol. 2010;28:5174–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kieran MW, Chi S, Goldman S, Onar-Thomas A, Poussaint TY, Vajapeyam S, et al. A phase I trial and PK study of cediranib (AZD2171), an orally bioavailable pan-VEGFR inhibitor, in children with recurrent or refractory primary CNS tumors. Childs Nerv Syst. 2015;31:1433–45.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang EJ, Lew K, Casciano CN, Clement RP, Johnson WW. Interaction of common azole antifungals with P glycoprotein. Antimicrob Agents Chemother. 2002;46:160–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem. 2001;276:14581–7.

    Article  CAS  PubMed  Google Scholar 

  40. European Medicines Agency. Committee for Medicinal Products for Human Use (CHMP). Guideline on the investigation of drug interactions. CPMP/EWP/560/95/Rev. 1 Corr. 2**. European Medicines Agency; 21 Jun 2012.

  41. Raja FA, Griffin CL, Qian W, Hirte H, Parmar MK, Swart AM, et al. Initial toxicity assessment of ICON6: a randomised trial of cediranib plus chemotherapy in platinum-sensitive relapsed ovarian cancer. Br J Cancer. 2011;105:884–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Johnston RA, Rawling T, Chan T, Zhou F, Murray M. Selective inhibition of human solute carrier transporters by multikinase inhibitors. Drug Metab Dispos. 2014;42:1851–7.

    Article  PubMed  Google Scholar 

  43. Graham MA, Lockwood GF, Greenslade D, Brienza S, Bayssas M, Gamelin E. Clinical pharmacokinetics of oxaliplatin: a critical review. Clin Cancer Res. 2000;6:1205–18.

    CAS  PubMed  Google Scholar 

  44. Chen E, Jonker D, Gauthier I, MacLean M, Wells J, Powers J, et al. Phase I study of cediranib in combination with oxaliplatin and infusional 5-fluorouracil in patients with advanced colorectal cancer. Clin Cancer Res. 2009;15:1481–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank their clinical pharmacology colleague, Dr. K. Brown, and bioanalysis colleague, Dr. C. Bailey, for their support in the preparation of this manuscript. They also thank Clara Tan, PhD, from Mudskipper Business Ltd, who provided editorial assistance funded by AstraZeneca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifeng Tang.

Ethics declarations

Conflicts of interest

Weifeng Tang, Jianguo Li, and Eric Masson are employees of AstraZeneca. Alex McCormick was an employee of AstraZeneca at the time of manuscript preparation.

Funding

This research was sponsored by AstraZeneca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., McCormick, A., Li, J. et al. Clinical Pharmacokinetics and Pharmacodynamics of Cediranib. Clin Pharmacokinet 56, 689–702 (2017). https://doi.org/10.1007/s40262-016-0488-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-016-0488-y

Keywords

Navigation