Skip to main content
Log in

Population Genetic-Based Pharmacokinetic Modeling of Methadone and its Relationship with the QTc Interval in Opioid-Dependent Patients

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Methadone is a μ-opioid agonist widely used for the treatment of pain, and for detoxification or maintenance treatment in opioid addiction. It has been shown to exhibit large pharmacokinetic variability and concentration–QTc relationships. In this study we investigated the relative influence of genetic polymorphism and other variables on the dose concentration–QTc relationship.

Patients and Methods

A population model for methadone enantiomers in 251 opioid-dependent patients was developed using non-linear mixed effect modeling (NONMEM®). Various models were tested to characterize the pharmacokinetics of (R)- and (S)-methadone and the pharmacokinetic–pharmacodynamic relationship, while including demographics, physiological conditions, co-medications, and genetic variants as covariates. Model-based simulations were performed to assess the relative increase in QTc with dose upon stratification according to genetic polymorphisms involved in methadone disposition.

Results

A two-compartment model with first-order absorption and lag time provided the best model fit for (R)- and (S)-methadone pharmacokinetics. (S)-methadone clearance was influenced by cytochrome P450 (CYP) 2B6 activity, ABCB1 3435C>T, and α-1 acid glycoprotein level, while (R)-methadone clearance was influenced by CYP2B6 activity, POR*28, and CYP3A4*22. A linear model described the methadone concentration–QTc relationship, with a mean QTc increase of 9.9 ms and 19.2 ms per 1000 ng/ml of (R)- and (S)-methadone, respectively. Simulations with different methadone doses up to 240 mg/day showed that <8 % of patients presented with a QTc interval above 450 ms; however, this might reach 12 to 18 % for (R)- and (S)-methadone, respectively, in patients with a genetic status associated with a decreased methadone elimination at doses exceeding 240 mg/day.

Conclusion

Risk factor assessment, electrocardiogram monitoring, and therapeutic drug monitoring are beneficial to optimize treatment in methadone patients, especially for those who have low levels despite high methadone doses, or who are at risk of overdosing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization. WHO model list of essential medicines. 2005. Available at: http://www.who.int/medicines/publications/essentialmedicines/en/index.html. Accessed 15 Mar 2006.

  2. Chou R, Weimer MB, Dana T. Methadone overdose and cardiac arrhythmia potential: findings from a review of the evidence for an American Pain Society and College on Problems of Drug Dependence clinical practice guideline. J Pain. 2014;15(4):338–65.

    Article  CAS  PubMed  Google Scholar 

  3. Kristensen K, Christensen CB, Christrup LL. The mu1, mu2, delta, kappa opioid receptor binding profiles of methadone stereoisomers and morphine. Life Sci. 1995;56:L45–50.

    Article  Google Scholar 

  4. Eap CB, Crettol S, Rougier JS, Schlapfer J, Sintra GL, Deglon JJ, et al. Stereoselective block of hERG channel by (S)-methadone and QT interval prolongation in CYP2B6 slow metabolizers. Clin Pharmacol Ther. 2007;81(5):719–28.

    Article  CAS  PubMed  Google Scholar 

  5. Lin C, Somberg T, Molnar J, Somberg J. The effects of chiral isolates of methadone on the cardiac potassium channel IKr. Cardiology. 2009;113(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  6. Ansermot N, Albayrak O, Schlapfer J, Crettol S, Croquette-Krokar M, Bourquin M, et al. Substitution of (R, S)-methadone by (R)-methadone: impact on QTc interval. Arch Intern Med. 2010;170(6):529–36.

    Article  CAS  PubMed  Google Scholar 

  7. Crettol S, Déglon JJ, Besson J, Croquette-Krokkar M, Hämmig R, Gothuey I, et al. ABCB1 and cytochrome P450 genotypes and phenotypes: influence on methadone plasma levels and response to treatment. Clin Pharmacol Ther. 2006;80(6):668–81.

    Article  CAS  PubMed  Google Scholar 

  8. Gerber JG, Rhodes RJ, Gal J. Stereoselective metabolism of methadone N-demethylation by cytochrome P4502B6 and 2C19. Chirality. 2004;16(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  9. Kharasch ED, Hoffer C, Whittington D, Sheffels P. Role of hepatic and intestinal cytochrome P450 3A and 2B6 in the metabolism, disposition, and miotic effects of methadone. Clin Pharmacol Ther. 2004;76(3):250–69.

    Article  CAS  PubMed  Google Scholar 

  10. Totah RA, Sheffels P, Roberts T, Whittington D, Thummel K, Kharasch ED. Role of CYP2B6 in stereoselective human methadone metabolism. Anesthesiology. 2008;108(3):363–74.

    Article  CAS  PubMed  Google Scholar 

  11. Chang Y, Fang WB, Lin SN, Moody DE. Stereo-selective metabolism of methadone by human liver microsomes and cDNA-expressed cytochrome P450s: a reconciliation. Basic Clin Pharmacol Toxicol. 2011;108(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  12. Crettol S, Déglon JJ, Besson J, Croquette-Krokkar M, Gothuey I, Hämmig R, et al. Methadone enantiomer plasma levels, CYP2B6, CYP2C19 and CYP2C9 genotypes, and response to treatment. Clin Pharmacol Ther. 2005;78:593–604.

    Article  CAS  PubMed  Google Scholar 

  13. Wang SC, Ho IK, Tsou HH, Tian JN, Hsiao CF, Chen CH, et al. CYP2B6 polymorphisms influence the plasma concentration and clearance of the methadone S-enantiomer. J Clin Psychopharmacol. 2011;31(4):463–9.

    Article  CAS  PubMed  Google Scholar 

  14. Pandey AV, Sproll P. Pharmacogenomics of human P450 oxidoreductase. Front Pharmacol. 2014;5:103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Florian J, Garnett CE, Nallani SC, Rappaport BA, Throckmorton DC. A modeling and simulation approach to characterize methadone QT prolongation using pooled data from five clinical trials in MMT patients. Clin Pharmacol Ther. 2012;91(4):666–72.

    Article  CAS  PubMed  Google Scholar 

  16. Foster DJR, Somogyi AA, White JM, Bochner F. Population pharmacokinetics of (R)-, (S)- and rac-methadone in methadone maintenance patients. Br J Clin Pharmacol. 2004;57(6):742–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bart G, Lenz S, Straka RJ, Brundage RC. Ethnic and genetic factors in methadone pharmacokinetics: a population pharmacokinetic study. Drug Alcohol Depend. 2014;145:185–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ansermot N, Rudaz S, Brawand-Amey M, Fleury-Souverain S, Veuthey JL, Eap CB. Validation and long-term evaluation of a modified on-line chiral analytical method for therapeutic drug monitoring of (R, S)-methadone in clinical samples. J Chromatogr B. 2009;877(23):2301–7.

    Article  CAS  Google Scholar 

  19. Benmebarek M, Devaud C, Gex-Fabry M, Powell Golay K, Brogli C, Baumann P, et al. Effects of grapefruit juice on the pharmacokinetics of the enantiomers of methadone. Clin Pharmacol Ther. 2004;76:55–63.

    Article  CAS  PubMed  Google Scholar 

  20. Eap CB, Finkbeiner T, Gastpar M, Scherbaum N, Powell K, Baumann P. Replacement of (R)-methadone by a double dose of (R, S)-methadone in addicts: interindividual variability of the (R)/(S) ratios and evidence of adaptive changes in methadone pharmacokinetics. Eur J Clin Pharmacol. 1996;50:385–9.

    Article  CAS  PubMed  Google Scholar 

  21. Oneda B, Crettol S, Jaquenoud Sirot E, Bochud M, Ansermot N, Eap CB. The P450 oxidoreductase is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogenet Genomics. 2009;19(11):877–83.

    Article  CAS  PubMed  Google Scholar 

  22. Dobrinas M, Crettol S, Oneda B, Lahyani R, Rotger M, Choong E, et al. Contribution of CYP2B6 alleles in explaining extreme (S)-methadone plasma levels: a CYP2B6 gene resequencing study. Pharmacogenet Genomics. 2013;23(2):84–93.

    Article  CAS  PubMed  Google Scholar 

  23. Crettol S, Venetz JP, Fontana M, Aubert JD, Ansermot N, Fathi M, et al. Influence of ABCB1 genetic polymorphism on cyclosporine intracellular concentrations in transplant recipients. Pharmacogenet Genomics. 2008;18:307–15.

    Article  CAS  PubMed  Google Scholar 

  24. Service de pharmacologie et toxicologie clinique; Hôpitaux Universitaires Genève. CYP P450 Drug Interactions. 2011. Available at: http://pharmacoclin.hug-ge.ch/library/pdf/cytp450.pdf. Accessed 13 Dec 2011.

  25. Division of Clinical Pharmacology, Indiana University Department of Medicine. Cytochromes P450 drug-interaction table 2009. Available at: http://medicine.iupui.edu/clinpharm/ddis/table.aspx. Accessed 9 Oct 2012.

  26. Compendium Suisse des Medicaments. 2014. Available at: http://www.swissmedicinfo.ch. Accessed 24 Feb 2014.

  27. Walsky RL, Astuccio AV, Obach RS. Evaluation of 227 drugs for in vitro inhibition of cytochrome P450 2B6. J Clin Pharmacol. 2006;46(12):1426–38.

    Article  CAS  PubMed  Google Scholar 

  28. Woosley RL, Romero KA. QT drugs list. 2015. Available at: http://www.Crediblemeds.org. Accessed 10 Aug 2015.

  29. Fridericia LS. The duration of systole in an electrocardiogram in normal humans and in patients with heart disease. 1920. Ann Noninvasive Electrocardiol. 2003;8(4):343–51.

    Article  CAS  PubMed  Google Scholar 

  30. NONMEM users guides (1989–2006). Ellicott City: Icon Development Solutions; 2007.

  31. Eap CB, Buclin T, Baumann P. Interindividual variability of the clinical pharmacokinetics of methadone: implications for the treatment of opioid dependence. Clin Pharmacokinet. 2002;41(14):1153–93.

    Article  CAS  PubMed  Google Scholar 

  32. Begré S, von Bardeleben U, Ladewig D, Jaquet-Rochat S, Cosendai-Savary L, Powell Golay K, et al. Paroxetine increases steady-state concentrations of (R)-methadone in CYP2D6 extensive but not poor metabolizers. J Clin Psychopharmacol. 2002;22(2):211–5.

    Article  PubMed  Google Scholar 

  33. Gadel S, Friedel C, Kharasch ED. Differences in methadone metabolism by CYP2B6 variants. Drug Metab Dispos. 2015;43(7):994–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2011;11(4):274–86.

    Article  CAS  PubMed  Google Scholar 

  35. Elens L, Nieuweboer A, Clarke SJ, Charles KA, de Graan AJ, Haufroid V, et al. CYP3A4 intron 6 C>T SNP (CYP3A4*22) encodes lower CYP3A4 activity in cancer patients, as measured with probes midazolam and erythromycin. Pharmacogenomics. 2013;14(2):137–49.

    Article  CAS  PubMed  Google Scholar 

  36. Yang G, Fu Z, Chen X, Yuan H, Yang H, Huang Y, et al. Effects of the CYP oxidoreductase Ala503Val polymorphism on CYP3A activity in vivo: a randomized, open-label, crossover study in healthy Chinese men. Clin Ther. 2011;33(12):2060–70.

    Article  CAS  PubMed  Google Scholar 

  37. Elens L, Nieuweboer AJ, Clarke SJ, Charles KA, de Graan AJ, Haufroid V, et al. Impact of POR*28 on the clinical pharmacokinetics of CYP3A phenotyping probes midazolam and erythromycin. Pharmacogenet Genomics. 2013;23(3):148–55.

    Article  CAS  PubMed  Google Scholar 

  38. Agrawal V, Choi JH, Giacomini KM, Miller WL. Substrate-specific modulation of CYP3A4 activity by genetic variants of cytochrome P450 oxidoreductase. Pharmacogenet Genomics. 2010;20(10):611–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Crettol S, Digon P, Golay KP, Brawand M, Eap CB. In vitro P-glycoprotein-mediated transport of (R)-, (S)-, (R, S)-methadone. LAAM and their main metabolites. Pharmacology. 2007;80(4):304–11.

    Article  CAS  PubMed  Google Scholar 

  40. Goldberg RJ, Bengtson J, Chen ZY, Anderson KM, Locati E, Levy D. Duration of the QT interval and total and cardiovascular mortality in healthy persons (The Framingham Heart Study experience). Am J Cardiol. 1991;67(1):55–8.

    Article  CAS  PubMed  Google Scholar 

  41. Girardin FR, Gex-Fabry M, Berney P, Shah D, Gaspoz JM, Dayer P. Drug-induced long QT in adult psychiatric inpatients: the 5-year cross-sectional ECG Screening Outcome in Psychiatry Study. Am J Psychiatry. 2013;170(12):1468–76.

    Article  PubMed  Google Scholar 

  42. Romero J, Baldinger SH, Goodman-Meza D, Engstrom K, Valencia CR, Golive A, et al. Drug-induced torsades de pointes in an underserved urban population. Methadone: is there therapeutic equipoise? J Interv Card Electrophysiol. 2016;45(1):37–45.

    Article  PubMed  Google Scholar 

  43. Krantz MJ, Martin J, Stimmel B, Mehta D, Haigney MC. QTc interval screening in methadone treatment. Ann Intern Med. 2009;150(6):387–95.

    Article  PubMed  Google Scholar 

  44. Meili D, Broers B, Beck T, Bruggmann P, Hämmig R. Recommandations médicales pour les traitements basés sur la substitution (TBS) de la dépendance aux opioïdes 2012. Societé Suisse de Médicine de l’addiction, SSAM; Bern, Suisse. Available at: http://www.ssam.ch/SSAM/sites/default/files/Recommandations%20TBS%205%2003%202013.pdf. Accessed 14 Aug 2015.

Download references

Acknowledgments

The authors thank all patients for their participation, as well as Dr. J.J. Déglon, Prof. J. Besson, Dr. M. Croquette-Krokkar, Dr. I. Gothuey, Dr. R. Hämmig, Dr. M. Monnat, Dr. H. Hüttemann, Dr. A. Al Amine, Dr. M. Bourquin, Dr. R. Rajeswaran, Mr J. Bergeron, Mr D. Uk, Mrs I. Girod, Mrs S. Meynet, and Mrs I. Soulignac for their collaboration in the recruitment of patients, and Mrs M. Brocard, N. Cochard, A.C. Aubert, L. Koeb, and M. Brawand for analyzing the samples. The authors also thank the Vital-IT Platform of the Swiss Institute of Bioinformatics for providing the computational resources for the population analyses, J.F. Wavre for data management, and E. Retamales for help with the bibliography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantal Csajka.

Ethics declarations

Funding

This work was supported in part by Grants from the Swiss National Science Foundation (3200-065427.01, 320030-120686, and 324730-144064). No external funding was used in the preparation of this manuscript.

Conflict of interest

In the past 3 years, Chin B. Eap has received research support from Takeda and the Roche Organ Transplantation Research Foundation, and has also received honoraria for conferences or teaching Continuing Medical Education (CME) courses from Astra Zeneca, Janssen-Cilag, Lundbeck, Merck Sharp & Dohme, Mepha, Otsuka, Sandoz, Servier, and Vifor-Pharma in the past 3 years.

Chantal Csajka, Séverine Crettol, and Monia Guidi declare that they have no conflicts of interest to declare that might be relevant to the content of this manuscript.

Additional information

C. Csajka and S. Crettol contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

40262_2016_415_MOESM1_ESM.docx

Supplementary material 1 (DOCX 1461 kb) Supplementary Figure 1: Goodness-of-fit plots for A: (R)-methadone and B : (S)-methadone population and individual pharmacokinetic and QTc predictions vs observations and conditional weighted residuals (CWRES) vs. time after last dose

40262_2016_415_MOESM2_ESM.docx

Supplementary material 2 (DOCX 164 kb) Supplementary Figure 2: Receiver Operating Characteristic (ROC) curve indicating the best (R,S)-methadone plasma concentration threshold to predict a QTc prolongation above 450 ms. *(R,S)-methadone plasma concentration value; sensitivity and specificity enclosed in parentheses

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csajka, C., Crettol, S., Guidi, M. et al. Population Genetic-Based Pharmacokinetic Modeling of Methadone and its Relationship with the QTc Interval in Opioid-Dependent Patients. Clin Pharmacokinet 55, 1521–1533 (2016). https://doi.org/10.1007/s40262-016-0415-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-016-0415-2

Keywords

Navigation